ERGODIC HARDY SPACES AND DUALITY

Paul S. Muhly

1. INTRODUCTION

Suppose X is a measure space with probability measure m and that {T,}.cq
is an ergodic, measurable action of R on X preserving m. Via composition, {T,}, <y
acts on functions over X, (T,f)(x) = f(T,x), and when restricted to L°(X), p < oo,
{T,}.cg is strongly continuous. On L*(X), {T,},cy is only continuous in the weak-*
topology. Ergodic H”, H” (X), is defined to be the subalgebra of L”(X) consisting
of those functions f such that for each x in X, with the exception possibly of a
null set, the function of t, (T,f)(x), admits a bounded analytic extension to
Imz > 0; i.e, (T, f)(x) lies in H*(R) as a function of t for almost all x. For p in the
range 0 < p <, ergodic H?, H"(X), is defined to be the closure of H”(X) in
LP(X); equivalently (cf. [10]), at least when 1 =<p, H?(X) is the space of all
functions f on X such that with the exception possibly of a null set, the func-
tion of t, (T, f)(x), when divided by t + i, lies in the usual Hardy space H”(R).

The measure m is multiplicative on H”(X) and H”(X)is a weak-+ Dirichlet
algebra in L*(X), [8], [13]. Consequently, Jensen’s inequality is valid[12] and
so the linear functional determined by m on H”(X) extends to a continuous linear
functional on each of the spaces H?(X), 0 <p <1 [5, p. 124]. Our objective in
this note is to prove the following.

THEOREM. If {T,} g is not periodic, then for 0 < p < 1 each continuous linear
functional on H?(X) is a constant multiple of the linear functional determined
by m.

This result shows that there is a striking difference between the Hardy spaces
based on a periodic flow and those based on a properly erogodic flow. In the
periodic case, of course, the Hardy spaces are just the classical ones and it is
well known that H®, p < 1, has a rich dual even though the space fails to be
locally convex [3]. If {T,},cp is properly ergodic and has pure point spectrum,
an assumption which is tantamount to assuming that X is a group dual to a
dense subgroup of R, then the spaces H”(X) are those discussed in [6]. In this
case, Shapiro proved the theorem (and a lot more) in [11]. His techniques are
entirely different from ours, based, as they are, on deep results in harmonic analysis.
Our approach is to use a famous theorem of Ambrose [1] to establish an analogue
of the Poisson summation formula and then to use this analogue to identify the
kernel of m with a quotient of a space whose dual is easily seen to be trivial.

Results in [9] show that if {T,},., is not periodic, then when m is regarded
as a point in the maximal ideal space of H”(X), the Gleason part it determines
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is simply {m}. Our theorem leads us to conjecture, therefore, that if ¢ is a point
in the maximal ideal space of a function algebra and if the Gleason part through
¢ is the singleton {¢$}, then for any Jensen measure representing ¢, the H” spaces
based on it have one-dimensional duals when p < 1.

In this note we abuse notation and terminology a little and refer to the expression
|£]°dm, which defines the metric on L” when p <1, as the norm of f and

write ||f]]. Likewise we will refer to the norm of a continuous linear transformation
between two LP-spaces; this quantity is defined by the formula

ITH = sup {| Tf|}:[I ]| = 1}.

There ought not be any confusion caused by this and it makes the exposition
easier.

We would like to take this opportunity to thank Joel Shapiro for several
stimulating and informative conversations which led to our result and we would
also like to thank Don Sarason who helped us correct an egregious error in an
earlier draft.

Thanks are due to the referee as well for calling our attention to the paper
“Maximal functions and H" spaces defined by ergodic transformations” by R.
Coifman and G. Weiss [Proc. Nat. Acad. Sci., 70 (1973), 1761-1763] which shows
that the dual of H'(X) is an ergodic theoretic generalization of B.M.O. Of course
H'(X) has a rich dual because it’s a Banach space. The point, however, is that
in a vague sense, the dual of H', B.M.O., is a limit of the duals of H®, p < 1.
On account of this, one would expect that the duals of H?(X), p < 1, are substantial
and “cluster” at ergodic B.M.O. Our theorem shows that this is simply not the
case,

An additional remark is worth making here. In the classical setting, H' not
only has a rich dual, it itself is a dual space by the F. and M. Riesz theorem.
Joel Shapiro has pointed out to us that when the flow has pure point spectrum,
H'(X) is not a dual space. We suspect that this is the case quite generally, but
we have no idea of a proof.

2. THE PROOF

The proof is broken into a series of lemmas, but first we describe how the
theorem of Ambrose allows us to assume that X has a special form.

Suppose that . is a probability on a space £ and that 7 is an ergodic, invertible,
measurable transformation on Q preserving p.. Suppose in addition that F is a
bounded measurable function on Q, bounded away from zero, and normalized to
have integral one. With this data it is possible to construct two spaces, several
transformation groups and a variety of maps. Extend F to a function ¢ on Z X Q
by the formula
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n—1
2 F (" o), n>0
k=0

‘b(n,w) = O, n= 0
- (1" w,—n), n<o.

The important thing about ¢ is that it satisfies the cocyle identity
én+ mw =dMm,0 + d(m7"w), mne€Z,o € Q.

Define the measure space X to be Q X R with measure m equal to p times
Lebesgue measure on R. Next define X to be the region under the graph of F,
X ={(w,r) € X:0=r<F(w)}, and let m be the restriction of m to X. Since

Fdp = 1, m is a probability. On X, let {S,},cx denote the group of m-preserving

transformations defined by the formula S,(w,r) = (w,r + t), and define o to be the
measurable, invertible, m-preserving transformation by the formula

g(w,r) = (rw,r + F(w)).

Observe that o commutes with {S.},cz and that its powers are given by the
formula o"(w,r) = (+"w,r + ¢ (n,0)), n € Z, (0,r) € X. Observe too that the hypoth-

eses on F imply that X is the disjoint union U ¢"(X). Now define m mapping X
nez

onto X by the formula w(w,r) = ("0, r — ¢ (n,w)), if d(n,w) =r < ¢(n + 1,0), and

note that by definition = c ¢ = w and that v ((w,, ,r;)) = 7({w,, r,)) if and only if some

power of o maps (w,,r;) to (w,r,). Finally, the m-preserving transformation

group {T,},cg is defined on X by the formula

T, (0,1) = (T"w, r + t — d(n,w)), dnw)=r+t<dn+ 1,w),

and the relation «S, = T,w is easily verified. Note that a set E in X is null for
m if and only if w *(E) is null for i and, consequently, {T,},cg is ergodic.
Indeed, if E is invariant under {T,},cq, then w *(E) is invariant under {S,},cg.
It follows that « '(E) is either null or, up to a null set, of the form B X R
for some B C Q. But w “(E) is also invariant under o and so B is invariant
under 7. Since 7 is ergodic by hypothesis, it follows that B is either null or co-null
and the assertion follows.

Summing up then, even though X is defined as a subset of X, we may quite
properly think of the pair (X,{S,},cg) as covering (X,{T,},cg) With 7 as the
equivariant covering map and {0"},c, as the group of covering transformations.
It is perhaps instructive to note too that if Q is the singleton {®w} and if F(w) =1,
then what we just described is how one identifies the torus R /Z with [0,1). The
theorem of Ambrose [1] asserts that if R acts ergodically in a measure preserving
fashion on some space X’ then it is possible to find Q, p, 7, and F so that the
given action of R on X’ is isomorphic, in a measure preserving fashion, to the
action of R on X just constructed from Q, p, 7, and F. Thus, there is no loss
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of generality in assuming, as we do from now on, that the action of R on X
in our theorem is of this special kind.

We refer the reader to articles of Ambrose [1] and Mackey [7] for further
details and amplification of the discussion just presented.

If f is a bounded measurable function on X which vanishes when |r| is sufficiently
large independently of o, define Pf on X by the formula

(Pf)(w,r) = 2 foo™(w,r), (wr) € X.

nez

The hypothesis that F is bounded away from zero implies that the sum defining
IPf is finite for each fixed (Eo,r). Observe, too, that for such functions, which are
manifestly dense in each LP(X), the equation PS, f = T, Pfis satisfied, for all t € R.

LEMMA 1. For each p, 0<p=1, the map P extends to a bounded linear
transformation of norm one mapping L (X) onto LF(X) and satisfying the equation
PS, = T,P for all t in R.

Proof. Since (a + b)® =< a® + b®* when 0 <p=1 and a,b =0, and since X
is a “fundamental domain” for o, we see that for f of the form above,

P
> foo” dmszg |foo™|Pdin = > X |£]7 din = ||f]],.
X

nez nez nez o~nX

IPEl, = S
X

This proves that P is contractive and that its unique extension to all of L°(X),
which we continue to denote by P, is given by the sum used originally to define
P. It is also clear that PS, = T, P for all t in R. Finally, the facts that P is onto
and that P has norm one a¥e immediate from the observation that if f is in LP(X)
and if T is defined on X by the formula

f (w,r) = f(w,y), (0,y) € X, and T (w,r) = 0 otherwise,

then Pf = f.

It is perhaps instructive and helpful to note that for p = 1 the adjoint of P
is the injection i of L™(X) into L"(X) defined by the formula i(¢) = @ o m, ¢ € L (X).
We note, too, that P can not be extended to any of the spaces LP(X), p > 1, because,
as was pointed out to us by Don Sarason, the sum defining Pf is identically
+00 when f is the function which is 1/n on ¢"(X), n = 1,2, ..., and is zero elsewhere.

For f € LP(X)(respectively L°(X)), 1 < p= o, and ¢ in L*(R) we define

frs &= X (S_,£)E(t) dt
R

(respectively f *, & = (T_.,f)&(t) dt). By Fubini's theorem, these integrals may

be thought of as defined in a pointwise sense or, if one wishes, they may be
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taken in a vector-valued sense. From either perspective, this process of convolution
converts the LP-spaces, 1 < p < o, into modules over L'(R) such that the module
inequality

If *s &l < Il €N, fE€ LPX),€ € L'(R)

(respectively ||f = &||, = || ], f € L*X), £ € L'(R)) is satisfied. We refer the
reader to our papers [8-10] or the paper of Forelli [4] for further discussion
of this notion of convolution.

As an immediate consequence of Lemma 1, we have
LEMMA 2. Iff € L'(X), and if ¢ € L'(R), then P(fxg £) = (Pf) »; &

For 0 < p < o, we define H?(X) to be the closed linear span in LP(X) of those
functions which can be written as the product of a function in LP(Q)) times a
function in HP(R). It is easy to see that every f in H?(X) has the property that
for almost every » in (), where the exceptional null set may depend upon f, f(w,-)
lies in H?(R). On the other hand, unless ) is a standard Borel space or p=1,
we are unable to show that every function with this property lies in H”(X).
Fortunately, however, we need not dwell on this matter of measure theoretic
teratology.

LEMMA 3. When 0 <p <1, H?(X) has no non-zero, continuous, linear func-
tionals.

Proof. Suppose { is a continuous linear functional on H?(X) and fix f in H?(R).
By Fubini’s theorem, the map g — (gf) is a continuous linear functional on LF(Q)
which must vanish by Day’s theorem [2]. Since functions of the form gf, g € L°(Q),
f € LP(R) span HP(X), ¥ must be zero.

LEMMA 4. For 0<p <1, H(X) N L’X) is dense in both H (X) and H*(X).
Proof. Since . is finite, L'(Q) is dense in L°(Q)) and so it suffices to show

that H'(R) N L?(R) is dense in H'(R) and in HP?(R). But H'(R) N L’(R) contains
the functions f, (z) = (z + a)~>/?, Im(a) < 0, which span both H'(R) and H’(R).

Let Hy(X) denote the kernel of the linear functional on H"(X) determined
by m and note that because m is finite, Hg (X) is contained in H (X) when 0 < p < 1.

LEMMA 5. The closure of Hy(X) in H?(X), 0 < p < 1, is H? (X).
Proof. This is but a special case of Theorem 6.1 on page 131 of [5].
LEMMA 6. The image under P of H'(X) is dense in H; (X).

Proof. First note that if f € L' (X) and if £ is in H'(R), then f g £ is in H'(X)
and that the set of all such convolutions is dense in H'(X). Secondly, note that
H”(X) is the set of all functions ¢ in L”(X) with the property that ¢ . £ =0
for all £ in H'(R) where £(t) = £(—t). This follows from the analysis in section
2 of [10], for example, coupled with the fact that

H'(R) = {¢ € L*(R) : £ is supported in [0,%0)}
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[3, Theorem 11.10]. Thirdly, note that if ¢ is in L*(X), if f is in LY(X), and if
¢ is in L*(R), then (¢, f 1 &) = (¢ * &,f), where (p,f) = ¢ f dm by definition.

X
Finally, note that in this pairing (.,.) between L"(X) and L'(X), H*(X) is the
annihilator of H (X) [12]. Suppose, now, that f is in L*(X) and that £ is in H'(R),
then using Lemma 2, we find that

(@, PE*58)) = (@, (Pf) 1 &) = (@ * &, PS)

is zero when ¢ is in H®(X). This shows that P(H'(X)) C H} (X). Next choose ¢
in L°(X) which annihilates P(H'(X)). Then this equation yields zero for all f € L'(X)
and £ € H'(R). Since P maps L'(X) onto L*(X) by Lemma 1, the fact that the
equation yields zero implies that ¢ * £ = 0 for all £ in H'(R). As we noted, this
means ¢ is in H*(X) and the proof is completed by appeal to the Hahn-Banach
theorem.

LEMMA 7. WhenO0<p<1, P(H" (X)) is dense in H} (X).
Proof. Let2Z = H'(X) N LP(X). By Lemma 4, 2 is dense in H'(X), so by Lemma

6, P(Z) is dense in H}(X). But ther~1, by Lemma 5, P(Z) is dense in Hj (X).
By Lemma 4 again, < is dense in H?(X) and so P(H?(X)) is dense in H? (X).

It seems reasonable to expect that P(H?(X)) actually equals Hj (X), but we
are unable to decide this.

With all the pieces at hand, the proof of the theorem is easily assembled.
It suffices to show that each continuous linear functional ¢ on H?(X), 0 <p < 1,
annihilates H§ (X). But if ¢ is such a functional, then Yo P is a continuous linear
functional on H?(X). By Lemma 3, o P is the zero functional. Thus ¥ annihilates
the closure of the range of P restricted to H?(X) and this, by Lemma 7, is HE.
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