AN ARC IN A PL n-MANIFOLD WITH NO NEIGHBORHOOD
THAT EMBEDS IN S*, n = 4

D. R. McMillan, Jr.

1. INTRODUCTION

To study the geometric embedding properties of a compactum X in a PL
n-manifold, one sometimes finds it useful to change the scenery by reembedding
a neighborhood of X in the n-sphere S". For example, if n =3 and if X is a
topological cell, this can always be done. (See [9] for a proof; the case of an
arc was also done in [1].) The ability to make this transition in many instances
greatly increases the usefulness of the “cellularity criterion” in 3-manifolds, for
example. (See [9].)

It seems reasonable to expect that such familiar neighborhoods should be found
whenever X is a “nice” compactum embedded in a PL n-manifold. Unfortunately,
this is not so. It fails at the first opportunity: There is, for each n = 4, an arc
A embedded in a certain PL n-manifold M" such that no neighborhood of A in
M" embeds topologically in S™. Our intuition is further violated by the fact that
each proper subarc of A has a neighborhood that embeds in S™.

Our basic four-dimensional construction is motivated by A. Casson’s example
of a cell-like continuum in a 4-manifold. Robert J. Daverman showed us this
earlier construction, which seems by now to be widely known. It may be a
counterexample to the four-dimensional cellularity criterion, at least in the smooth
setting. No proof of this yet exists, however, and our methods definitely fail on
it. We also wish to acknowledge that Robert D. Edwards suggested using decomposi-
tion space techniques (such as those of [5) and [12]) to shrink the Casson example
down to an arc. Our overall approach owes much to these sources. We also thank
Bob Sternfeld and Mike Starbird for many helpful discussions. In particular, Starbird
showed us how to free our examples for n > 4 (Section 4) from relying on an
as-yet-unpublished higher-dimensional version of the Edwards-Miller-Pixley-Eaton
theorem.

Here is a brief summary of our notation. I denotes the unit interval [0,1].
B" is [—1,1]"; S" is the n-sphere; and E" is Euclidean n-space. A loop in X is
a (continuous) mapping S' — X. Integer coefficients are understood for (co) homology
and H denotes reduced (co) homology. Isomorphism of groups A, B is symbolized
by A = B, and homeomorphism of spaces X, Y by X =Y. We work in the PL
context throughout. A cube-with-handles is any PL homeomorph of the regular

neighborhood in S® of a finite connected graph. Its genus is: one minus its Euler
characteristic.
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2. CONSTRUCTION OF A AND M*

In this section we describe our example, fix some notation, and collect some
elementary facts.

We first make a few remarks about our Figure, reference to which is made
repeatedly throughout the paper. The Figure shows two disjoint, connected polyhe-
dral graphs G,, G, in S’. Each of G,, G, consists of two simple closed curves
joined by an arc. The graphs G,, G, are equivalently embedded as sets in S°.
There is also shown an arc « joining G, and G,, and a simple closed curve J
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in 8 — G, — G, — « that “locally links” « once. The Figure suggests in the usual
way a presentation of m, (S’ — G, — G, — «), although for obvious reasons we have
not written out the presentation in full. The basepoint is at the tip of the viewer’s
nose. The fifty-one generators shown are

{a,a,,...,a5 b,b,, ...;bg, X, Xy, o0y Xo3, ¥, Vi -v5 Yi2)s

and there is a relation for each singular point of the chosen projection of G, U G, U a.
We will take note of these relations among the generators only as we have need
for them. Our groups are written multiplicatively. We use a for the inverse of
a, and a” for bab. The commutator of a and b, [a,b], is abab.

The group =,(S* — G, — G,) is obtained by “killing” J:
'“'1(83 —Go— Gy = '“'1(83 — Go— G, — ) / {XY12YXs3) »

where (R) denotes the smallest normal subgroup of 7,(S* — G, — G, — «) containing
R. The group (S’ — G,) is obtained by killing a and b:

'”1(83 -Gy = "71(83 -Gy —G,—a)/(a,b),

and is, of course, free of rank two. To avoid a proliferation of notation, we will
sometimes omit obvious inclusion homomorphisms, and will make slightly imprecise
statements, such as: “In m,(S* — G,), wehavey,, = y,,X; = X,, 1 =a=a, = ... = a,,
and 1=b=D>b, =...=b,”

Let H, be a thin regular neighborhood in S® of the graph G,, and let H, be
S® minus the interior of a thin regular neighborhood of G,. Each H; is a cube-with-
handles of genus two, and our choices are such that H, C Int H,. Each is standardly
embedded in S°. Choose an orientation-preserving homeomorphism h: S* —» S* that
throws H, onto H,. We have two continua (i.e., compact, connected spaces) in
S? of interest:

X, = ﬂ h'(H,), and
i=1

X = n h™(S® — H),
i=1

where the exponents indicate iterated composition.

LEMMA 2.1. For k=1 and each i, the inclusion h'**(H,) — h'(H,) induces
the zero homomorphism on integral first homology. (X, is “strongly acyclic over
the infinite cyclic group.”) ,

Proof. Consider first the inclusion a:H, — H,. Let A,B be the natural free
generators for m,(G,) corresponding to its structure as an oriented graph, and
let a,b be the free generators for w,(H,;) indicated in the Figure. These can be
chosen so that «,(A)=abab= [a,b], and «,(B)= babababa = [b, baba] .
Hence, a,m,(H;) lies in the commutator subgroup of w,(H,). Thus, a induces zero
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on integral first homology. For the general case, we have only to note that the
inclusion h'**(Hy) — h'(H,) factors through the inclusion h***(H,) — h***"*(H,),
which is topologically equivalent to a.

A continuum Y is cell-like if for some (and hence for every) embedding of
Y in a compact ANR, we have: Each neighborhood U of Y contains a neighborhood
V of Y such that V contracts to a point in U.

LEMMA 2.2. For k=0 and each i, the inclusion h”k(HO)—-) hi(HO) induces
a monomorphism on fundamental groups. Hence, X, is not cell-like.

Proof. It suffices to consider a:H, — H,. If a, were not monic, then since
w,(Hy) is free, o, (H,) would be free of rank at most one. In particular, o, (H,)
would be abelian. However,

a4 (A)a,(B) = ab%ababa # babab® = o, (B)a.(A)

in =, (H,).
LEMMA 2.3. For k =1 and each i, the inclusion

h'(s* — H,) > h'"*(S* — H))
induces the zero homomorphism on fundamental groups. Hence, h'(S*> — H,) contracts

to a point in h'**(S* — H,), and X_ is cell-like.

Proof. We consider first the inclusion h™'(S® — H,) - S* — H,. (Or, equivalently
for our purposes, we consider the inclusion G,— S® — G,.) Let C,D be the free
generators for w;(G,) shown in the Figure. When C and D are homotoped slightly
off G, and considered as elements in m,(S* — G, — G, — «), we obtain

{C) = X,5Y5XoXg¥ 4X19, and {D} = X,¥ 0% 15X 15¥5%, -

Adding the relations “a=1=>b" to m(S® — G, — G, — «) yields = (S*— G,). In
m,(S8° — G,), we find (with a slight abuse of notation) that x, = x,, y; = y,, and
X5 = X;9, S0 that {C} = 1. To show that {D} =1 when {D} is considered in
11-1(S G,), we read the following facts from the Figure (assuming a = 1 = b):

Yio = Y110 X1 X5 X3 = X3 = X1y = X4
Ys = Yo = X13¥10X13»
X, = Y10XY10s
M, = X5¥6X15 = X13(X13Y 10X 13)X15 = Y 10>
M, = X3¥,X;9 = M2M1M2 > M =M,=¥,,
X3 = M2M1XM1M2 = Y102X3-7102 ’

X,8YsXo = My(X,,¥oX;3) 1\712 = ¥10(X 13Y9X13)¥10 = ¥ 10¥10Y10 = Y10 -

(M, and M, are defined by the expressions immediately to their right.) Hence,

(%) (¥10) (X13) (X18Y5%9) = (¥10XY 100(¥ 10) (Y102 Xy 102) (y10 =1
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as desired. The general result claimed now follows from an argument like that
completing Lemma 2.1.

LEMMA 2.4. S’-X, is contractible. In fact, the suspension 2 X, is PL cellular
in > §°=8"
Proof. Each compact set in S°~X, lies in h'(S* — H,) for some i, and hence

contracts to a point in h'**(S* — H,). Hence, S’>—X, is contractible. To show that

> X, is PL cellular in S*, it suffices to show that S* — > X, is PL homeomorphic

to E*. But S* — 2 X, is PL homeomorphic to (S3 — X,) X E', so the result follows

from Theorem 2 of [8].

Recall that X,, X_ are in S° = 9 BY, and that B* = [—1, 1]*. Identify B* with
B*x {0}. Let M* be the PL 4-manifold obtained from the three disjoint 4-cells
B* x {1, 0, 1} by the identifications

x,1) = (x,0) for every x € H,,
and (x, —1) = (x,0) foreveryx € S*> — Int H,,.

If SCS® and i€ {-1,0,1}, let C,(S) be obtained by coning over Sx({i} from the

origin in B*x {i}. We consider the suspension E X, C M*as
D X, = Co(X,) U Ci(X,),

and 2 X_C M*as Z X_ = CuX_) U C_,(X_). Then we define X as the one-point
union, or “wedge”: X = 2X+ U EX_ C M

LEMMA 2.5. X is a cell-like continuum in the simply connected PL 4-manifold

M*. Further, ZX+ is PL cellular in M*, and ZX_ also has a neighborhood
in M* that PL embeds in S*.

Proof. Each of 2 X, and 2 X_ is a cell-like continuum by Theorem 3 of

[10]. The wedge X of two cell-like continua is easily shown to be a cell-like continuum.
Simple connectivity of M* follows from van Kampen’s Theorem. It has previously

been remarked that E X, is PL cellular in S* = E S®. Since there is a natural
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mapping of B* X {0, 1} ¢ M*into z S? that completes the identification of S*>x {0}

with S’ {1} and is the identity on a neighborhood in M* of Z X,, it follows

!

that 2 X, is also PL cellular in M* Similarly, 2 X_ has a neighborhood in
M* that PL embeds in S*

Notation. There is a natural sequence of “describing” neighborhoods for X
in M*. For each i = 1, let N, C M* consist of:

C,(h'(Hy) U C_,(h™'(S* — H,)) U Co(h'(Hy) U h™(S* — H,)) U B*() x {~1,0,1},

where B*() is the 4-cell [—1/i,1/i]*. We have:

LEMMA 2.6. Each N, is a compact, simply connected, PL 4-manifold which
(to within PL. homeomorphism) can be obtained from B*x{0} by pasting on 4-cells
B*x {1} and B*x{—1} along h'(H,) and h™'(S*> — H,), respectively, via the “identity”
mapping. The N/s form a neighborhood basis for X in M*.

Since E X, is cellular in M there is by [2] a mapping f: M*— M* whose
restriction to dM* is the identity, and whose only nondegenerate point-inverse
is Z X, . Note that f(X) is tdpologically 2 X_. Consider the upper semicontinuous
decomposition G, of M* whose only nondegenerate elements are the f-images of

the disjoint copies of X_ at the different levels of 2 X_. By [5], [12], or [4],

some mapping g: M*— M* restricts to the identity on aM* and has exactly the
elements of G, for its point-inverses. The arc mentioned in the Introduction is
g(f(X)) = A.

LEMMA 2.7. For each neighborhood U of X in M*, g(f(U)) is homeomorphic
to U.

Proof. By [2], some mapping f of U onto U restricts to the identity off a
compact neighborhood of z X, in the interior of U, and has 2 X, as its only

nondegenerate point-inverse. By [5], [12], or [4], some mapping g of U onto-
U has exactly the f-images of the disjoint copies of X_ at the different levels

of Z X_ for its nondegenerate point-inverses. Then gff ~'g~' is a homeomorphism

of g(f(U)) onto U.

3. NEIGHBORHOODS OF A IN M*

Throughout this section, let A, M*, N,, etc. be as constructed in Section 2.

Following [13], we say that compact sets X,Y in S" are I-equivalent if for



AN ARC IN A PL n-MANIFOLD 35

some ZC S"X [0,1],ZN S"X {0} =X X {0} and ZN S" X {1} =Y X {1}, and
some homeomorphism of Z with X X [0,1] carries X X {0} to X X {0} and Y X {1}
to X X {1}.

Recall that if G is a group and S,, S, are nonempty subsets of G, then [S,,S,]
denotes the subgroup of G generated by all commutators [x,y] = Xyxy, where
x€ S, and y€ S,. The lower central series of G is defined thus:

G, =G, G,,=I[G,,G] forn=1,

and G = n {G,:n=1,2,...}. An element of G, is called an omegatator. We
say that x =y (mod G,) if xyE€G,..
In Theorem 5.2 of [13], we find a necessary condition for I-equivalence:

PROPOSITION (Stallings [13]). Let X and Y be l-equivalent compact sets
in S". Let A = m,(S" — X) and B = w,(S" — Y). Then for each finite k the lower
central quotient groups A /A, and B/B, are isomorphic.

The object of the next two lemmas is to develop a test for I-equivalence of
X and Y, when X is a finite graph of two components.

LEMMA 3.1. Let M’CS® be a compact 3-manifold with nonempty, connected
boundary of genus n. Let ' C M® be a connected graph of Euler characteristic
1—n whose inclusion into M® induces a surjection on integral first homology. Let
F = w,(), a free group of rank n, and let G = w,(M°). Then, for each finite k,
the inclusion T' C M? induces an isomorphism F/ F, = G/G,.

Proof. By Alexander Duality and the Mayer-Vietoris Theorem, H,(M?
(= G/G,) is free abelian of rank n. Hence, the inclusion I' CM?® induces an
isomorphism on integral first homology. Since H,(M?) = 0, the result follows from
Theorem 5.1 of [13].

LEMMA 3.2. Let M>CS* be a compact 3-manifold whose boundary has exactly
two components. Suppose that the sum of the genera of these two components is
n, and let a be an arc in M? joining these components, with o N dM® = da. Suppose
thatd is a simple closed curve bounding a 2-cellin Int M° that intersects « transversely
at a single point. Let G denote w,(M®), and F denote a free group of rank n.

Then, F/ F, = G/G, for each finite k, if and only if J represents an element of
the o™ term of the lower central series of w,(M° — «).

Proof. Consider the inclusion-induced surjection
K= 'n'l(Ma —a)— fnl(Ma) = @G,

whose kernel is precisely N, the normal closure of {J} in K. By Lemma 3.1,
applied to M® minus a regular neighborhood of «, F/ F, = K/ K, for each finite k.

Suppose first that F/ F, = G/ G, for each k. Then for each k we have a surjection
K/ K, —» G/G, of groups each isomorphic to ¥/ F,. But ¥/ F, is Hopfian, by Theorem
5.5 of [7]. This implies that the surjection K/ K, — G/G, is an isomorphism.
Since J contracts to a point in M® J represents an element of K, for each k,
as claimed.
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On the other hand, if J represents an element of K, then the inclusion-induced
homomorphism K/ K, — G/ G, is an isomorphism for each k. Hence, G/G, = F/F,
for each k. The proof is complete.

If G is a group and z€G, then the weight of z in G, w(z,G), is defined to
be the largest integer n = 1 for which z&€G,. If no largest such integer exists,
we put w(z,G) = . Clearly, w(z,G) = n if and only if zeEG,. We will shorten “w(z,G)”
to “w(z)” when there is no confusion as to which group G is being considered.

The next lemma follows from Corollary 5.12 (iii), page 342 of [7].

LEMMA 3.3 Let F be a free group of finite rank, and let U,V be elements
of finite weight in F. Suppose that either: o(U) # w(V); or o(U) = m = (V) and
that U,V fail to determine powers of the same element in ¥,/ F_, .. Then,

o([U, V}) = o(U) + o(V).
The next lemma is not absolutely necessary for our proof, but we quote it

at one point to explain our strategy.

LEMMA 3.4. Let G be a group, and let U,V be elements of different finite
weights in G. Then, »(UV) = min {o(U), w(V)}.

Proof. Letu = w(U) and v = w(V), where u < v. Clearly, UV EG,. On the other
hand, since U = (UV)V and since G,,, is a subgroup containing V but not U,
UV cannot belong to G, ,. Hence, «(UV) = u.

We are now ready for our main result:
THEOREM 1. No neighborhood of A in M* embeds topologically in S*.

Proof. By Lemma 2.7, it suffices to show that none of the neighborhoods N;
of X in M* embeds in S*. Fix the integer i = 1. Using the notation of Section
2, there is a PL 4-cell D* C Int N; obtained by piping B*(i + 1) X {—1} to

B*G + 1) x {1}
via a tube (= PL 4-cell) that lies close to, but misses,
N,,, — B*G + 1) x {-1, 1}).
The result is that N,,, N D*=B*i+1)x {-1,1}, and that the pair
(6D% N,,,; N 8D*) is homeomorphic to the pair whose first entry is S* and whose

second entry consists of two disjoint, standardly embedded cubes-with-handles K,,
K, of genus two that can be separated by a 2-sphere in S°.

Now suppose that h:N, — S* is an embedding. Then, using [2] and the fact
that each of D* and B*(i + 1) X {0} is PL relative to the structure on N;,

S* — h(Int D*) — h(Int B*(i + 1) X {0})
is topologically S® x [0,1]. Hence, the set

h*H) U h 7 (8*-H,)CS®
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is I-equivalent to the set K, U K,. Thus, if F is free of rank four, and
G = m,(S* — h"'(H,) — h™7}(S® - H))),

then G/G, = F/F, for each k, by Stallings’ Proposition. We will show this last
conclusion to be false.

The 3-manifold S* — h**'(Int H,) — h™"(S® — Int H,) is homeomorphic to
M?>=8°—-IntH, — h®*}S® - IntH,) = h *#H,) — IntH,,

via h™. Let a be an arc in M® joining the two components of dM?® such that
a N aM® = da, and « N h™(9H,) is a single point for k =0, 1, ..., 2i + 1. Put

H, - Int H, = M, C M°.

Let J € M;? — o bound a 2-cell in Int M,’ that intersects a transversely at a
single point. By Lemma 3.2, it suffices to show that J does not represent an
element of K _, where K = 7, (M® — «).

Refer to the Figure, which shows «,J and the usual Wirtinger-presentation
generators for m,(S* — G, — G, — @) = m,(M,> — «) = K,. Two important loops V,V,
in 8H, are partially shown in the Figure. Loop V starts at the basepoint, goes
straight to the dot over the letter V in the upper middle part of the Figure,
and then follows closely the indicated simple closed curve in G,, staying always
on the same “side” of this curve with the exception of two twists near the end
of its journey corresponding to the generators y,, and y,;. The complete (fourteen-
letter) V-word is

{V} = ax,,§75X,5beXsY 41X 108X,3Y100:1Y1:X -

Similar remarks apply to the loop V,, which follows closely the other simple closed
curve of G,. Its only unexpected twist occurs at the beginning of its journey and
corresponds to the generator x. The complete (twenty-four-letter) V, word is

{V,} = xy,,b,y,X8X , X, sbeXg ¥ 4X193_b3El X 19Y4X8563( 15YsX108.
Some straightforward calculation yields the statement
(*) {V,} = [b1"wn* (V}]

in K,. (Write out the right hand side of (+), using the earlier expression for {V},
and making the substitutions b, = y,,b,¥,, and b, = X,,b,x,,. The resultis the earlier
expression for {V,}.)

Since J bounds an orientable, punctured surface of genus two in M,> — o, {J}
represents (up to conjugacy) [V,, x][V,¥] =L in K,. (One could also verify this
by showing that L = x,,Xy,,¥, and noting that this last expression represents the
conjugacy class of {J}.) The proof will be completed as follows. It will be shown
first that {V,} and {V}, when considered in K, have different finite weights.
Then, by Lemmas 3.1 and 3.3, it will follow that [V, ,X ] and [V,y] have different
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finite weights in K. Finally, Lemma 3.4 will show that L has finite weight in
K, as desired.

To accomplish this program, we first note that by Lemma 2.2, the inclusion
H, » h™7'(H,) induces a monomorphism on fundamental groups. Hence, since
neither of V,V, contracts in H,, neither contracts in h™>"'(H,). Thus, V,V, represent
elements of finite weight in the free group w,(h~*"'(H,)). Thus, since

M® — « C h™%7Y(H,),

each of {V}, {V,} has finite weight when considered in K. The displayed equation
(*) is valid when its members are considered in K. Hence,

1<o({V}LHK)<o({V,;},K)=w<on

Let T be a finite, connected graph in M® — a with Euler characteristic —3,
with some based loop ¢ in I' homotopic to x, some based loop d in I' homotopic
to y, and such that the inclusion I' - M® — « induces a surjection on first homology.
Then, by Lemma 3.1 (with n = 4 and applied to the 3-manifold: M® minus a regular
neighborhood of a), we have that «w,(T')/w,(I'), » K/K, is an isomorphism for
each finite k. In other words, the inclusion-induced homomorphism ¢: m,(I') - K
is weight-preserving in the sense that w(z, m,(I')) = w($(z), K) for each z € m,(T).

, For some elements W,W, in = ,(I),
&(W)={V,} (modK,,), and ¢W) ={V) (modK,,,).

Since also 1 < w ({V},K) < w, we have 1 < (W, m,(I')) < w. But w(d, w,(I')) =1,
so by Lemma 3.3 o([W, d]) =w, and hence o([{V}, ¥]) = w. Thus mod K,

{3} = [{(V.1, 21 [{V}, 7] = [{V},¥] #0.

This shows that w({J}, K) = w, and hence {J} & K. The proof is complete.

We conclude with a general result concerning the situation considered in the
proof of our example. It requires less information in its hypothesis than we had
in our example, and also yields a weaker conclusion. That is, there are compact
3-manifold groups G with G / G, not free, and yet G/ G, = F/ F, for the appropriate
free group F and each finite k.

Notation. If S is a nonempty set of loops in an arcwise-connected space X,
we let N(S;X) denote the smallest normal subgroup of =, (X) containing the conjugate
class in m,(X) determined by each of the loops in S.

THEOREM 2. Let H, and H, be PL 3-manifolds, where w,(H,),6 = {1}, H,
is a cube-with-handles, and the inclusion H, C Int H, induces a monomorphism
on fundamental groups. Choose a complete set of meridional disks {D,, ..., D,}
for H, (n = 1) and a basepoint for fundamental groups in 0H,. If i1 denotes the
inclusion oH, —» H, — Int H, = M? and G denotes fnl(M3), then we have

i, (G,) C i*“(N( U aD,; Ma) = N( U aD,; aHI).
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Further, if each closed surface separates H,, then w,(0H,) /i, '(G,), and hence
also G/ G, fails to be a free group.

Proof. LetD* = U D, and 9D* = U aD,.. By attaching 2-handles with the

D_’s as cores to dM?, we see that G /N(3D*; M?) = «,(H,), an omegatatorless group.
Thus, G, C N(@D*; M®), and so i, (G,) C i, 'N(@D*; M?).

To see the inclusion i, *(N(@D*; M?)) C N(aD*; 9H,), let W C 9H, be a wedge
at the basepoint of n simple closed curves naturally induced by the D_’s. That
is, each WNaD, is a point of transverse intersection in 0H,, the correspondence
m— WN 8D, is one-to-one, and W — D* is connected. In particular, H, is a reg-
ular neighborhood of WUD*. Let R: 0H, > W be the natural retraction, with
Ker R, = N(aD*; 0H,). Let j be the inclusion W — H,, and k the inclusion M - H,.
Suppose x €,(0H,) and i,(x) € N(9D*; M?®). Then k,i,(x) = j.R.x) = {1} inw,(H,),
so that since j, is a monomorphism by hypothesis we have R,(x) = 1 in w,(W), as
desired to prove our first inclusion. The reverse inclusion is obvious, and yields
equality of the two subgroups.

If, contrary to expectation, m,(0H,) /i, '(G,) = Qisa free group, then by Corollary
3.3 of [6], its rank is q,q = n. But there is a surjection Q — w,(0H,) / N(aD*; 9H,),
and the quotient group on the right is free of rank n. Thus, q = n. It follows
(Theorem 5.5 of [7]) that the above surjection is an isomorphism. Hence, we have
i, '(G,) = N(aD*; aH,). In particular, D, represents an element of G, C G,. Hence,
there is a compact, orientable 2-manifold M®> C M® with M? N aM? = oM® = aD,.
But then D,UM? is a surface that fails to separate H,, a contradiction.

Hence, Q fails to be a free group. Further, Q embeds in G /G_ which therefore
also fails to be free. The proof is complete.

4. EXAMPLES IN DIMENSIONS FIVE AND HIGHER

Let E,"” = {(x, ..., x,) € E™ x_= 0}. The phrase “spin E,* about E* by S"™*”,
where n = 5, means: Take the quotient space of E,* X S"™* obtained by identifying
each of the (n—4)-spheres {{p} X S"™*:p € E?} to a single point. This quotient
space is, of course, topologically E*~'. If X C E.°, then by the spin of X, Sp (X),
we understand the subset of this quotient space corresponding to X X S*7*. We
will keep the dimension of the sphere by which we are spinning fixed during
a given discussion.

For reference, we state a form of the main result of [5], [12], and [4]. Our
version follows from the proofs to be found in these references. For our purposes,
we say that an upper semicontinuous decomposition G of a space Y is shrinkable
if for each open U C Y containing the nondegenerate elements of G, there is
a proper surjective mapping f: Y — Y such that f|Y — U = identity and such
that the point-inverses of f are precisely the elements of G.

THEOREM (Edwards-Miller [5], Pixley-Eaton [12]). Let X C E,?> — E® be a
cell-like continuum. Let E*™' be obtained by spinning E.> about E* by S"*, where
n=5. Let G be the upper semicontinuous decomposition of E"™' whose only
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nondegenerate elements are the disjoint positions occupied by X during the spin:
{X x {t}: t € S"*}. Then G is shrinkable. In particular, E*™' /G ~ E**.

John L. Bryant showed in [3] that E” modulo an (n—1)-cell is a factor of
E™*'. Hence:

COROLLARY. Assuming the hypotheses and notation of the previous theorem,
let A be an arc in E_.? joining X to E® and such that (U X) N Int A = @. Let
f: E" ' — E" ' demonstrate that E** /G = E""". Let H be the upper semicontinuous
decomposition of E* = E*™' X E' whose only nondegenerate elements are the (n—3)-
cells {f(Sp(X U A)) X {s}:s € E'}. Then H is shrinkable. In particular,

E""'/Sp(X U A) X E' = E".

A continuum Y is strongly acyclic (over the infinite cyclic group Z) if for some
(and hence for every) embedding of Y in a compact ANR, we have: Each neighborhood
U of Y contains a neighborhood V of Y such that the inclusion V— U induces
zero on integral homology in each positive dimension. If Y is compact metric
and finite-dimensional, then each of the statements “H*(Y;Z) = 0” and “the
suspension of Y is cell-like” is equivalent to the strong acyclicity of Y. (See Theorem
3 of [10].) From the first statement and duality, we have:

LEMMA4.1. Let Y be a compact connected set in E"(n = 3), with E™ — Y
connected. Then, Y is strongly acyclic over Z if and only if

H(E"-Y)=0 fori=1,2 ..,n—2.

As an application, we have:

LEMMA 4.2. Let E"*? be obtained by spinning E.> about E* by S** (n = 2).
Suppose that some continuum X C E,® is strongly acyclic, and that X N E? is
a single point p. Then Y = Sp(X) is strongly acyclic. Further, if X is cell-like,
so also is Y.

Proof. 1t is clear that each of Y and E"** — Y = Sp(E,® — X) is connected.
Hence, by Lemma 4.1, it suffices to show that H(E*** - Y) =0fori=1,2, ..., n.
Note that, since X is strongly acyclic and X N E*> = {p},

H(E,>—X)=0 fori>O0.

Thus, H, (E,’> — X) x 8" = H, (S"™").

Let N be a collar neighborhood of E* — {p} in E,® — X. (We assume that the
thickness of N tends to zero near p.) Then, putting

> =SpMN) and > =SpE,’ - E* - X),

1

we have E**? — Y = z U 2 . Note that
1 2
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(5 )i, w3 )i, n(S 0 S )misxsh

and that the inclusions 2 — E**? — Y (i=1,2) induce zero on homology.

We show by induction that for each i, 1 =i =n, H(E"** — Y) = 0. Assuming
that H, ,(E™** — Y) = 0 for some i, 1 = i < n, consider part of the natural Mayer-
Vietoris sequence for E**? — Y:

o Hi(El) ® Hi(zz)—% HE™ - v)5 Hi-l(Zl - 22)1’
(5 on )

By earlier remarks, a = 0, so that 8 is monic. Since i < n,

(2,08 )=e(2 ) o2

Since vy is a surjection between isomorphic, finitely-generated abelian groups, v
is monic. Hence H(E"*? — Y) = 0, as desired.

Now suppose that X is cell-like, and let the neighborhood U of Y in E"*?
be given. Choose a neighborhood U, of X in E,® such that Sp(U,) C U. Since
X is cell-like, there are compact neighborhoods V,, V, of X in E,? such that
V, N E?is a 2-cell and each inclusion V, — V,, V,— U, is homotopic to a constant.
The Homotopy Extension Theorem yields a homotopy h,: V,— U, such that:
h, = inclusion; h, retracts V, onto V, N E* and h,(x) = x for each t €I and
x € V, N E®. We claim that V = Sp(V,) contracts to a point in Sp(U,) C U. To
verify this, note that h, X (identity) is a deformation retraction of V, X S* ! onto
(V, N E? x 8" 'in U, x S"" " that keeps (V, N E?) x 8"~ pointwise fixed. Passing
to the quotient space yields a deformation retraction of V onto

Sp(V, N E®)=V, N E?

in Sp(U,) that keeps V, N E? pointwise fixed. This completes the proof.

LEMMA 4.3. Let H,, H, be the polyhedral, equivalently embedded cubes-with-
handles constructed earlier, with H, C Int H, and

H, U (8°-IntH) C E,>—-E*C E*U (o} = S°.

, Let h:S® — S® be an orientation-preserving homeomorphism such that h(H,) = H,.
Leti=1 and n = 2. Then the set

Yi = Sp(hi+1(H0) U h—i—l(S3 _ Hl)) C En+2 U {m} — Sn+2
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is not I-equivalent to any set Y C S™** with w,(S™** — Y) a free group.

Proof. Let G(i) = w,(S* — h""'(H,) — h™*"(S* — H,)). Then, from the definition
of “spinning”, m,(S**? — Y,) = G(i). The proof of Theorem 1 showed that, for fixed
i, there is a k with G(i)/ G(i), not isomorphic to F/F, for any free group F. (F
would necessarily have rank four.) The claim thus follows from Stallings’ Proposition.

The four-dimensional case of the next theorem is included in Theorem 1.

THEOREM 3. For each n = 5 there exists an arc A topologically embedded
in the interior of a certain PL n-manifold M", such that no neighborhood of A
in M" is topologically embeddable in S".

Proof. The proof follows closely the four-dimensional case. We give only a
sketch. Choose h, H,, and H, as in Lemma 4.3 and define the continua X,, X_
in E,®> — E®> C S as before. Let A,, A_ be disjoint, PL arcs in E,® such that:
A, joins X, to E? and Int A, misses E*U X, U X_; and A_ joins X_ to E?
and IntA_ misses E*U X, UX_. Spin E,? about E*> by S"* to obtain
E*'C E*' U {»} = 8" Then, by Lemma 4.2, Y, = Sp(X, U A,) is strongly
acyclic, and Y_ = Sp(X_ U A_) is cell-like. It is also easily verified that, since
m(E?—X,) = {1}, E*' - Y, = Sp(E,’ — X, — A,) is simply connected. This is

used to show that ZY . is PL cellular in M" below.

We proceed as in Section 2, with Y,, Y_ in S"™' = 4B" now playing the roles
of X,, X_, respectively. We paste onto B" two more disjoint copies of B" along
appropriate neighborhoods of Y,, Y_in S via the “identity” mapping to obtain

M”". We define X to be z Y_U 2Y+. The reason that no neighborhood of X
in M" embeds in S” is that (by Lemma 4.3) no neighborhood of

> sp(X,) U > Sp(X_) C X

in M" embeds in S". The corollary to the Edwards-Miller-Pixley-Eaton theorem

(plus [2]) is used to shrink X down to an arc. Further details are left to the
reader.
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