MAZUR MANIFOLDS

Selman Akbulut and Robion Kirby

1. INTRODUCTION

In [10] Mazur constructed a contractible 4-manifold whose boundary is a
homology 3-sphere not equal to S°. In this paper we investigate some generalized
Mazur manifolds W*(Zk) gotten by adding a 2-handle to S' X B? in certain
ways. Consider the knots K* in 8' X B> C 8' X 8* = 3(S* X B?) drawn below
in Figure 1.

There are / full twists (right-handed as drawn if /7 > 0, left-handed if /7 < 0)
in K*. The O-framing on the normal bundle to K* is the one derived from the
normal vector field which is tangent to a Seifert surface between K* and the
curve vy, (= S' X g where S' X ¢ N K* = ). Since m, (SO (2)) acts on the normal
bundle to K* in the obvious way, twisting % times, 2 determines a trivialization
of the normal disk bundle which we use to attach a 2-handle to S* X B?, getting
W= (4 k). Mazur’s example ([10]) was W™ (0,3) = W' (0,0), (see section 2 for the
diffeomorphism).

We consider the question: is vy, homotopically slice? That is, does v, bound
a smoothly imbedded disk in some contractible 4-manifold X * witho X* = o W* (£ k)?

THEOREM 1. «_ is homotopically slice if and only if
(£k) =(0,0), 4,1) or (2,k).

THEOREM 1’. +«, is homotopically slice if and only if

(4 k)=(2,1), (=2,0) or (0,F).

Theorem 1’ follows from Theorem 1 because there is a diffeomorphism between
AW (4R)and aW" (—/+ 2, —k + 1) which takes y_ to vy, (see Proposition 1, section
2).

Zeeman [13, page 357] suggested that no essential knot in the boundary of
a contractible manifold is slice. Somewhat the opposite has turned out to be true
(see [9] for some examples), for R. Fenn [3] showed that any circle in the boundary
of a contractible manifold with a 2-dimensional spine is homotopic to one which
is slice. However, some special cases are still interesting. It has been known for
some time that vy, is slice in W (0,%), for all k& (the slice is drawn in section
5). However the same method cannot work for y_in W™ (0,0) (see [9]). Considerable
effort has not produced a slice. But as is known (section 5), v_ is slice in some
other contractible manifold W. W is A-cobordant to W™ (0,0) (any contractible
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W (4 k)

Figure 1

manifolds W, and W, with the same boundary are A -cobordant because W, :9/ - W,

is a homotopy 4-sphere which then bounds a homotopy 5-ball). So either the
h-cobordism fails to be trivial or there is a slice no one has found.

Zeeman also asks [13] whether curves such as v_ in d W™ (0,0) bound PL disks.
Our methods shed no light on this difficult question for we need smooth, hence
locally flat disks.

In section 7, we show that three of the Mazur boundaries are Brieskorn homology
spheres, which thus bound contractible manifolds. Let

S(a,b,c) = {(x,y,2)EC>: 2" +y*+2°=0}n S°

(see [11]).
THEOREM 2 (1) =(2,5,7) = aW*(0,0)
(2) =(3,4,5) =~ aW"*(—1,0)
(3) £(2,3,13) = aW™ (1,0).

A.J. Casson and J. L. Harer [2] have since shown that many Brieskorn homology
spheres bound contractible manifolds built using one 1-handle and one 2-handle.

Section 2 contains equivalent descriptions of Mazur manifolds; in sections 3,
4 we calculate various invariants to show that vy, is not slice; section 5 contain
the proof of Theorems 1, 1’; and section 6 has the proof of Theorem 2. In the
remainder of this section some notation is fixed.

The reader should be familiar with the language of [7]. In particular, a framed
link in S® provides attaching maps for adding 2-handles to B* and thereby
determines a simply connected, smooth 4-manifold with boundary. If we add a
1-handle to B* we get S' X B®. The attaching map of a 2-handle can then be
drawn as in the picture above for W*(/k). However it is more convenient to
draw the “linking circle” of the 1-handle, that is, * X 8B®>— S' x §*— S' x B>,
We put a dot on this circle to indicate a 1-handle. The picture for W™ (£ k) becomes:
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this means
Z full
twists

Figure 2

This notation is convenient because we frequently want to surger the circle
determined by the 1-handle. This amounts to replacing the 1-handle by a 2-handle
which is attached to the same circle with framing 0 (and the dot is removed).
Conversely, any unknotted, unlinked collection of O-framed circles determine
disjoint, smooth 2-spheres with trivial normal bundles. Surgery on these 2-spheres
amounts to replacing the 2-handles by 1-handles which are denoted by the same
circles with dots. These surgeries, or exchanges of handles, obviously change the
4-manifold, but never its boundary. This is one tool in obtaining different framed
link descriptions of the same 3-manifold boundary.

The phrases “blow up” and “blow down” refer to the operations in Propositions
1A and 1B of [7]; a CP?or € P?is being added to (or subtracted from) a 4-manifold,
and 2-handles are slid over (off) the new 2-handle. Throughout the paper, = means

diffeomorphism, and = means that the boundaries of the corresponding manifolds
are diffeomorphic. Twists means full twists; half twists are indicated when they
occur.

If a 2-handle goes geometrically once over a 1-handle, then the pair may be
cancelled. In a framed link diagram, this is done in two steps: (1) if any other
two handles go over the 1-handle (i.e., go through the dotted circle) then they
must be slid over the cancelling 2-handle, (2) the cancelling handles are erased.
Note that this process may be reversed, introducing a dotted circle which links
only the cancelling 2-handle which is allowed to go anywhere else.

2. EQUIVALENT DESCRIPTIONS OF MAZUR MANIFOLDS

PROPOSITION 1. (1) W*(gk)= W™ (/+ 1,k — 1)

2) W (4R)y=W" " (—/+2,—-k+1)

@) W (Zk+1)#CP?=K™ (interior connected sum)
4) W (4k+1)#(—CP*)=K™
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where

i3

£+ k

Figure 3

Proof of (1). W™ (4 k) is diffeomorphic to the first diagram in Figure 4, and
after 3 handle slides, the last diagram is diffeomorphic to W (Z/+ 1, & — 1).

k-1
=
slide \ —
2-handle L‘)
-6

slide
1-handle

slide
2-handle

Figure 4
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Proof of (2). W™ (4 k) is diffeomorphic, after sliding one 1-handle over the
other, to the first diagram in Figure 5. After cancelling the 1-2-pair in the last
diagram and changing orientation, we get W™ (—=/+ 2, =k + 1).

k
/'/ k= !

¢ \if)—l & QQ

Figure 5

Proof of (3). We proceed through the 4 diagrams in Figure 6. In the last

diagram, cancel the one and 2-handles, and redraw the remaining 2-handle to
finish the proof.

=

—_—>
handle slide

Figure 6
The proof of (4) is simi.ar and we omit it.

Remark1. Onecan easilyshowthat W™ (£ k + 1) U (=K *') = CP?the same

aK+1

holds for W* (4 k + 1).

Remark 2. The diffeomorphism (2) takes y_ to v, , and reverses orientation.

Remark 3. (1) implies that: W*(/k) = W*(/',k’) when Z + k = /" + k’.
Unfortunately this diffeomorphism does not fix -, .

Remark 4. By (1) and (2), W* (4 k) is diffeomorphic (perhaps reversing orien-
tation) to one of W™ (0,k). Laudenbach and Eaton have shown that a W* (0,%)
is never simply connected.
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k+1

Figure 6 continued

Remark 5. It is interesting to note that the diffeomorphisms (3) and (4) carry
the = CP'in +CP? to the obvious 2-sphere in K *' (namely the slice disc K bounds
in B* union the core of the 2-handle).

3. CALCULATION OF ALGEBRAIC INVARIANTS OF v

To calculate the algebraic invariants of v we have to find a Seifert surface
for y. For y C W™ (4 —r), by rotating S* X B® by a diffeomorphism r times and
extending it to a diffeomorphism over attaching 2-handles, we get the diffeomor-
phism in Figure 7. We have changed the interior of W™ (Zk); now ~ lies on the
boundary of a different Mazur manifold (with the boundary = o W™ (/k)). To
find a Seifert surface for y we first draw a surface between vy and the boundary
of the core 2-disc of the 2-handle in S' X S? (i.e., a copy of the knot & pushed
off with zero framing; see Figure 8). We can draw this surface in S* X S? because
“3” is a O-framed knot. Then we cap off this surface with D” over the 2-handle
in d W™ (4 k). Hence, in Figure 8 we only see the part of the Seifert surface which
is in S' X 8? (the Seifert surface — D?), but this is enough for calculating the
Seifert form of . The Seifert matrix of yis L, = (\;), where
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Figure 6 continued
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Figure 7
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Figure 8
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A, = linking number (\;, 14X ;),

and where the \/s are curves generating the homology of the Seifert surface,
and i is a vector field normal to the Seifert surface. We get the matrix below.

[ -1 o )

-1 Z4+r-1|-1

\ -1 0—11)

In the case y C aW ™ (4 k) and & > 0, by first changing the orientation of W™ (/&)
and proceeding as in the previous case, we get a 2k X 2k Seifert matrix L, which

7

1 1
differs in form from L, only in the upper left-hand block which is (0 Sk )
—Z+

for L,.
(a) Calculation of the p-signatures of y. Wheny C oW ™ (4k) and k = 0,

o, (y) = Signature {(1/2)(1 - &, (L, — w,L])}

(see [12}) where wp =exp(2m«wi/(2m + 1)) for an odd prime p = 2m + 1, and
wy, = —1.

Wheny C W (4k) and &k > O,
op(y) = — Signature {(1/2)(1 — &p )L, — 0,L)}.

The negative sign is because we have changed the orientation of W™ (Zk) in
the first step of our modification. For vy C aW™ (£ k), we get

2Rew *(1 —w) + 1
—1+4+Sgni{/—-1+ fork= 0
) 2Re (1 — w)
o,\Y} =
? —2Rew* (1 —w) + 1
—-1+Sgn|/—1+ fork >0
2Re (1 — w)

where w = w, and Sgn (a) = a/|a| when a # 0, or equals 0 when a = 0.
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(b) Calculation of the Alexander polynomial of v. When v C aW ™ (4k),
k = —r = 0, the Alexander polynomial of v is (see [8]);
A, (t) = determinant ((L, — L7)
=t [t - (- Dt Q-1 — (=Dt T+t =t

Similarly, when v C aW ™ (4k), k > 0, then

A,,(t) = determinant ({L, — Lg‘)
=t -t - (=Dt 27— 1) = (L= Dt =7V 1 7R

4. ESTIMATING THE CASSON-GORDON INVARIANT OF v

Lety C W (Z4k),k = —r = 0; also assume Z=b(b + 1) + 1 + (—1)"** where
b is an integer (we restrict ourselves to this range because this is when the
Casson-Gordon invariant of vy is non-trivial as will become clear later on). From
section 3 we can assume that v lies in the boundary of W (see section 3).

Claim. 9(v°) = d(K;,), where v° is the 4-manifold obtained by attaching a
2-handle to W* using the O-framing on vy C W, and K ~» 1s the knot “3” of section
3 (we rename 3 for a technical reason).

Proof. ~v° = (8'x B® U 2-handle along ) U (2-handle along )
=~ (S! X B® U 2-handle along v) U (2-handle along 5)
~ B* U 2-handle along K ,, = K_, .

According to [1] v has the same Casson-Gordon invariant as K ,,. First recall
the definition of Casson-Gordon invariant in the following special case (see [1]):
let M be a closed 3-manifold such that

() M? = oW*, W*is compact,
i
(i) HM?)=2Z . 3 H,(W) = Z,, is onto where i is the inclusion.
Let x: Z,,—>Z, be an epimorphism. Let W be the g-fold covering of W induced
by x. Then the chain complex C, (W)isa Z[Z,] — module. Let & be the cyclotomic
field Q(Z,) C C(Z, is identified with the group of g-th roots of 1); then define

H,(W:E) =H*(C*(W)Z[C? : k).

There is a hermitian pairing: H,(W;k) ® H, (W;k)— k defined by

(x,y) = 2 (x,ty)t ™"

te Zq

where (,) is the ordinary pairing of H, (W:Z). Now define
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U (M? x) = Signature H, (W:k) — Signature H, (W:Z).

Let K be a knot in a homology sphere V® which is a boundary of a homology
4-ball. If the 2-fold branched covering space M? of V° branched along K satisfies
(i) and (ii), we define ¥ (K;x) = $(M>:x). In [1] it is shown that if such a knot
K is slice in a homology ball and ¢ is a prime power then |Y(K;x)|<1. If m
is prime for brevity we denote Y (K;x) by ¢ (K).

We are now ready to estimate §(K ,,,x). To find the 2-fold branched covering
space of K, , we first unknot K, by blowing up as in Figure 9, and then (Figure

W

\ (<

- =
o2+ 1) blow up \ )
N

: (£ +T)
|

|
i
/} u
=K/!rinsa =K/,rin
3 (Cp? — int B*)
r
AL

A
l+r
Figure 9

e

+1

N

N
~
/’\//
-
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Figure 9 continued

10) branch along the obvious B? with dB? = K .- to obtain a framed link picture
for the double branched cover of CP? — int B* along B> The framings in Figure
10, which are the intersections of the homology classes C, and C, in the covering
space, can be computed in terms of the homology class C generating

H,(CP® — int B Z)

by the formula: C; - C, + C,- C,=C - Cfori =1 or 2.
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27" +1

>~ r half twists

r—2if ris even
~ |r+2ifrisodd

Figure 10
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Therefore the 2-fold branched covering space of K, can be described by dM,
when r is even, and by M, when r is odd, where M, and M, are given in Figure
11.

Let

{M1 if ris even
M=
M, if ris odd.

$ r half twists

> r + 1 halftwists

M,

Figure 11
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Claim. The 2-fold branched covering space of K ,, is obtained by doing a surgery

along a knot in the two-fold cyclic branched covering space of the rational knot
£, in Figure 12.

%

~
--—.X,

&

@

Figure 12

Proof of Claim. Again we take the 2-fold branched covering of £,. by blowing
up to unknot §,. and then constructing the covering as in Figure 13. Then clearly
M is obtained by adding a handle 2 with +1 framing onto the 2-fold cyclic branched
covering dN* of £,..

_—
/! 2-fold
branched
cover
along & .

Figure 13
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27" +1 27" +1 2/ +1

7\ SR

1

Y
N

E —;\:(/) H
a0 0.0

N

h/

-
(=
(.

N
Figure 14

Call 3N* = L. We have M* = N* U h, and H,@9M*) = H, (L) = Z , with

27/ +1 2/
u = det =4/'+1=4b(b+ 1) +1=(2b+ 1)°.
2/ 2/ +1

Let x be any epimorphism Z,,,, — Z, where q is a prime-power dividing 2b + 1.
Let W* be a manifold which bounds L and satisfies (i) and (ii). Then WU A
bounds d M and satisfies (i) and (ii). Let W be the g-fold covering of W induced
by x; then WU A, U ... U &, is the induced g-fold covering of W U h, where
h; 1 =1i= g, are the handles covering A.

H,(WU h;k) = H,(C,(WU A U ..Uh,) ® k)

Z1Z4]

=H2(C*(W)Z[(>;3]k)@k

Figure 15
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since as a Z[Z,]-module we have the relations A, = t" 'h, where t is the
multiplicative generator of Z, and 4, is a cycle. Therefore:
U(K,,,x) = Signature H,(W U h;k) — Signature H, (WU h:Z)
= Signature H, (W:k) = 1 — (Signature H,(W:Z) + 1)
=¢E,,x) =1 E1=¢(E,,x) +2
But in [1] ¥(£,.,x) is calculated to be —5 for some x when /' =b(b + 1) > 2.
Therefore |Y(v,x)| =3 when r is even and / = b(b+ 1) > 2, or r is odd and

/=bB+1)+2>4. If r is odd and / = 4 we calculate Y(y) = ¢(K,,) directly
from Figure 15. Starting with the 2-fold branched covering of v, dM,, we do

d
—_— e -
blow up r\,’\’ :k"'\/ 4 Q)——)O
—1 and fi
blow down
+1

)

—~

fi— fr—fe r+1
oo fo half twists

and surgery (put in
the dot)

Figure 15 continued
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a handle addition to get the second diagram, blow up a minus one to separate
the 5 and 2 and then blow down a plus one to get the third diagram; finally

Uk
a handle addition and surgery defines W. Clearly Z, = H,(0W)—> H,(W)=2Z,

is onto, where i is the inclusion 0 W C W. Choose i, to be the character x. We
now take the 3-fold covering W of W, drawn in Figure 16. The self-intersections
of the 2-spheres o’s, B,'s are computed as before by the formulas

ot D agra==2 BB+ D BiB=-1  (=1,23)

J#i J#i

H,(W:k) is generated by 3, and

(B1sB1) = BBy + BB+ (B,Bs)E

(r+1)2 (r+1) 3r+1
=r- " - t=
2 2 2

where ¢t = ¢*"/%, B, = t'"'B,. Then

3r+1

¥ (y) = Signature ( ) — Signature (—1) = 2.

Figure 16
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For y C aW ™ (Zk), k > 0, by a similar calculation we get |{(y)| = 3 when
F=bb+1)+1+(-1)""">2
and (4k) & {(4,2n + 1)|n = 0}.
5. PROOF OF THEOREMS 1 AND 1’

We prove, for /=0 and k& # 0, that vy is not slice by showing o, (y) # 0 for
some prime p. Say, for example, 2 < 0; then

2Rew ™ (1 —w) + 1 )

=—-1+Sgn|/—1+
o () g ( 9Re (1 — ©)

If & is odd, then o,(y) = —2. If % is even, let p be a prime dividing %2 — 1; then
o, (y) = —2. The case £ > 0 can be handled similarly. Also when /<0 and & =0,
o,(y) = —2.

Now assume 7/ > 0; if vy is slice, then the Alexander polynomial of y must
satisfy the condition A(¢) = +£*0(¢)0(t™") (see [8]). Hence

A(-1) =4/-3+4(-1" = x0(-1)>
Hence 6 (—1) must be odd, say 0(—1) = 2b + 1, so

4(Z/+ (D -1 +1=4b(+1) + 1,
and Z=b(b + 1) + 1 + (—1)**. Therefore v cannot be slice unless

Z=bb+1)+1+(-1*"
If (/k) € {(4,2n + 1): n = 1} then
ARy =t " —t" =3t +7—-3t7 = t7¢ TV +¢7F).

Plugging in w, = e*"/°, we get A(w,) = wy(t*+ ¢t * —¢* ' — 7%V + 10). Then

|A(wy)] = 13, 7, or 10 according to 2 = 0,1,2 (mod 3). Hence (k) cannot be slice
in this range, for otherwise

|A(@3)] = [8(ws) 0(w3™)] = | 8(wg) 8(@,)] = | 8(w;) 0(w,) | = | B8(w,)|?
(for some O (¢)).
Finally, the sliceness of vy is ruled out by section 4 when
(4k) & {(4,2n 4+ 1): n = 0}
and Z=b(}+ 1)+ 1+ (—1)**" > 2. So (£ k) cannot be slice when

(£k) # (0,0), (4,1), (2,%).
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To prove the homotopy sliceness for the remaining cases we need the following.

LEMMA 1. Let W* be a contractible manifold with boundary. Let vy C aW*
be a knot such that w,(3W*)/ [v] = {1} (where [y] is the smallest normal subgroup
containing v). Let a be a slice knot in S®>=aB*. If d(y°) = d(a®), then v is
homotopically slice, where v° is the 4-manifold obtained by attaching a 2-handle
to W* along v using the O-framing.

Proof. Let D* C B* be a 2-disc with « = dD* C S°.

Clearly the image of i,:m,(S° — a) — m,(B* — D?) normally generates
w,(B* — D®) where i is the inclusion. Define V = B* — N(D?) where N (D?) is
an open tubular neighborhood of D? in B*. Then 8 V = 8(«°) and since i, [a’] = 1,

where o’ is the loop obtained by pushing off a copy of a with O-framing, the
image of the following map normally generates , (V):

@) =m@V)=m6%-a)/[a’'] = w, (V).

Define W=oW X I U D’XD’=~°"—W, aW=90WIa(y°).
vx D2

Let W= W U V where gluing is done using the diffeomorphism a(y°) = 3 (a°).
Then W is a homology ball, and by Van Kampen’s theorem

m, (9 (@?))
N

Trl(V)
A

N

m (W) = & (W)/ [vy] = {1}

171(W)
'rrl(VV) =0 hencg it is contra_ctible. Also the knot y C a W= 8 W is slice because
it bounds D? in W, hence in W.

Let (4 k) = (0,0), (4,1); then one can easily check that w, (0 W™ (4 k))/ [v] = {1}.
For the other condition of Lemma 1, let v C 9 W™ (0,0); then from section 4,
a(y°) =a8(0°) =8"x 8% If y C W™ (4,1) then as in section 3 and section 4 we

d
get d(y°) = d(a®) where a is the stevedore’s knot which is ribbon. Hence v is

homotopy slice when (/&) = (0,0), (4,1). It has been known for years that vy is
homotopy slice when (4 k) = (2,k). Here is a demonstration using the diffeomor-
phism

(6 W— (2’ k)"Y) = (a W+ (Oa —k+ 1)”\{)
and the moving pictures in Figure 17. The attaching circle of the 2-handle is

concordant in S X S' X I to v, so y bounds a disk made up of the concordance
and the core of the 2-handle.

Remark 6. The homotopy sliceness of y_ C a W™ (4 %) for

(4k) =(0,0), (2,0), (2,1)
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Figure 17

can be more geometrically seen as follows: Let vy C 9 W™ (0,0). One can construct
the diffeomorphism f in Figure 18 by first changing S* X B® to B> X §? in the
interior of W™ (0,0) (i.e.,, removing the dot from the corresponding circle) and
surgering the other imbedded S? (i.e., putting a dot on the other circle). Clearly
f () is slice in W™ (0,0). Since (W™ (2,1),v) = (W"(0,0),v) the same trick works
in this case.

Figure 18

When v C aW ™ (2,0) = d W™ (0, 1), we construct in Figure 19 a diffeomorphism
of 9 W*(0,1) taking ~ to a slice knot.

Remark 7. Denote vy C dW*(4k) by v, (4 k). Then we have the following
periodicity relation: o, (v, (£ k + p)) = o, (v. (£ k)).

Remark 8. One can generalize Mazur manifolds as follows: let J C S® be an
oriented knot intersecting the interior of a 2-disc D? C S® algebraically once. We
can construct a contractible manifold W¥ by making 9 D* a 1-handle (i.e., putting
adotonit) and attaching toJ a 2-handle with framing & (Figure 20). Lety (J, k) C Wf}
be the first factor of S* X S” (boundary of the 1-handle). Theorems 1, 1’ generalize
to:

(i) v (J,0) is homologically slice if J is slice
(i1) o,(v(J,0)) = o,(J)
(i) o,(v(J, & + p)) = o,(v(J, %))

(ii), (iii) can be proved like Theorem 1, using a judicious choice of a Seifert
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switch circles
and surger

Figure 19

surface for y(J,k) as in [12]. (i) is true because W9 U D? X D? = (J,0)° iJ0
where v(J,0)° is the 4-manifold obtained by attaching a 2-handle to W$ along
v(J,0) with O-framing, then clearly v(J,0) is slice in the homology ball obtained
by surgering the obvious 8%« J° in

(@WSxI)U (D? x D?) U JO.
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-3
+1 9
2,57 ~ C@—l _%;@a 5 =
\/ P
blowdown

twice

2 //\ m /\
= -~ _ = - -1
——) QJ ! €,— € 8\
e, €2 e,— e,
e;—>e;+ e

Figure 22

5. PROOF OF THEOREM 2

By resolving the singularity of these complex hypersurfaces as in [6] we get
Figure 21. The intersecting line segments describe the plumbing description of
4-manifolds (see for example [6]). The above equalities can easily be verified.
We are ready for the proofs:

In Figure 22, we start with X(2,5,7), blow up once, blow down twice, do the
indicated handle addition, and then blow down the small —1 circle and redraw

d
to get W(0,3). But aW ™ (0,3) = aW (1,2) = oW (2,1) = d W*(0,0) by Proposi-
tion 1.

The case of X(3,4,5) begins the same way, involves a similar handle slide,
and is left to the reader.

In Figure 23, the first diagram is 2(2,3,13) after two —1 curves are blown
down. After proceeding as indicated, take the last diagram, switch circles (the
link is symmetric), surger the O circle, and reverse orientation. The resultis W™ (0, 1)
and W™ (0,1) = a W*(1,0).
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