EXTREMAL PROPERTIES OF A CLASS
OF SLIT CONFORMAL MAPPINGS

W. E. Kirwan and Richard Pell

1. INTRODUCTION

Let U denote {z: |z] < 1} and H (U) the space of functions analytic in U endowed
with the topology of uniform convergence on compact subsets of U. It is well
known that H (U) is a locally convex topological space.

We will be concerned with the set S C H (U) consis:ting of functions f,
f(z) =2z + a222 + ...,

that are univalent on U, and with several subsets of S. We denote by A the
collection of functions f € S that map U onto the complement of a single analytic
slit v which has an asymptotic direction at « and which possesses the w/4 property;
i.e., the angle between the radius vector and the tangent vector at any point
on vy is in absolute value smaller than w/4. By o we denote the collection of
support points of S; i.e., functions f € S that satisfy

Re L ({f) = max Re L (g)
gES

for some continuous linear functional L on H (U) which is nonconstant on S. Finally
by E(S) and E (coS) we denote the set of extreme points of S and the set of
extreme points of the closure of the convex hull of S respectively.

There are various relations between these classes of functions. For example,
o C Ais a result due to Pfluger [8] and later Brickman and Wilken [2]. Further,
E (coS) C E(S) by a general argument for compact subsets of locally convex spaces
[4; p. 440]. Also, Brickman [1] proved the striking result that if f € E(S), then
f maps U onto the complement of a single Jordan arc along which |w] increases
to oo,

In [6] Hengartner and Schober proved that if f € A, f(z) =z + a,z° + ..., then
|ay) > 1. In the present note, we show that in fact |a,| > V2 for functions in
A and this result is best possible. In particular, |a,| > V' 2 holds for f € o. However,
we are unable to show that this result is best possible for o and in fact we have
been unable to find an f € ¢ with |a,| < 1.77.

By a general result for locally convex spaces (see [3; p. 231}]), ¢ D E(coS).
It therefore follows from our result that if f € E(coS), |a,|= V 2. Using this
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fact we can produce a large collection of examples to show that Brickman’s result
[1] is a necessary but not sufficient condition for f € E (coS).

Finally, we use the fact that ¢ D E (coS) to obtain a refinement of Brickman’s
monotonic property of C — f(U) for f € E (coS).

2. THE MODULUS OF a,

In order to prove our result on |a,| for f € A, we need to use a result of
Hengartner and Schober [6].

If f € A, then € — f(U) is an analytic slit from some finite point to . In
addition, f has an analytic extension to U except for a pole of order 2 at some
point { on |z| = 1. We denote by m the point on |z| = 1 that f maps to the finite
tip of the slit. Using the 7w /4-property, Hengartner and Schober proved that

£ 2 PRY:
H(z)=([ @) ] +Z+n)(z m)
zf’ (z) Z— Nz

is analytic in U and Re H(z) > 0 for z € U. An easy consequence of this fact,
as they pointed out, is the inequality

(2.1) Rea,m < —1.

Indeed, (2.1) results from the inequality Re H(0) > 0. This inequality plays an
important role in the proof of our main theorem.

THEOREM. Letf€ A,f(z) =z+ a,z° + .... Then |a,| >V 2 and this result
ts best possible.

Proof. Forf € A, C — f(U) is a slit domain and there is a Loewner chain
2.2) f(z,t) = e I:z + Z a, (t) z“] 0=t <)
n=2

with f(z,0) = f(z) and f(z,t,) subordinate to f(z,t,) if 0 =t, <t, <o (see [9; p.

157]). Clearly e *f(z,t) belongs to A for each t, 0 =t <. For a fixed f € A,

consider the problem 0inf |a, (t)]. Since the curve C — f(U) has an asymptotic
=t<o

direction at oo, it is well known (and easy to show; see e.g. [7; p. 176]) that
lim e *f (z,t) is a Koebe function z (1—xz) %, |x| = 1. Thus for f € A, lim |a, (t)] = 2.

t— oo

It follows that there is a t, < o with |a, (t,)| = 1nf la, (t)]. We may assume without

loss of generality that a, (t,) > O (note that |a2 (t )| > 1 by [6]). Indeed, this may
be achieved by a suitable rotation of f, e'* f (e 7** z), which does not affect |a,|.

From the minimal property of a, (t,) we have

(2.3) 9 1 (t) =R 2; ()
: " og |a, (t)] " eaz(to)

=0
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with inequality possible if t, = 0. On the other hand, by the Loewner equation
[9; p. 163] we have

of 2, t 1+m(
2.4) @Y _ oyt
at 1—-m(t)z

where 7 (t) is the point on |z] =1 that f(z,t) maps to the finite tip of the slit
f(e'’,t), 0 =0 =< 2.

Using (2.2) and comparing the coefficients of z° in (2.4), we obtain
a, (t) + aj (t) = 2a,(t) + 2m (0= t <),
Thus
al(t) =a,(t) +2n ) (0=t<o).

But for t = t,, (2.3) implies Re a; (t,) = 0. Hence

(2.5) a, (t,) = Re a, (t,) = —2 Re m (t;) = —2 Ren (t,).
We now apply the inequality (2.1) to conclude that

a, (to) Re m (t,) = Re a, (to)m (t) < —1,
or

2
a, (to) .

(2.6) -2 Ren(ty) >

Combining (2.5) and (2.6) we obtain [a,(t,)]® > 2. Since |a,| = |a,(0)| = a, (t,)
the proof that |a,| >V 2 for f € A is complete.

It remains to show that the inequality is best possible. Consider the mapping
defined by

2.7 f (z) = O<\<m/2).

(1 _ Z)2 cos Aelr

f, € S and maps U conformally onto the complement of a logarithmic spiral, s,,
that is analytic and has the property that the angle between the radius vector
to a point on s, and the tangent vector at that point (measured from the radius
vector to the tangent vector) is identically equal to —\. Indeed,

Re {e™ zf! (z) /f, (z)} >0  for|z| < 1.

Thus f, (z) belongs to the class of so-called spirallike functions introduced by
L. Spacek (see [9; p. 171]). The fact that s, is a logarithmic spiral follows from
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the identity Re {e™ zf. (z) /£, (z)} = O for |z| = 1.
For f, defined by (2.7),

(2.8) f(z) =z+ 2cos\e™z” + ...

We will show that for any A < w/4, f, may be approximated uniformly on compact
subsets of U by functions in A. For A\ = w/4 we have from (2.8) that |a,| = V2.
It will then follow that the theorem is best possible.

For a fixed A\ < w/4 we consider a curve 1, constructed from s, in the following
way. T, begins at the finite tip of s, and follows s, to a point P of large modulus.
From P, 7, follows the tangent line of s, at P on to . 7, is a C' curve and
the absolute value of the angle between the radius vector to any point on the
curve and the tangent vector does not exceed \. Let g, map U onto the complement
of 7, with g,(0) =0 and g;(0) > 0. Clearly as |P| » o, g, — f, in H(U). Thus
in order to complete the proof, it suffices to show that we can approximate g,
in H (U) by functions in A.

Let1,:z=a(t),0 <m=1t <o, Since 1, is a ray beyond the point P, we may
assume «(t) is of the form At + B if t is large. Also, as noted above, o’ (t) is
continuous on m <t <o and o’ (t) = A for large t. For ¢ > 0, we may choose an
analytic function b (t) such that

(2.9) [b(t) —a’(1/t)) <et® (O =t=1/m).

Indeed o’ (1/t) has a continuous extension to t = 0 (the value at t = 0 we denote
by o’ (). By the Weierstrass theorem, there exists a polynomial p (t) such that:

! .
<g (OS ts——),
( m

and we can set b (t) = t>p (t) + o (). Let g’ (1/t) = b (t). From (2.9) we have

"(1/t) — o (oo
p(t)_a(/)tzot()

1
|B'(t)—0t'(t)|<e;; (m =t < ).

t
SetpB (t) = S B’ (t) dt + o (m) andletk, : z = B (f), m < t < «. Then k, is an analytic
curve with an asymptotic direction at «. Indeed, lim arg B’ (t) = lim arg o’ (t). Now,
t—oo t—oo

arg [o’ (t)/a(t)] measures the angle between the radius vector and the tangent
vector at the point a(t) on 7, (and this angle in absolute value does not exceed
o' (t) BV
alt) B
angle between the radius vector and the tangent vector at any point of k, does
not exceed w/4 in absolute value. Let h, map U conformally onto the complement
of k, with h,(0) =0, h; (0) > 0. Then w = h, (z)/h} (0) defines a function in A.
If we now let e — 0, it follows by an application of the Carathéodory Kernel Theorem
[9, p. 29] that h, — g, in H (U). This completes the proof.

A). Clearly, then, since A\ < w/4 and is small if € is small, the
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As noted earlier, since o C A, |a,| > V 2 holds for f € ¢. However, we cannot
show this inequality is best possible in ¢. By considering the lintar functional

(2.10) - L. (g) =g(—r) for fixedr,0<r<1,

we can produce an f € ¢ with 1.77 < |a,| < 1.774. Indeed, the extremal function
f for the problem max Re L, (g) satisfies a Schiffer differential equation of the
gE

(zf’ (2) )2 ( f2(—r) ) . (z —e®)?
= —Re'®
f (z) f(z) — f(—r) z+1)(z+1/1)

where f(—r) = Re'®. If we compare the coefficients of z in this equation, we obtain

et 1( 1)
a, = — —e T ——\r+—}.
2R 2 r

Using a result of Grunsky [5] (see also [9; p. 196]) on the determination of
the values for g(z)/z, g € S, one can numerically determine Re'* for fixed r and
hence the smallest value of [a,| as r varies over the interval (0,1). This smallest
value lies between 1.77 and 1.774.

In {6] Hengartner and Schober proved that |a;| > 3/8 if f € A,

form

f(z)=z+a,z°+....

Using the previous theorem and the area theorem, we can improve this estimate
considerably.
COROLLARY. Letf€ A, f(z) =z + a,z° + ..., then |ag| > 1.

Proof. By the area theorem, |a; — a5| = 1. On the other hand if f € A,
lag| >V 2 and hence 1 < [a,|® — 1= |a,|.

3. THE CLOSURE OF A

In this section we give a characterization of A (the closure of A in H(U))
in terms of the boundary behavior of the members of A. First, however, we need
to discuss some preliminaries.

Letvy:z =z (t) (t, = t = t,) denote a regular (z’ (t) # 0) C'curve. For t, < t, < t,,
arg [z’ (t,)/z(t,)] is the angle between the radius vector and the tangent vector
at the point z(t,) on «. If

(3.1) jarg [z’ (t)/z(D)]| <w/2

for all t, then |z (t)] is a strictly increasing function. Indeed,
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’

d
—log |z (t)] = Re >0
n g |z (t)]

z (t)

under the assumption of (3.1).
Next we note that given a point z, in € and a value \ (J]A\] <w/2 for our
purposes), the conditions
z' (t)

3.2
3.2) Sl

=, z (ty) = z,

determine a unique (up to parameterization) arc starting at the point z,. The
arc determined by (3.2) is a logarithmic spiral and, of course, the angle between
the radius vector and tangent vector (measured from the radius vector to the
tangent vector) is . For reference we call the arc defined by (3.2) the A-spiral
emanating from z,.

In the proof of the theorem of this section we will need to construct a specific
type of neighborhood. Given a point z, = r,e'°® in C we consider the curvilinear
quadrilateral defined by

(3.3) {z:z=re’,r,<r<r,,0,<6<0,},

where r, <r,<r,,0, <0,<6, and r, — r, and 6, — 6, are small. Construct the
(—A\)-spiral (0 < A < 7 /4) emanating from r, e'°1, This spiral winds (with increasing
modulus) in a clockwise direction about the origin. Follow this spiral until it
intersects the circle |z] = r,. Denote the arc of the spiral so determined by -,.
Now construct a A-spiral emanating from r, €"°2. This spiral winds (with increasing
modulus) in a counterclockwise direction about the origin. Follow it until it intersects
the circle |z| = r,. Denote the arc of the spiral so determined by v,. We denote
by H, the Jordan domain bounded by the circular arc |z| =1,, 6, =0 =<280,, v,,
v, and the arc of |z| = r, joining the endpoints of vy, and vy, (see Fig. 1). Next
construct the A-spiral emanating from a point r, e that passes through r,e*1.
Necessarily 0, < 0, but 6, — 0, is small. Denote by <y, that portion of this arc
that joins r,e'®® and r,e°'~Similarly construct the (—\)-spiral emanating from
a point r, e'°* that passes through r, e'°z. Here 6, > 0, but 8, — 6, is small. Denote
the arc joining r,e'** and r,e°? by v,. The Jordan domain bounded by the arc
of |z| = r, joining the endpoints of v, and v,, v;, v, and the arc of |z| = r, with
6, <0 =0, we denote by H, (see Fig. 2). Finally, we call the Jordan domain
H = H, U H, an , neighborhood of z, (see Fig. 3). For our purposes the essential
feature of the Q, neighborhood is that if v:z = z(t) is any curve that satisfies
|arg [z’ (t)/z (t)] < N and passes through a point z, of the quadrilateral (3.3), then
v can intersect the boundary of the Q, neighborhood H only at a point of |z| =r,
or of |z| = r,. Indeed y must lie “between” the A-spiral and the (—\)-spiral through
z, and these two spirals do not intersect any of the v, (see Fig. 4). We are now
in a position to prove the theorem of this section.

THEOREM. Letf € A. Then C — f(U) is a Jordan arc vy:z = z(t) (t, =t < x),
|z (t)| is strictly increasing and for each t, = t,,
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Fig. 3

Fig. 4
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z (t) — z(t,)

3.4 li
(3.4) im sup ()

t—t;

arg

™
= —,
4

In particular, at any point where z (t) is differentiable,

z’ (t)
€ z (t)

T
a =—.
4

Proof. In order to prove that C — f(U) is a monotone arc, it suffices, by an
argument due to Brickman [1], to show that each circle [w] = r meets C — f(U)
in at most one point. Suppose on the contrary that some circle |w| = r intersects
C — f(U) in two points w, and w, which we may suppose are boundary points
of f(U). Let f, € A be chosen such that f, — f in H(U) and such that there exist
points w, on the boundary of f (U) with w, — w,. Choose disjoint {_,, neighbor-
hoods of w, and w,, say Q’ and Q”, respectively. We may assume that the
bounding circular arcs of 2, lie on the same two circles as do the bounding cir-
cular arcs of {1,. Since f, € A, the boundary of f, (U) has the m/4-property (and in
particular is monotonic). Thus if w, is sufficiently close to w,, then by the prop-
erty of Q_,, neighborhoods mentioned above, the boundary curve of f, (U) does not
pass through Q”. That is, Q" C f,(U) for n sufficiently large. However, w, € Q"
is a boundary point of f(U) and so Q" contains points of

f(U) = ker f, (U)

(ker f_(U) = kernel of {f, (U)} [9; p. 29]; the previous equality is a consequence
of the Carathéodory Kernel Theorem). It follows that Q” C ker £, (U) = f (U). But,
this contradicts the fact that w, belongs to the boundary of f (U).

It remains to show condition (3.4) is satisfied by +y: z = z (t). Again choose f, — f,
f, € A. Let z(t,) be a point on v and w, — z(t;) with w, on the boundary of
f,(U). Choose an Q_,, neighborhood of z(t,), say Q. If n is sufficiently large,
then by the Q_,, property of Q and the fact that f, € A, all the curves v, which
form the boundary of f, (U) can intersect the boundary of Q only along the bounding
circular arcs. In the quadrilateral of the form (3.3) associated with Q, we first
let 0, and 6, — arg z(t,) and r, — |z (t,)|, holding r, fixed. It follows that all limit
points of the v, which lie in the annulus |z (t,)| < |z] < r, must lie in the Jordan
domain bounded by an arc of the (—/4)-spiral emanating from z(t,), an arc
of the w/4-spiral emanating from z(t,) and an arc of |w| = r, that joins the points
of these spirals on |w| =r,. This establishes (3.4) for t > t,. If t <t, we argue
in the same way except that now we hold r, fixed and letr, — |z (t,)|.

It is not hard to show that the converse of this theorem is alsb true. This
follows from a construction similar to that used to show that the estimate|a,| > V 2
is best possible in A.

As was pointed out earlier, E (coS) C A and so we have the following

COROLLARY. If f € E(coS), then € —f(U) is a Jordan arc v:z = z(t)
(t, = t < =), that satisfies the condition (3.4).
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In particular, this shows that members of E (coS) have a “generalized” w/4-
property. This fact complements the information contained in Brickman’s result

[1].

In conclusion we note that the functions of the form (2.7) with n/4 <A <= /2
map onto the complement of a spiral which has Brickman’s monotonic property.
However, the previous corollary rules out the possibility that these functions belong
to E (coS).
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