MATRIX ALGEBRAS OVER O_n

William L. Paschke and Norberto Salinas

This paper is concerned with the extension theory of the C*-algebras O_n studied by J. Cuntz in [7] and their tensor products with the algebra M_k of complex $k \times k$ matrices. We show by computing various Ext groups that the O_n 's are pairwise non-isomorphic (a result which has also been obtained independently by M. Pimsner and S. Popa [8]), and that O_n and $O_n \otimes M_k$ are non-isomorphic if k and n-1 are not relatively prime. We also prove that O_n is isomorphic to $O_n \otimes M_k$ if k divides n or is congruent to 1 mod (n-1).

We briefly indicate our notation and summarize essential prerequisites from extension theory for C*-algebras. Throughout, H is complex, infinite-dimensional separable Hilbert space. We write L(H) and Q(H) for, respectively, the algebra of all bounded operators on H and the Calkin algebra (the quotient of L(H) by the compacts), and let $\pi: L(H) \to Q(H)$ denote the quotient map. To avoid unnecessary clumsiness of expression, we once and for all make fixed identifications of $H \otimes \mathbb{C}^n$ (the direct sum of n copies of H) with H for n = 2, 3, ..., and thereby identify $L(H \otimes \mathbb{C}^n)$ with L(H) and $Q(H \otimes \mathbb{C}^n)$ with Q(H). We also identify $L(H \otimes \mathbb{C}^n)$ and $Q(H \otimes C^n)$ with $L(H) \otimes M_n$ and $Q(H) \otimes M_n$, respectively, in the natural way. For a separable unital C*-algebra A, we write E(A) for the set of all unital *-monomorphisms (extensions) of A into Q(H). We say that extensions τ and σ are strongly (respectively, weakly) equivalent if there is a unitary $U \in L(H)$ (respectively, unitary $u \in Q(H)$) such that $\tau(\cdot) = \pi(U) \sigma(\cdot) \pi(U^*)$ (resp. $u\sigma(\cdot) u^*$). For $\tau \in E(A)$, $[\tau]$ denotes the strong equivalence class of τ . We write $\operatorname{Ext}^s(A)$ for $\{\tau: \tau \in \operatorname{E}(A)\}$ and let Ext $^{w}(A)$ denote the set of weak equivalence classes in E(A). Given τ , $\sigma \in E(A)$, we define $\tau \oplus \sigma \in E(A)$ (via our identification of Q(H) with Q(H) \otimes M₂) by

$$(\tau \oplus \sigma)(a) = \begin{pmatrix} \tau(a) & 0 \\ 0 & \sigma(a) \end{pmatrix}.$$

The operations thereby induced on $\operatorname{Ext}^s(A)$ and $\operatorname{Ext}^w(A)$ make them into abelian semigroups. An extension τ is called *trivial* if it lifts to a unital *-representation of A on H. D. Voiculescu showed in [12] (see also [2]) that all trivial extensions of A are strongly equivalent and that the resulting strong equivalence class serves as the zero element of $\operatorname{Ext}^s(A)$. Correspondingly, the weak equivalence class of any trivial extension is the zero element of $\operatorname{Ext}^w(A)$. It is not the case in general that $\operatorname{Ext}^s(A)$ (and hence $\operatorname{Ext}^w(A)$) is a group; see [1] for an example of a non-invertible extension. When $\operatorname{Ext}^s(A)$ is a group, though, $\operatorname{Ext}^w(A)$ can be naturally identified with the quotient of $\operatorname{Ext}^s(A)$ by the subgroup consisting of those $[\tau]$ for which τ is weakly equivalent to a trivial extension.

Received December 30, 1977.

Both authors partially supported by NSF grant MCS 77-01850.

Michigan Math. J. 26 (1979).

For further information on extension theory for non-commutative C*-algebras, we refer the reader to [2], [3], [4], and [10].

1.
$$\operatorname{Ext}^{s}(O_{n})$$
 AND $\operatorname{Ext}^{w}(O_{n})$

In this section we give a concise account of the extension theory for the C*-algebras O_n studied by J. Cuntz in [7]. Our results here have been obtained recently (and independently) by M. Pimsner and S. Popa [8], and also by L. Brown (private communication) but our treatment has direct bearing on the material in the next section.

As in [7], O_n (for n=2,3,...) is the C*-algebra generated by isometries $S_1,S_2,...,S_n$ of H with orthogonal ranges whose direct sum is H. For fixed n, all choices of n isometries subject to these requirements give rise to isomorphic C*-algebras [7]. Let $\tau: O_n \to Q(H)$ be a unital *-monomorphism. Our immediate goal is to associate to τ an integer $m(\tau)$ that will measure the obstruction to lifting τ to a *-representation on H. Let v_τ be the $n \times n$ matrix in $Q(H \otimes \mathbb{C}^n)$ (= $Q(H) \otimes M_n$) with zeros in the second through nth rows and with first row

$$\tau(S_1)$$
 $\tau(S_2)$... $\tau(S_n)$

Since $S_i^* S_j = \delta_{ij} I$ and $S_1 S_1^* + ... + S_n S_n^* = I$, we see that v_{τ} is an isometry in the Calkin algebra with $v_{\tau} v_{\tau}^* = \pi(P_1)$, where P_1 is the projection of $H \otimes \mathbb{C}^n$ (= $H \oplus ... \oplus H$) onto the first direct summand.

Our definition of m (7) requires a lemma which is frequently cited as a consequence of the proof for 2.5 of [5]. This result has been used to compute obstructions in other situations also, e.g. J. Thayer's treatment (essentially a computation of Ext^s) of extensions of UHF algebras in [11]. We indicate the proof of the lemma here for completeness.

LEMMA 1.1. Let P and Q be projections in L(H) and v a partial isometry in Q(H) such that $vv^* = \pi(P)$ and $v^*v = \pi(Q)$. There is a partial isometry V in L(H) such that

- (a) $\pi(V) = v$; and
- (b) $VV^* \leq P$ and $V^*V \leq Q$.

Moreover, the integer $\dim (Q - V * V) - \dim (P - VV *)$ is uniquely determined by these conditions.

Proof. Let $T \in L(H)$ be such that $\pi(T) = v$. If we let V be the partial isometry in the polar decomposition of PTQ, then V clearly satisfies (b). Noting that

$$\pi(|PTQ|) = |\pi(PTQ)| = |v| = \pi(Q),$$

we have $v = \pi(V) \pi(Q) = \pi(V)$ (because $V * V \leq Q$), so (a) holds as well. For the last assertion, regard V as a map from QH to PH and let W be a unitary transformation from PH onto QH. The partial isometry \tilde{V} in $L(PH \oplus QH)$ with matrix

$$\begin{pmatrix} 0 & V \\ W & 0 \end{pmatrix}$$

is easily seen to be Fredholm with index $\dim(Q - V * V) - \dim(P - VV *)$.

We apply Lemma 1.1 (with $v = v_{\tau}$, $P = P_1$ as above, and Q = I) to get a partial isometry V_{τ} of $H \otimes C^n$ with $\pi(V_{\tau}) = v_{\tau}$, $V_{\tau}V_{\tau}^* \leq P_1$ and $V_{\tau}^*V_{\tau}$ a projection of finite co-dimension.

Definition 1.2. We set

$$m(\tau) = \dim(I - V_{\tau}^* V_{\tau}) - \dim(P_1 - V_{\tau} V_{\tau}^*).$$

By the lemma, this definition of $m(\tau)$ is unambiguous. Suppose that $\tau' \in E(O_n)$ is strongly equivalent to τ , so there is a unitary U on H such that

$$\tau'(\cdot) = \pi(U^*)\tau(\cdot)\pi(U).$$

Let $\tilde{\mathbb{U}} \in L(H \otimes \mathbb{C}^n)$ be the direct sum of n copies of U, so $\tilde{\mathbb{U}}$ commutes with P_1 and $v_{\tau'} = \pi(\tilde{\mathbb{U}}^*) \, v_{\tau} \pi(\tilde{\mathbb{U}})$. It is clear that we may take $V_{\tau'} = \tilde{\mathbb{U}}^* \, V_{\tau} \tilde{\mathbb{U}}$ and hence $m(\tau') = m(\tau)$, so m is constant on strong equivalence classes. For any $\sigma \in E(O_n)$, we have $m(\tau \oplus \sigma) = m(\tau) + m(\sigma)$ because after making a natural identification of $(H \oplus H) \otimes \mathbb{C}^n$ with $(H \otimes \mathbb{C}^n) \oplus (H \otimes \mathbb{C}^n)$, we may take $V_{\tau \oplus \sigma} = V_{\tau} \oplus V_{\sigma}$ and compute

$$m(\tau \oplus \sigma) = \dim(I \oplus I - V_{\tau}^* V_{\tau} \oplus V_{\sigma}^* V_{\sigma})$$
$$-\dim(P_1 \oplus P_1 - V_{\tau} V_{\tau}^* \oplus V_{\sigma} V_{\sigma}^*)$$
$$= m(\tau) + m(\sigma).$$

These remarks show that m induces an additive map (which we will also call m) from $\operatorname{Ext}^{s}(O_{n})$ to \mathbb{Z} .

LEMMA 1.3. $m(\tau) = 0$ if and only if τ is trivial.

Proof. If τ is trivial, then τ is strongly equivalent to the *-monomorphism τ_0 that sends each S_j to $\pi(S_j)$ (1.4 and 1.5 of [12], 1.12 of [7]). There is an obvious choice of V_{τ_0} such that $V_{\tau_0}^*V_{\tau_0} = I$ and $V_{\tau_0}V_{\tau_0}^* = P_1$, so $m(\tau) = m(\tau_0) = 0$.

Conversely, suppose that $m(\tau)=0$. Since $\dim(I-V_\tau^*V_\tau)=\dim(P_1-V_\tau V_\tau^*)$, we may add to V_τ a (finite-rank) partial isometry with initial space $(I-V_\tau^*V_\tau)H$ and final space $(P_1-V_\tau V_\tau^*)H$ and assume that $V_\tau^*V_\tau=I$ and $V_\tau V_\tau^*=P_1$. Regard V_τ as an $n\times n$ operator matrix. The second through n^{th} rows of V_τ must be 0 because the second through n^{th} diagonal entries of $V_\tau V_\tau^*$ are 0. Let T_j (j=1,2,...,n) be the j^{th} entry in the first row of V_τ . We have $T_j^*T_j=I$ for each j (because $V_\tau^*V_\tau=I$) and $T_1T_1^*+...+T_nT_n^*=I$ (because the first diagonal entry of $V_\tau V_\tau^*$ is I). By 1.12 of I0, there is a *-isomorphism I0: I1, I2 is trivial.

LEMMA 1.4. The range of m is \mathbb{Z} .

Proof. It will suffice to find $\sigma, \tau \in E(O_n)$ such that $m(\sigma) = 1$ and $m(\tau) = -1$. Let $R_1, ..., R_n \in L(H)$ be isometries with orthogonal ranges such that

$$R_1 R_1^* + ... + R_n R_n^* = I - Q$$
,

where Q is a one dimensional projection. Further, choose $T_1, ..., T_n \in L(H)$ with orthogonal ranges such that $T_1^*T_1 = I - Q$, the other T_j 's are isometries, and

$$T_1 T_1^* + ... + T_n T_n^* = I.$$

By 1.12 of [7], there exist $\sigma, \tau \in E(O_n)$ with $\sigma(S_j) = \pi(T_j)$ and $\tau(S_j) = \pi(R_j)$ (j = 1, ..., n). Obvious choices of V_{σ} and V_{τ} yield $V_{\sigma}^* V_{\sigma} = (I - Q) \oplus I \oplus ... \oplus I$, $V_{\sigma} V_{\sigma}^* = P_1$, $V_{\tau}^* V_{\tau} = I$, $V_{\tau} V_{\tau}^* = (I - Q) \oplus 0 \oplus ... \oplus 0$, so $m(\sigma) = 1$ and $m(\tau) = -1$.

Lemmas 1.3 and 1.4 imply that $\operatorname{Ext}^s(O_n)$ is a group (because if $\tau \in \operatorname{E}(O_n)$, we can find $\tau' \in \operatorname{E}(O_n)$ with $\operatorname{m}(\tau') = -\operatorname{m}(\tau)$, so $\operatorname{m}(\tau \oplus \tau') = 0$, so $\tau \oplus \tau'$ is trivial) and hence that m is an isomorphism of $\operatorname{Ext}^s(O_n)$ with $\operatorname{\mathbb{Z}}$. We record this as

THEOREM 1.5. Ext^s(O_n) is a group isomorphic to \mathbb{Z} for n = 2, 3, ...

That $\operatorname{Ext}^{s}(O_{n})$ is a group follows also from the fact that O_{n} is nuclear (see 2.3 of [7]) and Theorem 8 of [2].

To compute $\operatorname{Ext}^w(O_n)$, let U_+ be the standard unilateral shift and let $\tau_1\colon O_n\to Q(H)$ be the *-monomorphism that maps each S_j to $\pi(U_+S_jU_+^*)$; the subgroup of $\operatorname{Ext}^s(O_n)$ generated by $[\tau_1]$ consists precisely of the weakly trivial classes. If we choose for V_{τ_1} the $n\times n$ operator matrix with zeros in the second through n^{th} rows and first row

$$U_{+}S_{1}U_{+}^{*}$$
 ... $U_{+}S_{n}U_{+}^{*}$,

then $V_{\tau_1}V_{\tau_1}^*$ has $U_+U_+^*$ in the (1,1)-position and zeros elsewhere, while $V_{\tau_1}^*V_{\tau_1}$ is diagonal with $U_+U_+^*$ in each diagonal position. Hence $m(\tau_1)=n-1$. This proves

THEOREM 1.6. Ext^w(O_n) is isomorphic to \mathbb{Z}_{n-1} for n = 2, 3, ...

It is of course immediate from this that O_n and O_m are nonisomorphic if $m \neq n$.

2. ISOMORPHISM AND NON-ISOMORPHISM OF $O_n \otimes M_k$ WITH O_n

For the time being, we fix the integers $n \ge 2$ and $k \ge 2$. For r = 0, 1, ..., k - 1, let $U_{k,r} \in L(H \otimes \mathbb{C}^k)$ be the direct sum of r copies of U_+ (the standard unilateral shift) and k-r copies of I_H . Notice that the last direct summand of $U_{k,r}$ is always I_H . It is well known that every $\rho \in E(M_k)$ is strongly equivalent to one of the unital *-monomorphisms $\rho_r \colon M_k \to Q(H) \otimes M_k (r = 0, 1, ..., k-1)$ defined by

$$\rho_{r}(T) = \pi(U_{k,r}(I_{H} \otimes T) U_{k,r}^{*}).$$

If we let $d(\rho)$ be the integer $r \in \{0, 1, ..., k-1\}$ such that ρ is strongly equivalent to ρ_r , then d induces an isomorphism of $\operatorname{Ext}^s(M_k)$ with \mathbb{Z}_k .

Our next lemma is a refined version of 3.15 of [4] and 3.4 of [10].

LEMMA 2.1. Let A be a separable unital C*-algebra and let $\tau \in E(A \otimes M_k)$. If ρ is the restriction of τ to $1 \otimes M_k$ and $r = d(\rho)$, then there is a $\sigma \in E(A)$ such that τ is strongly equivalent to the unital *-monomorphism

$$\pi(U_{k,r})(\sigma \otimes id_k)(\cdot) \pi(U_{k,r}^*): A \otimes M_k \to Q(H) \otimes M_k.$$

Proof. We may assume that τ maps $A \otimes M_k$ to $Q(H) \otimes M_k$ and that $\tau(1 \otimes T) = \rho_r(T)$ for $T \in M_k$. Let $\{e_{ij}\}_{i,j=1}^k$ be the standard matrix units for M_k . We have $\tau(1 \otimes e_{kk}) = 1 \otimes e_{kk} \in Q(H) \otimes M_k$ and hence for any $a \in A$ we have $\tau(a \otimes e_{kk}) = (1 \otimes e_{kk}) \tau(a \otimes 1_k) (1 \otimes e_{kk})$, where 1_k is the identity matrix in M_k . Regarded as a $k \times k$ matrix in $Q(H) \otimes M_k$, $\tau(a \otimes e_{kk})$ must therefore have the form $\sigma(a) \otimes e_{kk}$ for some $\sigma(a) \in Q(H)$. The map $\sigma: A \to Q(H)$ so obtained is clearly a unital *-monomorphism. For j = 1, 2, ..., k, we have

$$\begin{split} \tau(\mathbf{a} \otimes \mathbf{e}_{\mathbf{j}\mathbf{j}}) &= \tau(\mathbf{1} \otimes \mathbf{e}_{\mathbf{j}\mathbf{k}})(\sigma(\mathbf{a}) \otimes \mathbf{e}_{\mathbf{k}\mathbf{k}}) \, \tau(\mathbf{1} \otimes \mathbf{e}_{\mathbf{k}\mathbf{j}}) \\ &= \pi(\mathbf{U}_{\mathbf{k},\mathbf{r}})(\mathbf{1} \otimes \mathbf{e}_{\mathbf{j}\mathbf{k}})(\sigma(\mathbf{a}) \otimes \mathbf{e}_{\mathbf{k}\mathbf{k}})(\mathbf{1} \otimes \mathbf{e}_{\mathbf{k}\mathbf{j}}) \, \pi(\mathbf{U}_{\mathbf{k},\mathbf{r}}^*) \\ &= \pi(\mathbf{U}_{\mathbf{k},\mathbf{r}})(\sigma(\mathbf{a}) \otimes \mathbf{e}_{\mathbf{i}\mathbf{j}}) \, \pi(\mathbf{U}_{\mathbf{k},\mathbf{r}}^*). \end{split}$$

(In the second equality we have used the fact that $\sigma(a) \otimes e_{kk}$ commutes with $\pi(U_{k,r})$.) Summing on j, we obtain $\tau(a \otimes 1_k) = \pi(U_{k,r})(\sigma(a) \otimes 1_k) \pi(U_{k,r}^*)$, and finally for $T \in M_k$, $\tau(a \otimes T) = \tau(a \otimes 1_k) \rho_r(T) = \pi(U_{k,r})(\sigma(a) \otimes T) \pi(U_{k,r}^*)$, as required.

We can use this simple fact to describe $\operatorname{Ext}^s(A \otimes M_k)$ in terms of k, $\operatorname{Ext}^s(A)$, and the weakly trivial extensions of A when $\operatorname{Ext}^s(A)$ has no elements of order k. For $\tau \in E(A \otimes M_k)$, define $i_*\tau \in E(A)$ (respectively, $j_*\tau \in E(M_k)$) to be the restriction of τ to $A \otimes 1_k$ (respectively, $1 \otimes M_k$). We then obtain a homomorphism $\gamma : \operatorname{Ext}^s(A \otimes M_k) \to \operatorname{Ext}^s(A) \times \mathbb{Z}_k$ defined by $\gamma([\tau]) = ([i_*\tau], d(j_*\tau))$. Further, for $\sigma \in E(A)$ we define $\tilde{\sigma}(a) = \pi(U_+) \sigma(a) \pi(U_+^*)$. One checks easily that $\tilde{\sigma}$ is strongly equivalent to any *-monomorphism obtained from σ by conjugating with a unitary in the Calkin algebra of index 1. Let $\sigma_0 \in E(A)$ be trivial and set $\sigma_1 = \tilde{\sigma}_0$. Since σ is strongly equivalent to $\sigma_0 \oplus \sigma$ and $(\sigma_0 \oplus \sigma)^*$ is strongly equivalent to

$$\pi(U_{2,1})(\sigma_0 \oplus \sigma)(\cdot) \pi(U_{2,1}^*) = \sigma_1 \oplus \sigma,$$

we have

$$[\tilde{\sigma}] = [\sigma] + [\sigma_1].$$

PROPOSITION 2.2. Let A be a separable unital C*-algebra such that Ext*(A) is a group with no elements of order k. Then Ext*(A \otimes M_k) is a group isomorphic to

$$\{(k [\sigma] + r [\sigma_1], \langle r \rangle) \in Ext^s(A) \times \mathbb{Z}_k : \sigma \in E(A), r \in \mathbb{Z}\}$$

(where $r \to \langle r \rangle$ is the quotient map of \mathbb{Z} onto \mathbb{Z}_k).

Proof. Let G be the subgroup of $\operatorname{Ext}^s(A) \times \mathbb{Z}_k$ described in the statement of the proposition. Take $\sigma \in E(A)$, $r \in \{0,1,...,k-1\}$ and consider

$$\tau = \pi (U_{k,r})(\sigma \otimes id_k)(\cdot) \pi (U_{k,r}^*): A \otimes M_k \to Q(H) \otimes M_k.$$

We have $j_*\tau = \rho_r$ and $[i_*\tau] = r[\tilde{\sigma}] + (k-r)[\sigma] = k[\sigma] + r[\sigma_1]$ by (*). It now follows from Lemma 2.1 that the range of γ is G. Now suppose that

 $\tau \in E(A \otimes M_k)$ is such that $\gamma([\tau]) = (0,0)$; *i.e.*, that the restrictions of τ to $A \otimes 1_k$ and $1 \otimes M_k$ are trivial. By Lemma 2.1, we may assume that $\tau = \sigma \otimes id_k$ for some $\sigma \in E(A)$. But then $[i_*\tau] = k[\sigma] = 0$, so σ must be trivial by our assumption on $Ext^s(A)$, and we conclude $[\tau] = 0$. As in the proof of Theorem 1.5 this is enough to show that $Ext^s(A \otimes M_k)$ is a group and γ is an isomorphism.

We specialize to the case $A = O_n$.

THEOREM 2.3. Ext^s $(O_n \otimes M_k)$ is isomorphic to $\mathbb{Z} \times \mathbb{Z}_g$, where g is the greatest common divisor of k and n-1.

Proof. Using the isomorphism m of $\operatorname{Ext}^s(O_n)$ with $\mathbb Z$ obtained in Section 1 and recalling that $m([\sigma_1]) = n - 1$, we see from the previous proposition that $\operatorname{Ext}^s(O_n \otimes M_k)$ is isomorphic to

$$G = \{(sk + r(n - 1), \langle r \rangle) \in \mathbb{Z} \times \mathbb{Z}_k : r, s \in \mathbb{Z}\}.$$

It is immediate that (k,0) and (n-1,1) belong to G. Let x=(n-1)/g and y=k/g. Since x and y are relatively prime, we can find s_0 , $r_0 \in \mathbb{Z}$ such that $s_0y+r_0x=1$ and hence $s_0k+r_0(n-1)=g$. We have $s_0(k,0)+r_0(n-1,1)=(g,\langle r_0\rangle)\in G$. Further, $y(n-1,1)-x(k,0)=(kx-kx,\langle y\rangle)=(0,\langle y\rangle)\in G$. We claim that G is generated by $(g,\langle r_0\rangle)$ and $(0,\langle y\rangle)$. Every element of G has the form $((sy+rx)g,\langle r\rangle)$ for some $r,s\in\mathbb{Z}$. We write

$$((sy + rx)g, \langle r \rangle) = (sy + rx)(g, \langle r_0 \rangle) - r_0 s(0, \langle y \rangle) + (0, \langle r - rr_0 x \rangle).$$

Since $r - rr_0 x = rs_0 y$, this shows that $G = \mathbb{Z}(g, \langle r_0 \rangle) + \mathbb{Z}(0, \langle y \rangle)$, as claimed. This sum is clearly direct, and since $\langle y \rangle$ has order g in \mathbb{Z}_k and $\langle g, \langle r_0 \rangle$ has infinite order, the theorem is proved.

COROLLARY 2.4. If k and n-1 are not relatively prime, then $O_n \otimes M_k$ and O_n are non-isomorphic.

Proof. In this case, $\operatorname{Ext}^s(O_n \otimes M_k)$ contains a nonzero element of finite order and so cannot be isomorphic to $\operatorname{Ext}^s(O_n)$.

Question. Conversely, are $O_n \otimes M_k$ and O_n isomorphic whenever k and n-1 are relatively prime?

We provide a partial answer to this question by showing below that $O_n \otimes M_k$ is isomorphic to O_n at least in the following two cases:

- (i) when k divides n; and
- (ii) when $k \equiv 1 \pmod{(n-1)}$.

PROPOSITION 2.5. If k divides n, then O_n and $O_n \otimes M_k$ are isomorphic.

Proof. Our argument is modeled after M. D. Choi's proof in [6] that $O_2 \otimes M_2$ is isomorphic to O_2 . Let j=n/k. For r=0,1,...,j-1 and s=1,2,...,k, let $T_{rk+s} \in O_n \otimes M_k$ be the $k \times k$ matrix whose s^{th} row is

$$S_{rk+1} S_{rk+2} ... S_{(r+1)k}$$

and all of whose other rows are zero. One checks easily that each T_i is an isometry,

and that $T_1T_1^*+\ldots+T_nT_n^*=I$, so by 1.12 of [7] the C*-subalgebra A of $O_n\otimes M_k$ generated by the T_i 's is isomorphic to O_n . Further, a straightforward computation

shows that for s,t $\in \{1,2,...,k\}$, the matrix $\sum_{r=0}^{j-1} T_{rk+s} T_{rk+t}^*$ has I in the (s,t)-position

and zeros in all other positions, so A contains all of the standard matrix units for $1 \otimes M_k$. Since all of the S's occur as entries of the T's, this means that $A = O_n \otimes M_k$.

In [6], Choi considers unitaries u and v on H described as follows. Break H into two isomorphic direct summands; let u be an order-two unitary permuting these. Now break the second direct summand further into two isomorphic direct summands; let v be an order-three unitary that cyclically permutes the resulting three direct summands of H. The proof of our next lemma requires a generalization of this construction in which H is initially broken into k pieces to define a unitary u of order k, with the last of these pieces being broken further into n pieces to define a unitary v of order k + n - 1.

LEMMA 2.6. For any n, $k \ge 2$, $O_n \otimes M_k$ is isomorphic to $O_n \otimes M_{k+n-1}$.

Proof. Let $H = H_1 \oplus ... \oplus H_{k-1} \oplus K_1 \oplus ... \oplus K_n$, where each of the k+n-1 direct summands is isomorphic to H, and let $H_k = K_1 \oplus ... \oplus K_n$, which we regard as a subspace of H. Let e be the projection of H on H_1 and let $u \in L(H)$ be a unitary of order k that permutes the H_j 's one notch to the left, that is $u^k = I$, $uH_{k-1} = H_{k-2}, ..., uH_2 = H_1$, and $uH_1 = H_k$. Let v be a unitary of order v and v that permutes the original direct summands one notch to the left, that is $v^{k+n-1} = I$, $vK_n = K_{n-1}, ..., vK_2 = K_1, vK_1 = H_{k-1}, vH_{k-1} = H_{k-2}, ..., vH_2 = H_1$, and $vH_1 = K_n$. We further require that $v|_{H_2 \oplus ... \oplus H_{k-1}} = u|_{H_2 \oplus ... \oplus H_{k-1}}$. Consider the v considered by v and v we will prove the lemma by showing first that v is isomorphic to v and v we will prove the lemma by showing first that v be v is isomorphic to v and v we will prove the lemma by showing first that v is isomorphic to v is isomorphic to v and v is isomorphic to v is isomorphic.

Identify H_2 , H_3 , ..., H_k with H_1 in such a way that u is represented with respect to the decomposition $H = H_1 \oplus ... \oplus H_k$ by a $k \times k$ matrix of O's and I's. The projection e is of course the $k \times k$ matrix with I in the (1,1)-position and O's elsewhere. Notice that e and u together generate all of the scalar matrices because u is a complete permutation matrix. The $k \times k$ matrix that represents v in this setting has the form

$$\begin{pmatrix}
0 & I & 0 & \cdots & 0 & 0 \\
0 & 0 & I & & & & \\
0 & 0 & 0 & & & & \\
\vdots & \vdots & \vdots & & I & 0 \\
0 & 0 & 0 & \cdots & 0 & B \\
A & 0 & 0 & \cdots & 0 & C
\end{pmatrix}$$

We observe the following:

(i) A*A = I, B*B + C*C = I, BB* = I, AA* + CC* = I (because v is unitary);

(ii) $C^n = 0$ (because the compression of v to H_k annihilates K_1 and moves K_i to K_{i-1} for j=2,...,n);

(iii) $BC^{j}A = 0$ for j = 0, 1, ..., n - 2 (because $v^{j+1}H_{1} = K_{n-j}$ is orthogonal to K_{1} for such j); and

(iv)
$$BC^{n-1}A = I$$
.

(To see that (iv) holds, take $\xi \in H_1$ and set $\bar{\xi} = \xi \oplus 0 \oplus ... \oplus 0 \in H$. We have $v \bar{\xi} = 0 \oplus ... \oplus 0 \oplus A \xi$ and successive applications of v yield

$$v^{n}\bar{\xi} = 0 \oplus ... \oplus 0 \oplus C^{n-1}A\xi,$$

$$v^{n+1}\bar{\xi} = 0 \oplus ... \oplus 0 \oplus BC^{n-1}A\xi \oplus 0,$$

and finally

$$\bar{\xi} = \mathbf{v}^{n+k-1}\,\bar{\xi} = \mathbf{B}\mathbf{C}^{n-1}\,\mathbf{A}\boldsymbol{\xi} \oplus \mathbf{0} \oplus \ldots \oplus \mathbf{0}.$$

Define operators T_j (j=1,...,n) by $T_j=C^{j-1}A$. We claim that $C^*(T_1,...,T_n)$ is isomorphic to O_n . We have $T_1^*T_1=A^*A=I$ by (i). For j=1,...,n-1,

$$T_{i+1}^* T_{i+1} = T_i^* C^* C T_i = T_i^* (I - B^* B) T_i$$

by (i). By (iii), we have $BT_j = 0$ for such j and hence $T_{j+1}^*T_{j+1} = T_j^*T_j$, so by induction the T's are all isometries. Further, (i) shows that

$$T_1T_1^* + ... + T_nT_n^* = \sum_{j=0}^{n-1} C^j(I - CC^*)(C^j)^*,$$

and since $C^n = 0$ (ii), this sum collapses to I. It now follows from 1.12 of [7] that $C^*(T_1, ..., T_n)$ is isomorphic to O_n . We next claim that

$$C^*(T_1, ..., T_n) = C^*(A,B,C).$$

Certainly $A=T_1\in C^*(T_1,...,T_n)$. That $B\in C^*(T_1,...,T_n)$ follows from (iv), (i) and (ii): $B^*=B^*BC^{n-1}A=(I-C^*C)\,C^{n-1}A=C^{n-1}A=T_n$. We have $C\in C^*(T_1,...,T_n)$ because $CT_n=0$ by (iii) and thus

$$\sum_{j=1}^{n-1} T_{j+1} T_{j}^{*} = C \sum_{j=1}^{n-1} T_{j} T_{j}^{*} = C (I - T_{n} T_{n}^{*}) = C.$$

Since C*(e,u,v) contains all scalar matrices, we see that C*(e,u,v) is isomorphic to C*(A,B,C) \otimes M_k and thus to O_n \otimes M_k.

We now consider the decomposition $H = H_1 \oplus ... \oplus H_{k-1} \oplus K_1 \oplus ... \oplus K_n$, where all summands are identified with H_1 in such a way that the $(n+k-1) \times (n+k-1)$ matrix which represents v is a complete permutation matrix (with all entries 0 or I). The matrix for e is the obvious one; e and v generate all scalar

$$(n+k-1)\times(n+k-1)$$

matrices. The matrix for u has the form

$$\begin{bmatrix}
X & & 0 \\
& V_1 \dots V_n \\
\hline
W_1 & & & \\
\vdots & 0 & & 0 \\
& W_n & & &
\end{bmatrix}$$

where X is $(k-1)\times (k-1)$ with I's on the superdiagonal and 0's elsewhere. Since u is unitary, the V_j 's are isometries and $V_1V_1^*+...+V_nV_n^*=I$ (so $C^*(V_1,...,V_n)$ is isomorphic to O_n). For $\xi\in H_1$, let $\bar{\xi}=\xi\oplus 0$... \oplus 0. Successive applications of u to $\bar{\xi}$ yield $\bar{\xi}=u^k$ $\bar{\xi}=(V_1W_1\xi+...+V_nW_n\xi)\oplus 0\oplus ...\oplus 0$, so

$$V_1 W_1 + ... + V_n W_n = I.$$

Since the V's have orthogonal ranges, we can apply V_j^* on the left to get $V_j^*V_jW_j=W_j=V_j^*$ for j=1,...,n. We conclude that $C^*(e,u,v)$ is isomorphic to $O_n\otimes M_{n+k-1}$. This proves the lemma.

Since $O_n \otimes M_n$ is isomorphic to O_n (by Proposition 2.5), we have as an immediate consequence of the lemma

PROPOSITION 2.7. $O_n \otimes M_k$ is isomorphic to O_n whenever $k \equiv 1 \pmod{(n-1)}$.

REFERENCES

- 1. J. Anderson, A C*-algebra A for which Ext(A) is not a group. Ann. of Math. 107 (1978), 455-458.
- 2. W. B. Arveson, Notes on extensions of C*-algebras. Duke Math. J. 44 (1977), 329-355.
- 3. L. G. Brown, Extensions and the structure of C*-algebras. Symposia Mathematica Volume XX, Academic Press, New York, 1976, 539-566.
- 4. L. G. Brown, R. G. Douglas, and P. A. Fillmore, Extensions of C*-algebras and K-homology. Ann. of Math. (2) 105 (1977), 265-324.
- 5. J. W. Calkin, Two-sided ideals and congruences in the ring of bounded operators in Hilbert space. Ann. of Math. (2) 42 (1941), 839-872.
- 6. M. D. Choi, A simple C*-algebra generated by two finite-order unitaries. Canadian J. Math., to appear.
- 7. J. Cuntz, Simple C*-algebras generated by isometries. Comm. Math. Phys. 57 (1977), 173-185.
- 8. M. Pimsner and S. Popa, The Ext-groups of some C*-algebras considered by J. Cuntz, preprint.

- 9. J. Rosenberg, Amenability of crossed products of C*-algebras. Comm. Math. Phys. 57 (1977), 187-191.
- 10. N. Salinas, Hypoconvexity and essentially n-normal operators. Trans. Amer. Math Soc., to appear.
- 11. F. J. Thayer, Obstructions to lifting *-morphisms into the Calkin algebra. Illinois J. Math. 20 (1976), 322-328.
- 12. D. Voiculescu, A non-commutative Weyl-von Neumann theorem. Rev. Roumaine Math. Pures Appl. 21 (1976), 97-113.

Department of Mathematics University of Kansas Lawrence, Kansas 66045