A CLASS OF SPACES WITH INFINITE
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1. INTRODUCTION

There are two basic facts which can be used to easily compare the (integral)
cohomological dimension and (covering) dimension of most spaces. First, if the
dimension of a space is finite, then the cohomological dimension is equal to the
dimension; second, the cohomological dimension of a space is greater than or equal
to the cohomological dimension of each subspace. In particular, the two definitions
of dimension agree for finite dimensional spaces and for infinite dimensional spaces
which contain finite dimensional subsets of each dimension. It remains to compute
the cochomological dimension of infinite dimensional spaces which do not contain
(or are not known to contain) finite dimensional subsets of each dimension. In
this paper, a method is developed for computing the cohomological dimension of
a class of spaces and is used to show that many of the known examples which
exhibit the above pathology have infinite cohomological dimension.

Examples of infinite dimensional compacta which contain no n-dimensional
closed subsets (n = 1) were constructed first by D. Henderson ([6], [7]) in 1967
and, subsequently, by R. H. Bing [3], Zarelua ([16],[17]), the author jointly with
L. Rubin and R. Schori [11], and the author jointly with R. Schori [12]. Using
the abstract approach developed in {11], the author ([14], [15]) constructed
examples of infinite dimensional compacta which contain no n-dimensional (n = 1)
subsets (it is not known that the previous examples contain finite dimensional
subsets). The renewed interest in these types of examples is motivated by the
following two problems.

Cell-Like Mapping Problem: Does there exist a cell-like dimension raising
mapping?

Cohomological Dimension Problem: Does there exist an infinite dimensional
compactum with finite cohomological dimension?

A consequence of the Vietoris-Begle mapping theorem [13, p. 344] and the
fact that cohomological dimension and dimension agree for finite dimensional spaces
is that the image of a cell-like dimension raising mapping would be infinite
dimensional and would have finite cohomological dimension. Recently, R. Edwards
[5] established the equivalence of these two problems by showing that a compactum
with finite cohomological dimension is the cell-like image of a finite dimensional
compactum.
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The remainder of the paper is organized as follows. Section 2 contains terminol-
ogy, definitions, and basic facts. Section 3 contains the statements of the main
results. In Section 4, the equivalence between stable mappings and essential families
is established. Section 5 contains statements and proofs of “finite dimensional”
versions of the main results and these are used in Section 6 to prove the main
results. Section 7 contains the computation of the cohomological dimension of
some of the examples constructed in [11], [12], and ([14], [15]).

A suggested plan for those interested in studying the examples constructed
in ([6]1, [7]), [3], ([16], [17]), [11], [12], and ([14], [15]) is first to read [12]
and then to read [11]; the general theory developed in Section 5 in [11] is used
in ([14], [15]) and can be used to simplify many of the arguments in ([6], [7]),
(3], and ([16], [17]).

2. DEFINITIONS AND BASIC CONCEPTS

By a space we mean a separable metric space, by a compactum we mean a
compact space, and by a continuum we mean a connected compactum. The covering
dimension of a space X is denoted by dim X; we refer to [9] for standard results
from the theory of covering dimension. The integral cohomological dimension of
a space X is denoted c-dim X; we refer to [10] for standard results from the
theory of cohomological dimension.

Let S™ denote an n-sphere and let K, denote the Eilenberg-MacLane complex
(obtained from S” by attaching cells of dimension greater or equal to n + 2)
with 7, (K,) = w,(S") fori = nand w,(K,) =0fori=n + 1.

THEOREM 2.1. [9; p. 83]. For a space X, dim X = n if and only if for
each closed subset A and mapping f: A — S” there is an extension f: X — S™.

THEOREM 2.2. [10; p. 7]. For a compactum X, c-dim X = n if and only
if for each closed subset A and mapping f: A — K, there is an extension

[ X—>K,.
Since the (n + 1)-skeleton of K, is equal to S”, we have the following.

LEMMA 2.3. If X is a compactum with dim X < n + 1, then each mapping
f: X — K, is homotopic relative to f ' (S™) to a mapping f': X — S".

Let B! be an (n + 1)-ball and denote its boundary by S"”. A mapping
f: X - B! is unstable if there is a mapping f: X —» S” with f = f on f~'(S™);
otherwise, f is stable. A mapping f: X — B"*! is cohomologically unstable if there
is a mapping f: X —» K, with f = f on f~'(S"); otherwise, f is cohomologically
stable. The next results follow from Theorems 2.1 and 2.2, respectively.

COROLLARY 2.4. For a space X, dim X = n + 1 if and only if there is
a stable mapping f: X — B™**.

COROLLARY 2.5. For a compactum X, c-dim X = n + 1 if there is a
cohomologically stable mapping f: X — B™*".

Remark 2.6. Clearly, a cohomologically stable mapping is stable. A standard
example of a stable mapping which is not cohomologically stable is obtained by
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letting o: 8* —» S” represent a nontrivial element of m,(S™) with 2 > n and
letting f: B**' — B"*! be the “cone” of «.

Remark 2.7. These corollaries are central to the approach developed to detect
that certain compacta have infinite cohomological dimension; specifically, we show
that a certain class of stable mappings consists of cohomologically stable mappings.

Definition 2.8. Let A and B be disjoint closed subsets of a space X. A closed
subset S of X is said to separate A and B in X if X — S is the union of two
disjoint open sets, one containing A and the other containing B. A closed subset
S of X is said to continuum-wise separate A and B in X provided every continuum
in X from A to B meets S. -

3. MAIN RESULTS

Let N denote the natural numbers, let @ = II{l,: & € N} be the Hilbert
cube where I, = [—1, 1], let IT,: Q — I, be the projection, and let A, = IT,'(1)
andB, = I1,'(—1). Forasubset N’ C N,letIl: @ > I1 {I,: k € N’ }bethe projection
and let I1,: X -> II{I,: 2 € N’} be the restriction of I to X C Q.

THEOREM 3.1. Let {N,, N,} be a partition of N and for each kK € N,
let S, be a separator of A, and B,. Letting X =N {S,:k € N, }, for each finite
subset {t,, ty, ..., t,} C N, , 1 x: XTI {I,: k=t,, ¢, ..., t,}is cohomologically sta-
ble. In particular, c-dim X is greater than or equal to the cardinality of N ,.

THEOREM 3.2. Let N, = {r,,r,, ...}. The preceding theorem remains true if
S,, continuum-wise separates A, and B, in @ and, for k=2,S, N S, | contin-

uum-wise separates A, NS, andB, NS, inS, .

The class of spaces referred to in the title is the class consisting of compacta
of type described in Theorems 3.1 and 3.2 with N, infinite and of compacta which
contain such compacta (see Section 7 for examples of the latter type). Theorem
3.1 represents the essential new result in the paper; its proof easily generalizes
to yield Theorem 3.2. It is the latter statement which is needed in Section 7
in order to show that various of the examples mentioned in the introduction have
infinite cohomological dimension.

4. STABLE MAPPINGS AND ESSENTIAL FAMILIES

This section contains a method for constructing and detecting stable mappings
using essential families (defined below); a development of the theory of essential
families can‘be found in [11; Section 5].

Definition 4.1. Let X be a space and let I' be a finite or countably infinite
indexing set. A family {(4,,B,): k € T'} is essential in X if, foreach k€ T, (A,,B,)
is a pair of disjoint closed sets in X such that if S, separates A, and B,, then
N{S,:keT} #4.

Example 4.2. If I"
the projection, and A,

IN{I,: 1 = k = n} where I, = [-1,1], 0,: I"—> I, is
IM,'(1) and B, =1II,'(—1), then {(A,,B,):1<k=n}

i
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is an essential family in I” (see [9; p. 40]). The family of pairs of opposite faces
of the Hilbert cube described in Section 3 is an essential family.

The next result contains a precise statement of the relation between stable
mappings and essential families; the result is contained implicitly in the literature
(for example, see [2; p. 20]).

PROPOSITION 4.3. Let X be a compactum, let{(A;,B%): 1 < k< n} bea family
of pairs of disjoint closed subsets of X, and let f,: X— I, with A, = f;' (1) and
B, = f;'(—1). The family {(A,,B}): 1< k=< n} is essential if and only if the
mapping f: X — I" defined by f = (f,, ..., ) is stable.

Proof. Letting {(A,,B,):1=< %= n} be the family of pairs of opposite faces
of I”, notice that f*(4,) =A, and f*(B,) = B,. Let S"* be the boundary of
I,

If f is unstable, then there is a mapping f’: X » S™ ' with f’ = fon f ' (8" 7).
Moreover, there is a mapping f: X - I" — (0,0, ..., 0) with f= fon f~*(S*™") and
F1S™ ™) = f7(8™") (consider the linear homotopy between f and f’); in particu-
lar, f"'(A,) =A}and f "'(B,) =B}.For 1 =k =<n,let S, =II, '(0); S, separates
A, and B, and, hence, S, = f "' (S,) separates A and B/,. Observe that

N{S;:1=k=n)=Ff""N{S,:1=k=n))=0;

therefore, the family {(A,,B}): 1= k= n} is not essential.

Conversely, if the family {(A},B}): 1< k= n} is not essential, then let S,
be a separator of A} and B, with N {S,:1=k=n)}=@. Let f,: X— I, be such
that A, = £,'), B,=fz'(=1), and S, = f;'(0), and let f: X — I, be defined
by f = (fy, ..., f,). Observe that f ~*(S*') = £ 71(S"') and that

fX)ycr -o,o,..,0

(since £7'((0,0,..,0) =N {S,:1=k=n}=pP); letting f =rof where
r:I" - (0,0, ...,0) > S* ' is a retraction, we see that f is unstable. However, the
restrictions of fand fto f ' (S"" ') = f "' (S"') are homotopic as mappings into
S™~! (the homotopy is obtained by restricting the homotopy of f to f which is
constructed from the linear homotopies between the f,’s and f,’s) and, therefore,
it follows from Borsuk’s extension theorem [4] that f is unstable.

For the remainder of this section, let {(4,,B,): 2k € I'} be the family of pairs
of opposite faces of either the Hilbert cube or the n-cell I" (see 4.2). We point
out that Propositions 4.4 and 4.6 below were stated in [11] for I' countably infinite;
the proofs therein are valid for I" finite.

PROPOSITION 4.4. [11; Proposition 5.5]. Let J C I and, for each j € dJ, let
S; be a separator of A, and B;. Letting X=N {S;:j €J}, the family
{(XNA,,XNB,):keTI —J}is essential in X. '

COROLLARY 4.5. Given the hypotheses of Proposition 4.4, for each finite subset
{ts, 0wt }CT —JN: X>I{I,:k=t,, .., t,}is stable.

Proof. Letting f, =II,, restricted to X, we have that
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fA=XNA,,f*(-)=XnB,,

and Ily=(f,,. ft ; since ((XNA,XNB,:k=t,..,t,} is essential
(a subfamlly of an essentlal family is essential), Proposmon 4.3 implies that I1,
is stable.

PROPOSITION 4.6. [11; Proposition 5.6]. Let J = {j,,J,, ...} be a finite or
infinite subset of I. Let {S,;:j € J} be a collection of closed subsets with S )
continuum-wise separating A; and B; andwith, fori = 2,5, N S, . continuum-wise
separating A; NS, andB; NS, mS - Letting X = ﬂ {s, _] € J}, the family
{(XNA,X N B ) k el - J} is essennal in X.

COROLLARY 4.7. Given the hypotheses of Proposition 4.6, for each finite subset
{ty, ..ot} CT - x: X>T{I,: k=t ..., t,} is stable.

5. FINITE DIMENSIONAL CASE

Forl=qg=<n,let I?"=M{I,:1=< k= q}; let S?"" be the boundary of I’; and
let {(A,,B,): 1< k= n} be the family of pairs of opposite faces of I".

THEOREM 5.1. For m <k <n, let S, be a separator of A, and B, and let
X=N{S,:m=k=n}. For each 1=qg=m—1, lly: X—> I’ is cohomologically
stable.

Proof (by contradiction). Suppose that there is a mapping f: X — K _, with
f=I,on ;' (877"); extend f to X U II *(S?" ') using II and let f be an exten-
sion of f to a neighborhood U of X U II™'(S?7'); an extension exists since the
image of f is contained in a finite subcomplex which is an ANR (absolute
neighborhood retract). Forg + 1 = % < n,let S, be an (n — 1)-dimensional polyhedron
separating A, and B, chosen so that, i) Sq+1 ..N S, C U (form==~k=n,
choose S, near S.); and ii) dlm(SqH .N S,).< q (general position). Letting
Y= Sq+1 N..NS,0,:Y->1Iis stable (Corollary 4.5) and Y C U. Let f, be
the restnctlon of f to Y since fy: Y— K o—1 and dim Y = g, there is a mapping
g Y—> 87" with g=f, on f3'(S77") (Lemma 2.3) and, therefore, g =11, on
IT7' (S?7"). This contradicts that IT is stable.

Remark 5.2. If S separates A, and B,, then boundaries of “small” polyhedral
neighborhoods are (n — 1)-dimensional polyhedra which separate A, and B, and
which “approximate” S. If S continuum-wise separates A, and B,, then “approxi-
mating” (n — 1)-dimensional polyhedra can be constructed as follows. Let
d3=d(A,,B,),let S, ={x€ S:d(x,A,)<3/3}, let S;={x€ S:d(x,B,)=5/3},
and let S,,=cl(S—-S, U S,). Let P,, Py, P,, be the boundaries of “small”
polyhedral neighborhoods of S, S, S,,, respectively, each chosen to meet 8"}
in an (n — 2)-dimensional polyhedron. The (n — 1)-dimensional polyhedron
P=P, U P, U Pj, continuum-wise separates A, and B, and “approximates” S.
If Z is a closed subset of I, and we only assume that S N Z continuum-wise separates
A,NZ and B, N Z in Z, then the polyhedron P has the property that PN Z
continuum-wise separates A, N Z and B, N Z in Z.
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THEOREM 5.3. Let {S,:m <k =<n} be a collection of closed subsets of I"
with S,, continuum-wise separating A,, and B,, and, form +1=<k=n,S,NS,_,
continuum-wise separating A,NS,., and B,NS,., in S, ,. Let
X=n{S,ym=k=n}.Forl=sqg=m—1,1: X— I?is cohomologically stable.

Proof. Make the following modifications to the proof of Theorem 5.1. Let S,
be an (n — 1)-dimensional polyhedron “approximating” S, as described in Remark
5.2. Since §, is the union of boundaries of polyhedral neighborhoods, if S, , is
chosen “sufficiently close” to S,_,, then S, N S, , continuum-wise separates
A,NS, ,and B,NS,_,in S, ,. For k=n—2,...,j + 1, successively, choose
S, so that S,,; N S, continuum-wise separates A,,, N S, and B,,, N S, in S,.
Finally, use Corollary 4.7 in place of Corollary 4.5.

6. PROOFS OF MAIN RESULTS

For convenience we assume that {¢,,...,¢,} = {1, ..., ¢} in the statement of
Theorem 3.1. If 1, is not cohomologically stable, then there exists f: X — K _,
with f = I, on I} (S?7*);extend fto X U IT "' (S* ')using M and let f/: U— K__,
be an extension of fto a neighborhood U of X U II"*(S?'). Let {r,, ...,r,} C N,
be such that N {S,:k=r,,...,r,} C U;let n = max{r,, ..., r,} and by reordering
assume that {r,,..,r,}={n—-s+1,..,n}. For n—-—s+1=<k=n, let
S, =S, NI"I"=1"%X(0,0,...) C Q) and let X' =N {S,:n—s+1=< k= n}.
Letting fy. be the restriction of f to X', fx:X'> K, _, and fy =M, on
IT; (S?7*);therefore, I ,. is not cohomologically stable; but this contradicts Theorem
5.1.

The proof of Theorem 3.2 is the same using Theorem 5.3 instead of Theorem
5.1.

7. APPLICATIONS

We are interested in using Theorem 3.2 to show that many of the examples
constructed in ([6], [7]), [3],( [16, 17]), [11], ([14], [15]), and [12] have infinite
cohomological dimension. Each of the constructions can be done so that Theorem
3.2 applies immediately (i.e., IV, is infinite); however, the partition can be chosen
so that N, ={2,3,...} and N, = {1}. Even in this case it is often possible to
find a subset of the example which Theorem 3.2 implies has infinite cohomological
dimension; we give two illustrations. The first involves the construction in [11]
(and can easily be adapted to handle the constructions in ({14], [15]) and ([16],
[17]); and, the second involves the construction in [12] where the desired subset
is more difficult to find.

In this paragraph we adopt the notation in Section 6 of [11]; in particular,
we are interested in the example Z= N {Z,: k= 2} constructed in the final
paragraph of Section 6 where Z, continuum-wise separates 4, and B,. Our goal
is to show that Z N I1;'(1) has infinite cohomological dimension (in fact, if y
is an endpoint of an interval from any #7,, then Z N II{'(y) has infinite
cohomological dimension). Observe that the sub-Hilbert cube
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7' (1) C N {Z,:kE N,)

and that {(A, N I1;'(1),B, NI (1)): k= 2} is the family of pairs of opposite
faces of II7*(1). Letting N, = N, and N, = {k: k= 2 and k& N,}, {N/,N,}is
a partition of {k: 2 = 2}. Since

ZNO7* =N {Z,NO{'Q):k € N})

and N/, is infinite, Theorem 3.2 applied to II;*(1) yields that Z N II7*(1) has
infinite cohomological dimension.

In this paragraph, we adopt the notation in Section 3 of [12]; the example
Y=n {X,: k= 2} where X, continuum-wise separates A, and B,. For k=0,
I+ (1) C X441, N X a4 and, therefore, the sub-Hilbert cube

Q =N{;(1):k=0}C N Xgpe1_, N Xgpr: =0}
the family of pairs of opposite faces of @' is
{A,NQ ,B,NQ")q# 3* for some k= 0}.

Partition the set {q:q# 3* for some k2 =0} by letting N, = {g:q+# 3" or
3*** — 1 for some £ = 0} and N, = {q:q = 3**' — 1 for some 2 = 0}. Then
YN =n{X,NQ :9 € N,} and, since N, is infinite, Theorem 3.2 implies
that Y N @’ has infinite cohomological dimension.

Remark 7.1. The techniques developed in this paper can be used to analyze
examples constructed by intersecting continuum-wise separators of opposite faces
of the Hilbert cube. The various constructions can be done starting with any strongly
infinite dimensional compactum; these techniques do not seem to apply in this
general setting.
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