MATRIX ALGEBRAS OVER O,

William L. Paschke and Norberto Salinas

This paper is concerned with the extension theory of the C*-algebras O, studied
by J. Cuntz in [7] and their tensor products with the algebra M, of complex
k X k matrices. We show by computing various Ext groups that the O_’s are pairwise
non-isomorphic (a result which has also been obtained independently by M. Pimsner
and S. Popa [8]), and that O, and O, ® M, are non-isomorphic if k and n — 1
are not relatively prime. We also prove that O, is isomorphic to O, ® M, if k
divides n or is congruent to 1 mod(n — 1). .

We briefly indicate our notation and summarize essential prerequisites from
extension theory for C*-algebras. Throughout, H is complex, infinite-dimensional
separable Hilbert space. We write L(H) and Q(H) for, respectively, the algebra
of all bounded operators on H and the Calkin algebra (the quotient of L(H) by
the compacts), and let m: L (H) — Q (H) denote the quotient map. To avoid unneces-
sary clumsiness of expression, we once and for all make fixed identifications of
H ® C” (the direct sum of n copies of H) with H forn = 2, 3, ..., and thereby identify
L(H® C") with L(H) and Q(H ® C") with Q (H). We also identify L(H® C") and
QH®C") with L(H) ® M, and Q(H) ® M, respectively, in the natural way. For
a separable unital C*-algebra A, we write E (A) for the set of all unital *-monomor-
phisms (extensions) of A into Q(H). We say that extensions v and o are strongly
(respectively, weakly) equivalent if there is a unitary U € L (H) (respectively, unitary
u € Q(H)) such that v(*) = v (U)o (:)w(U*) (resp. uo(-)u*). For v € E(A), [7]
denotes the strong equivalence class of 7. We write Ext®*(A) for {[r]:7 € E(A)}
andlet Ext™ (A) denote the set of weak equivalence classes in E (A). Givenr, o € E(A),
we define T ® o € E(A) (via our identification of Q(H) with Q(H) ® M,) by

0
(r® o)(a) = (T? )

o(a)

The operations thereby induced on Ext®(A) and Ext"(A) make them into abelian
semigroups. An extension  is called frivial if it lifts to a unital *-representation
of A on H. D. Voiculescu showed in [12] (see also [2]) that all trivial extensions
of A are strongly equivalent and that the resulting strong equivalence class serves
as the zero element of Ext®(A). Correspondingly, the weak equivalence class of
any trivial extension is the zero element of Ext™ (A). It is not the case in general
that Ext®(A) (and hence Ext"(A)) is a group; see [1] for an example of a
non-invertible extension. When Ext®(A) is a group, though, Ext"™ (A) can be naturally
identified with the quotient of Ext®(A) by the subgroup consisting of those [7]
for which t is weakly equivalent to a trivial extension.
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For further information on extension theory for non-commutative C*-algebras,
we refer the reader to [2], [3], [4], and [10].

1. Ext®(0,) AND Ext%(0,)

In this section we give a concise account of the extension theory for the C*-algebras
O,, studied by J. Cuntz in [7]. Our results here have been obtained recently (and
independently) by M. Pimsner and S. Popa [8], and also by L. Brown (private
communication) but our treatment has direct bearing on the material in the next
section.

As in [7], O, (for n =2,3,...) is the C*-algebra generated by isometries
S1,8,,...,5, of H with orthogonal ranges whose direct sum is H. For fixed n,
all choices of n isometries subject to these requirements give rise to isomorphic
C*-algebras [7]. Let m: O, — Q(H) be a unital *-monomorphism. Our immediate
goal is to associate to 7 an integer m(r) that will measure the obstruction to
lifting v to a *-representation on H. Let v, be the n X n matrix in Q(H® C")
(= Q(H) ® M) with zeros in the second through n** rows and with first row

7(8;) 7(S,) ... 7(S,)

Since S} S;=38;I and S,S} + ...+ S, S} =1, we see that v_ is an isometry in
the Calkin algebra with v_v* = w(P,), where P, is the projection of H® C"
(=H® ... ® H) onto the first direct summand.

Our definition of m (7) requires a lemma which is frequently cited as a consequence
of the proof for 2.5 of [5]. This result has been used to compute obstructions
in other situations also, e.g. J. Thayer’s treatment (essentially a computation of
Ext®) of extensions of UHF algebras in [11]. We indicate the proof of the lemma
here for completeness.

LEMMA 1.1. Let P and Q be projections in L(H) and v a partial isometry
in Q(H) such that vv* = w(P) and v*v = w(Q). There is a partial isometry V in
L(H) such that

(a) w(V) =v; and
(b) VV*=Pand V*V =Q.

Moreover, the integer dim(Q — V*V) — dim(P — VV *) is uniquely determined by
these conditions.

Proof. LetT € L(H) be such that w(T) = v. If we let V be the partial isometry
in the polar decomposition of PTQ, then V clearly satisfies (b). Noting that

m(|PTQ]) = |[w(PTQ)| = |v| = =(Q),

we have v = (V) 7(Q) = w(V) (because V*V = Q), so (a) holds as well. For the
last assertion, regard V as a map from QH to PH anfi let W be a unitary
transformation from PH onto QH. The partial isometry V in L(PH @ QH) with
matrix
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(w o)

is easily seen to be Fredholm with index dim(Q — V*V) — dim (P — VV *),

We apply Lemma 1.1 (with v =v_, P = P, as above, and Q = I) to get a partial
isometry V. of H® C" with w(V,) =v_, V_V* = P, and V*V_a projection of finite
co-dimension. ‘

Definition 1.2. We set
m(r) =dim(I - V*V)) —dim(P, — V_V¥*).

By the lemma, this definition of m () is unambiguous. Suppose that v’ € E(O,)
is strongly equivalent to 7, so there is a unitary U on H such that

() =aU*)7(-) w(U).

Let U € L(H® C") be the direct sum of n copies of U, so U commutes with P,
and v,, = w(U*) v, w(0). It is clear that we may take V., = U*V_U and hence
m(r’) = m(r), so m is constant on strong equivalence classes. For any ¢ € E(O,),
we have m(r @ ¢) = m(7) + m (o) because after making a natural identification
of (H® H) ® C" with (H®C")® (H® C"), we may take V 4, =V_®V_ and
compute

mr®o) =dmISI-V*V.OV*V,))
—dim(P, ®@P, - V. V*®V_V¥)
= m (1) + m(o).

These remarks show that m induces an additive map (which we will also call
m) from Ext®(0,) to Z.

LEMMA 1.3. m(1) = 0 if and only if 7 is trivial.

Proof. If 7 is trivial, then 7 is strongly equivalent to the *-monomorphism
T, that sends each S; to w(S;) (1.4 and 1.5 of [12], 1.12 of [7]). There is an
obvious choice of V. such that V} V_ =TIand V, V! = P,, so m(1) = m(s,) = 0.

Conversely, suppose that m(r) = 0. Since dim(I — V*V ) =dim(P, — V_V¥),
we may add to V_ a (finite-rank) partial isometry with initial space (I ~ V*V_)H
and final space (P, — V. V*)H and assume that V*V_=1 and V_V* =P,. Re-
gard V, as an n X n operator matrix. The second through n* rows of V. must
be O because the second through n™ diagonal entries of V_.V* are 0. Let T,
(j = 1,2,...,n) be the j* entry in the first row of V.. We have T/ T, =1 for
each j (because VXV =1) and T,Tf + ... + T ,T* =1 (because the first diagonal
entry of V_ V¥ is I). By 1.12 of [7], there is a *-isomorphism 6: O, — C*(T,,...,T,)
such that 6(S;) = T, for each j. Since w o 8(S;) = w(T)) = T(Sj’), T is trivial.

LEMMA 14. Therangeof misZ.

Proof. 1t will suffice to find o,7r € E(O,) such that m(c) = 1 and m () = —1.
Let R,,...,R,, € L(H) be isometries with orthogonal ranges such that
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R,R*+ .. +R R*=1-Q,

where Q is a one dimensional projection. Further, choose T,,...,T, € L(H) with
orthogonal ranges such that T*T, = I — Q, the other T/’s are isometries, and

T,T*+..+T,Tr*=L

By 1.12 of [7], there exist o,7 € E(O,) with ¢(S;) = w(T;) and +(S;) = w(R);)
(j = 1,...,n). Obvious choices of V, and V_ yield V}V_=(1-Q ®@ID...®],
V., V¥=P,,V¥XV. =LV V}*=(1I-Q®@0®..®0,som(s) =1and m(1) = —

Lemmas 1.3 and 1.4 imply that Ext®(0,) is a group (because if v € E(O,),
we can find ' € E(0,) withm(+') = —m(7), som({(r® 7') =0, so 1 ® 7’ is trivial)
and hence that m is an isomorphism of Ext®*(0,_) with Z. We record this as

THEOREM 1.5. Ext°(0,) is a group isomorphic to Z forn = 2,3, ....

That Ext®(0,) is a group follows also from the fact that O, is nuclear (see
2.3 of [7]) and Theorem 8 of [2].

To compute Ext™(0,), let U, be the standard unilateral shift and let
7,: 0, > Q(H) be the *-mdénomorphism that maps each S; to w(U,S;U%); the
subgroup of Ext°(0,) generated by [r,] consists precisely of the weakly trivial
classes. If we choose for V. the n X n operator matrix with zeros in the second
through n*" rows and first row

U,S,U* ... U,S, U,/
then V_ V¥ has U,UZ in the (1,1)-position and zeros elsewhere, while V} V_
is diagonal with U, U* in each diagonal position. Hence m(r,) = n — 1. This proves
THEOREM 1.6. Ext™(0,) is isomorphic to Z,_, forn = 2,3, ....

"It is of course immediate from this that O, and O,, are nonisomorphic if m # n.

2. ISOMORPHISM AND NON-ISOMORPHISM OF O, ® M, WITH O,

For the time being, we fix the integers n=2 and k= 2. Forr=0,1,...,k — 1,
letU,, e LH® C*) be the direct sum of r copies of U, (the standard unilateral
shift) and k — r copies of I,;. Notice that the last direct summand of U, , is always
I,;. It is well known that every p € E(M, ) is strongly equivalent to one of the
unital *-monomorphisms p,: M, —» QH) ® M, (r =0, 1, ...,k — 1) defined by

pr(T) =7 (U, Iy ®T) U,
If we let d(p) be the integer r € {0,1,. — 1} such that p is strongly equivalent
to p,, then d induces an isomorphism of Ext M,) with Z,,.

Our next lemma is a refined version of 3.15 of [4] and 3.4 of [10].

LEMMA 2.1. Let A be a separable unital C*-algebra and let + € E(A ® M ).
If p is the restriction of v to 1 ® M, and r = d(p), then there is a o € E(A) such
that « is strongly equivalent to the unital x-monomorphism
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m(U,) o ®id,) () m(UL,): A®M,— Q(H) ®M,.

Proof. We may assume that + maps A ® M, to Q(H) ® M, and that
T(1®T)=p(T) for T € M,. Let {eij}i‘,j=1 be the standard matrix units for M,.
We have 7(1®e,,)=1®e¢,, € Q(H)® M, and hence for any a € A we have
T@a®ey)=(1®e,)T(a®1,)(1®ey), where 1, is the identity matrix in M,.
Regarded as a k X k matrix in Q(H) ® M,, v(a ® e,,) must therefore have the
form o(a) ®e,, for some o(a) € Q(H). The map o: A— Q(H) so obtained is

clearly a unital *-monomorphism. For j = 1,2, ...,k, we have

T(a®e;) = 7(1®e;)(o(a) ®ey,)T(1 Pey)
= 77U )(1®ep)o(a ®e )1®e,;)m(Us,
= w (U, )o@ ®e;)nw(Us),).

{In the second equality we have used the fact that o(a) ® e, commutes with
w(U,,).) Summing on j, we obtain 7(a®1,) = w (U, No(a) ®1,)w(Ug,), and
finally for TE M,,7(a®T) =7(@®1,)p,(T) = w(U,,)o(a)®T)w(Ug,), as re-
quired.

We can use this simple fact to describe Ext*(A ® M, ) in terms of k, Ext®(A),
and the weakly trivial extensions of A when Ext®(A) has no elements of order
k. For r € E(A®M,), define i, v € E(A) (respectively, j,v € E(M,)) to be the
restriction of 7 to A ® 1, (respectively, 1 ® M, ). We then obtain a homomorphism
~v: Ext®(A ® M, ) —» Ext®(A) X Z, defined by v ([r]) = ([ix7], d(j «7)). Further, for
o € E(A) we define 6 (a) = w(U, ) o(a) w(U*). One checks easily that & is strongly
equivalent to any *-monomorphism obtained from o by conjugating with a unitary
in the Calkin algebra of index 1. Let o, € E(A) be trivial and set o, = ¢,. Since
o is strongly equivalent to o, ® o and (o, ® ¢)_ is strongly equivalent to

w(Uz N0 @ 0)(1) 7 (U3,) =0,®o0,
we have
(*) [6] = [o] + [o,].
PROPOSITION 2.2. Let A be a separable unital C"‘-algebfa such that Ext®(A)

is a group with no elements of order k. Then Ext*(A ® M, ) is a group isomorphic
to

{(kk [0] + r[o,], (r)) € Ext*(A) XZ,:0c € E(A),r€ Z}

(where r — (x) is the quotient map of Z onto Z.).

Proof. Let G be the subgroup of Ext®(A) X Z, described in the statement of
the proposition. Take ¢ € E(A), r € {0,1, ...,k — 1} and consider

T=7w(U, ) o ®id)(-)w(UL): A®M,— QH) ®M,.

We have j,7 = p, and [i.7] = r[c] + (k — r)[c] = k[o] + r[o,] by (*). It
now follows from Lemma 2.1 that the range of v is G. Now suppose that
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T € E(A ® M,) is such that y([r]) = (0,0); i.e.,, that the restrictions of 7 to
A®1,and 1 ® M, are trivial. By Lemma 2.1, we may assume that 1 = o ® id,
for some ¢ € E(A). But then [i,7] =k[oc] =0, so o must be trivial by our
assumption on Ext®(A), and we conclude [t] = 0. As in the proof of Theorem 1.5
this is enough to show that Ext®(A ® M, ) is a group and v is an isomorphism.

We specialize to the case A = O,,.

THEOREM 2.3. Ext*(0, ® M,,) is isomorphicto Z X Z_, where g is the greatest
common divisor of k and n — 1.

Proof. Using the isomorphism m of Ext®(0O_) with Z obtained in Section 1
and recalling that m([o,]) =n — 1, we see from the previous proposition that
Ext®(0, ® M, ) is isomorphic to

G={@sk+rn—1),(r)) €EZXZ,:x,s€ Z}.

It is immediate that (k,0) and (n — 1,1) belongto G. Let x = (n — 1) /gandy = k/g.
Since x and y are relatively prime, we can find s,, r, € Z such that s,y + rox =1
and hence s k +r,(n —1) =g. We have s,(k,0) +1r,(n —1,1) = (g, (r,)) € G.
Further, y(n — 1, 1) — x(k,0) = (kx — kx, (y)) = (0, (y)) € G. We claim that G is
generated by (g, (r,)) and (0, (y)). Every element of G has the form ((sy + rx)g, (r}))
for some r,s € Z. We write

((sy + rx) g,(r)) = (sy + rx)(g, (r,)) — 1,5(0, {y)) + (0, (r — rryx)).

Since r — rr,X = rs,y, this shows that G = Z(g, (r,)) + Z(0, (y)), as claimed. This
sum is clearly direct, and since (y) has order g in Z, and (g, (r,)) has infinite
order, the theorem is proved.

COROLLARY 24. Ifk and n — 1 are not relatively prime, then O, ® M, and
O,, are non-isomorphic.

Proof. 1In this case, Ext*(0, ® M, ) contains a nonzero element of finite order
and so cannot be isomorphic to Ext®(0,).

Question. Conversely, are O, ® M, and O, isomorphic whenever k and n — 1
are relatively prime?

We provide a partial answer to this question by showing below that O, ® M
is isomorphic to O, at least in the following two cases:

(i) when k divides n; and
(i) when k =1 (mod(n — 1)).
PROPOSITION 2.5. If k divides n, then O, and O, ® M, are isomorphic.

Proof. Our argument is modeled after M. D. Choi’s proof in [6] that O, ® M,
is isomorphic to O,. Let j = n/k. For r = 0,1,...,j— 1 and s = 1,2,...,k, let
T, .. € O, ® M, be the k X k matrix whose s* row is

Srk+1 Srk+2 v S(r+1)k

and all of whose other rows are zero. One checks easily that each T, is an isometry,



MATRIX ALGEBRAS OVER O, 9

and that T,T? + ... + T, T} =1, so by 1.12 of [7] the C*-subalgebra A of O, ® M,

generated by the T,’s is isomorphic to O,. Further, a straightforward computation
j—1

shows that for s,t € {1,2,...,k}, the matrix 2 Tcrs T fxae has Lin the (s,t)-position
r=0

and zeros in all other positions, so A contains all of the standard matrix units

for 1 ® M,. Since all of the S’s occur as entries of the T’s, this means that

A=0,®M,.

In [6], Choi considers unitaries u and v on H described as follows. Break
H into two isomorphic direct summands; let u be an order-two unitary permuting
these. Now break the second direct summand further into two isomorphic direct
summands; let v be an order-three unitary that cyclically permutes the resulting
three direct summands of H. The proof of our next lemma requires a generalization
of this construction in which H is initially broken into k pieces to define a unitary
u of order k, with the last of these pieces being broken further into n pieces
to define a unitary v of order k + n — 1.

LEMMA 2.6. Foranyn, k=2, 0, ® M, is isomorphictoO, ®M,,,._,.

Proof. LetH=H,®..®H,_ @K, ® ... ®K_,, whereeachofthe k +n—1
direct summands is isomorphic to H,and let H, = K, @ ... ® K, which we regard
as a subspace of H. Let e be the projection of H on H, and let u € L(H) be
a unitary of order k that permutes the H;’s one notch to the left, that is uf =1,
uH, ,=H,_,,...,uH, =H,,andul, = H, . Let v be a unitary of orderk + n — 1
that permutes the original direct summands one notch to the left, that is vkl =
vK, = K, ,,..., VK, = K,, vK, = H,_,,vH, , = H,_,,...,, vHH, = H,, and
vH, = K,. We further require that v|y,s en, , = Ulu,e. on, ,- Consider the
C*-algebra C* (e,u,v) generated by e,u and v. We will prove the lemma by showing
first that C*(e,u,v) is isomorphic to O, ® M, and then that C*(e,u,v) is isomor-
phicto O, ® M, ., _,.

Identify H,, H,,...,H, with H, in such a way that u is represented with respect
to the decomposition H=H, ® ... ® H, by a k X k matrix of O’s and I's. The
projection e is of course the k X k matrix with I in the (1,1)-position and O’s
elsewhere. Notice that e and u together generate all of the scalar matrices because
u is a complete permutation matrix. The k X k matrix that represents v in this
setting has the form

(010---00\
0 0 I
0 00
0 00 ---0B
\Aoo---oc/

We observe the following:

(i) A*A =1, B*B + C*C = I, BB* = I, AA* 4+ CC* =1 (because v is unitary);
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(i) C" = 0 (because the compression of v to H, annihilates K, and moves
K;to K;_, forj=2,..,n);

(iii) BC'A =0 for j=0,1,...,n — 2 (because v'*'H, =K
K, for such j); and
(iv) BC*'A =1

(To see that (iv) holds, take £ € H and set E=(D0® ... ®0 € H. We have
vE=0® ... ® 0® At and successive applications of v yield

is orthogonal to

n—j

VE=0®..00®C " 1Ag,
VM*E =00 ...90@BC"TALtD0,

and finally
E=v""E=BC"'At®00..100)

Define operators T; (j=1,...,n) by T, = C’"'A. We claim that C* (r,,....,T,) is
isomorphic to O,. We have T} T, = A*A=1by (i). Forj=1,..,n — 1,
'P*

j+1

T,,, = T;* C*CT, = T;( — B*B) T,

by (i). By (iii), we have BT; = 0 for such j and hence T}, T;,, = T;T;, so by
induction the T°s are all isometries. Further, (i) shows that

n—1

T,T{+ ...+ T, T} = > C'(I-CC*(C)*
j=0

and since C” = 0 (ii), this sum collapses to I. It now follows from 1.12 of [7]
that C*(T,, ..., T,) is isomorphic to O,. We next claim that

C*(T,, ...,T,) = C*(A,B,C).

Certainly A =T, € C*(T,,...,T,). That B € C*(T,,...,T,) follows from (iv),
(i) and (ii): B*=B*BC"'A=(I-C*C)C"'A=C"'A=T,. We have
C € C*(T,,...,T,) because CT, = O by (iii) and thus

n—1 n—1
> Ty, TF=C 2 T,T}=C{I - T,T?) =C.

j=1 j=1

Since C*(e,u,v) contains all scalar matrices, we see that C*(e,u,v) is’isomorphic
to C*(A,B,C) ® M, and thus to O, ® M,..

We now consider the decomposition H=H, @ ... ®H,_®K, ® ... ® K, where
all summands are identified with H, insuch awaythatthen + k — 1) X mn + k — 1)
matrix which represents v is a complete permutation matrix (with all entries
0 or I). The matrix for e is the obvious one; e and v generate all scalar
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m+k—-1)XMm+k—-1)

matrices. The matrix for u has the form

_ 0 -
X
V,...V,
w,
0 0
- W, ]

where X is (k — 1) X (k — 1) with I’s on the superdiagonal and 0’s elsewhere. Since
u is unitary, the Vs are isometries and V, V3 + ... + V, VI =1 (s0 C*(V,,...,V,)
is isomorphic to O_). For £ € H,, let £ = £® 0 ... ® 0. Successive applications of
utofyieldE=u*E=(V,W, 6+ ...+ VW . HHP0D...DO0, so

V,W, + ...+ V,W, =L

Since the V’s have orthogonal ranges, we can apply V} on the left to get
VIV,W;=W;=V? for j=1,...,n. We conclude that C*(e,u,v) is isomorphic to
O,®M,_,_,. This proves the lemma.

Since O, ® M, is isomorphic to O, (by Proposition 2.5), we have as an immediate
consequence of the lemma

PROPOSITION 2.7. O, ® M, is isomorphic to O, whenever k = 1 (mod (n — 1)).
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