DISCRETE CARLESON MEASURES
AND SOME INTERPOLATION PROBLEMS

P. J. McKenna

1. INTRODUCTION
The study of sequences of distinct points in the open unit disc
A={zizecC |z| <1}
satisfying
(1) 2 |#(z)| (1 - |z, ) < M|£]|  for all fe H!;

or equivalently [4, p. 152],

(2) 27 #(z,) |3(1 - |2,|%) < M||f|? for all f € HZ,

has been important in the study of interpolation problems in H”, the algebra of
bounded analytic functions on A. In [6], Newman proved that if the sequence {z

n
satisfies (1) and is uniformly sepavated; i.e.,

Z; - Zj
1 = Zizj

(3) II

i#)

25>0’ j:]-:zs"';

then for each {w,} € £, there exists f € H® such that f(z,,) = wy,; that is, the
sequence {zn} is a universal intevpolating sequence. In [1], Carleson showed that
the sequence {zn} is uniformly separated if and only if it is a universal interpo-
lating sequence. A key step in Carleson’s theorem was the proof that if {zn} is
uniformly separated, then (1) is satisfied. Similarly, in another proof of Carleson’s
theorem by Shapiro and Shields [7], a key step was in establishing that if {z,} is
uniformly separated, then the equivalent inequality (2) is satisfied.

In Section 2 we give a necessary and sufficient arithmetic condition on the se-
quence {zn} for (2) to be satisfied. As a corollary, we deduce a partial converse
to the results of Carleson and of Shapiro and Shields. We show that if (2) holds, then
the sequence {z,} is a finite union of uniformly separated subsequences.

The idea behind the inequalities (1) and (2) has been generalized in at least two
different ways. In [2], Carleson considered general measures pu in the open unit
disc and gave a necessary and sufficient geometric condition that

(4) 5 |£(z)|Pdp < M|[£|[P  for all f € HP.
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In Section 3, we restrict ourselves to the case where p is the discrete measure
pu({z,}) =1- |z,|2 and give an elementary proof that if the measure u satisfies
Carleson’s condition, then it satisfies (2).

A second avenue of generalization is that of Shapiro and Shields [7], where they
introduce the concepts of Riesz-Fischer and Bessel sequences of normalized kernel
functions in order to consider weighted interpolation problems for other Hilbert
spaces of analytic functions. In Section 4, we study Bessel sequences in Hilbert
spaces of analytic functions containing H2 and give a new necessary and sufficient
condition for a sequence to be a Bessel sequence in the Bergman space. In Section 5,
wg study Riesz-Fischer and Bessel sequences in the Dirichlet space D contained in
He.

I wish to thank A. L. Shields for many helpful conversations and suggestions.

2. UNIONS OF INTERPOLATING SEQUENCES

Definition, A sequence {z,} which satisfies

«© - 1.2 - |z |2
. 2 -l 1P

j=1 '1 _Zizjlz

is said to be uniformly squave-summable.

THEOREM 1. A necessary and sufficient condition that the sequence {z_}
satisfy (2) is that {zn} be uniformly square-summable.

Proof of necessity. Note that condition (5) is merely the result of inserting the
normalized kernel functions, defined by

(6) k (z) = (1- ]z |21 -2_z)-!

in place of f in (2). Thus condition (5) is clearly necessary.
The proof of sufficiency depends on two elementary lemmas.

Definition., We shall call a sequence {zn} satisfying
(7) (1-|2z,|2 - |2 |9|1-2,2, 2 < a<1 forallm,n

a weakly separvated sequence.

LEMMA 1. If condition (5) is satisfied, and in addition the sequence {z_} is
weakly sepavated, then the sequence is uniformly sepavaled.

Proof. We use the well-known fact [5, p. 201] that if 0 <a, <1 - 62 and
2
27a; <M, then II(1-a;) >e M/%" Using (7) and
t G- a9

) |1 - 2,22

’

we deduce that

In

1#]

men Fop b w0 ] e

P# |1 - 2;2;]2

for all j.

1-2z:2;

i4j J
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Therefore, the sequence {z }is uniformly separated.

LEMMA 2. If condition (5) is satisfied, then {z } can be expressed as a finite
union of subsequences {z k} which ave both weakly separated and uniformly
squave-summable,

Proof. The proof is by a simple enumeration technique. Fix @, 0 < a <1, and
choose N > M, /a, where M, is givenin (5). Let z, ; =z, for 1 < n <N. We now
have the first term in each of the N subsequences. Assume that we have partitioned
{z 1}1 <7 into N subsequences so that within each subsequence, we have
(8) (1- |z, ;]2 - Izn,jlz)ll—znl nJ] 2 <a.

We must now allocate zj;; to one of the subsequences. By virtue of the in-
equality (5), and by our choice of N, we know that (8) may be violated for at most
N - 1 valuesof i if j=J + 1. Thus z5;; can be made the next term of at least one
of the subsequences in such a way that each subsequence still obeys (8). By induc-
tion, the proof of Lemma 2 is complete.

Proof of sufficiency in Theovem 1. By [7, pp. 519-520], any uniformly sepa-
rated sequence {z } satisfies (2). Therefore, by Lemma 2, we may split any uni-
formly square-summable sequence {z } into a finite union of sequences which are
also weakly separated. By Lemma 1, these subsequences are uniformly separated.
Obviously, if (2) is satisfied by each of a finite number of sequences, it is satisfied
by the union of those sequences. This concludes the proof of the theorem.

3. CARLESON MEASURES

Following [4, p. 157)], we define a Carleson measure p to be a finite measure
on A such that for some constant A,

(9) p(S) < Ah

for every set S of the form S = {z =reif: 1 - h<r <1, 6560 +h}. Meas-
ures of this type were considered by Carleson en route to his proof of the corona
theorem [2]. He proved

THEOREM A. In ovder that theve exist a constant C such that

(10) S |i(z)| % du(z) < C|f]|® for all £ € HZ,
lz l<l
it is necessary and sufficient that . be a Cavleson measure.

In this section we restrict ourselves to discrete measures of the type
(11) plz,) = 1- |z |?

and give an elementary proof that if p is a Carleson measure, then the sequence
{z,} is uniformly square-summable. Thus by Theorem 1, (10) is satisfied, and we
have given a new proof of Theorem A for this particular type of measure p.

THEOREM 2. If the measuve p defined by (11) is a Carleson measure, then
the sequence {z Y is uniformly squave-summable.
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Proof. In order to prove the theorem, we must show that for the kernel func-
tions k, defined by (6), there exists an M such that

5 |k (z)]2dy <M, n=1,2, -

We shall use the identity (1 - |z, |21 - |2,|%) + |2z, - 2,|2=|1-2_2_]|2, so
that

1- 2
(12) Slkn(z)izdu = S | Uzl dp(z) .

Z - 2|2+ (1= 2] - 2,,[2)
We let zm = Ty elem, and define the following sets in A. Let h=2(1-r,)
andlet A_=1{z€ Arz=relf, 1-nh<r<1, 6, -nh<6 <6, +nh}. There

exists N such that if z ¢ A, for all n <N, then |z - z,| > V1 - |z,,|%. We sub-
divide A into the set B]. = Al s ]31 = AI\AI-]. , 2 S i SN, and BN_|_1 = A\AN'E‘I . We
estimate the integrand in (12) as follows:

z € By,

(1 - |z4|2) < 1
z-z |°+(1-|z]P0- |z |? " ) W-1D1- |z

z € B;, 2<i<N;

m|
1, Z € BN+1'

We assume the measure achieves its largest possible concentration where the inte-
grand is largest, so that ,u(Bi) is estimated as follows:

u(By) = 2Ah;  wB,) = p(A,) - n(A)) = 2Ah;
wBy) = p(Ay) — (A ) = 28h;  p(Byyy) < Gy,

the first three estimates coming from (9) and the last from the finiteness of the
measure (L. Now since

N+1
{ Jem@Pau =2 (k@2
A i=1 B;
N+1
1 - > 1 : B
< ST c(1- |z|) + S DR D 1(B;) + i (Byyy)
N
1
< Cc+2C iZ:)Z T + p(d),

o0
we have proved S Ikm(z)lzdu(z) <M=C+2C Enzl n~2 + p(A), where M is in-
A

dependent of m, and thus the sequence {z_ | is uniformly square-summable. Note
that when Theorem 2 is combined with Lemma 2, we obtain the following result.
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COROLLARY 1. If the discrete measuve u defined by pu(z,) =1 - |zn|2 isa
Carleson measuve, then {zn} is a finite union of uniformly sepavated subsequences.

4. SPACES CONTAINING H2

We recall some definitions and theorems from [7]. A bounded sequence of ele-
ments {y_} in a Hilbert space H gives rise to a mapping T: H — £~ given by
Tx = {(x, yn)}. If to each sequence {cn} € {2 there corresponds at least one
x € H for which (x, y_) = C_ for all n, and x| < m|C|,, then {y_} is calleda

Riesz-Fischer sequence with bound m. I |Tx|, < M| x| for all x € H, then {y_}

is called a Bessel sequence with bound M. (Note that the condition (1) says that the
sequence {k,  } defined by (6) is a Bessel sequence in H2.)

The following theorem of Bari is stated in [7, p. 524].

THEOREM B. Let {yn} be a sequence of elements of a Hilbevt space H, and
let A denote the inner product matvix {(Yi: yj)}. Then

(1) {yn} is a Bessel sequence with bound M if and only if the matrvix A is
bounded on {12 with bound M;

(ii) {y,} is a Riesz-Fischer sequence with bound m if and only if the matvix A
is bounded below on 22 with bound m.

A matrix is bounded below by m if “a“ < m“Ana“ for all n-tuples
a= (al, ay, 7, an) and all n. Here the norms are £, norms, and A isthe nXn
matrix {(y;, yp}, i, §=1,2 =, n.

Note that Theorem 1 proves that the matrix

(1 - lziIZ)l/Z(l _ leIZ)l/Z

(1 - 21 ZJ)

{(;, ky)} =

is bounded if and only if the columns are bounded in 22,

We now consider some weighted interpolation problems in other Hilbert spaces
of analytic functions on A. As in [7], the space A, shall be the Bergman space of

0
functions f(z) = 24,-0 a, z" satisfying I£]12 = 22 |a, |2 (n+1)-! < . The kernel
functions in A, are K, (z) = 1/(1 - wz)?, and the orthonormalized kernel functions
are

(13) klz) = (1 - |w|D1 - we)2.

The space H'Z is the space of functions f satisfying
1
(14) mw=;§5m@pu4ﬂaﬁw<w.
Here the normalized kernel function is given by
(15) k2(z) = (1 - |w|?)3/2/(1 - wz)3.

As was shown in [7, p. 529], if the sequence {z;} is uniformly separated, then
the associated sequence of orthonormalized kernel functions in A, is both a Riesz-
Fischer and a Bessel sequence. By Lemma 1, we remark that if the sequence of
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orthonormalized kernel functions in H? is a Bessel sequence, then {zn} is a finite
union of uniformly separated sequences. Since a finite union of Bessel sequences is
again a Bessel sequence, we have proved:

THEOREM 3. If the novmalized kevnel functions in H> (given by (6)) asso-
ctated with {zi} Jorm a Bessel sequence, then the novmalized kevnel functions in
A, associated with {zn} Jorm a Bessel sequence.

Also in [7, p. 529] the following was proved.
THEOREM C. If the sequence {zn} is weakly sepavated, then the sequence

(14) {k} = {@- [z,]9/01 - 2,2) %
is a Bessel sequence in A, , and the sequence
(15) {ki} = {(1 - Izn]2)3/2/(1 - inzm)3}

iS a Bessel sequence in H'2 .
We prove a partial converse to both of these statements.

THEOREM 3. (i) The sequence {klll} given by (14) is a Bessel sequence in A,
if and only if {zn} is the finite union of subsequences, each of which is weakly
separated.

(ii) Similarly, the sequence {klzl} is a Bessel sequence in H'Z if and only if the
Sequence {zn} is a finite union of subsequences, each of which is weakly separated.

Proof. (i) By Theorem C, and again since a finite union of Bessel sequences is
again a Bessel sequence, the sufficiency is obvious. We now prove necessity.

If the sequence {krll} is a Bessel sequence in A, , then by Bari’s theorem, the
matrix {(kln, klln)} is bounded on £2. Consequently, the columns must be uniformly
bounded in £2. Thus

(1~ |2 [2201 - |2, |2

|1 - 2nzm|4

(16) 20

n=1

< M, for some M, m=1, 2, 3, -

Choose an integer N so that N > M/oz2 for some a, 0 < a < 1. By the method of
Lemma 2, we may subdivide the sequence {zn} into at most N subsequences, in

each of which (1 - |z |21 - |z, |2){1-2_z |-2 <& <1. This proves (i).

The proof of the necessity of (ii) is similar, except that by Bari’s theorem we
have

« - 2)3(1 - 2)3
5 12| 2)3(1 - |2,,|2) .

|1—inzm|6 -

n=1

COROLLARY 2. The sequence 1kl} given by (14) is a Bessel sequence in A,
if and only if for some M > 0,

25 (1= 2] D%1 - |25|9%/|1 - z2525]* <M,  i=1,2
j=1
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We conclude this section with a surprising arithmetic fact about sequences of
- o0
the type S; = {(1 - |z [2)1/2(1 - |zj|2)1/2/|1 - Zizj|}j=1 .
THEOREM 4. If theve exists M; > 0 so that for some p, 4 <p <=,
1 S I < M, in P for all i, then theve exists M, so that lls; || <M, in 04 for all i.

Pyoof. The proof is again similar to the proof of Lemma 2. By the hypotheses
of the theorem.

[+ 0]

2 |72 - |2 |DV2 |1 - g, | TIP <M, i=1,2,

j=1
Choose an integer N so that N > M/aP. Then we may subdivide the sequence {z }
into subsequences {zn k}k 1 So that each subsequence is weakly separated. By
Theorem C, this implies that each subsequence, and consequently the union {z }

gives rise to a Bessel sequence of orthonormalized kernel functions in A, . Thus,
by Corollary 2, we have |[S;|] < M, in £* for some constant M, .

5. THE DIRICHLET SPACE

We now turn our attention to the Dirichlet space ]5, the Hilbert space of analytic

functions on A which vanish at the origin, with ||f|? = SS |£'(z)|? dxdy < . The
A

normalized kernel function in D associated with the point z; is

) . -1/2
k¥ (z) = log — =\ log ———— .
Zi() gl—z-lz( g1_|z.|2)

THEOREM 5. If {k* } is a Riesz-Fischer sequence in D, then {z } iS uni-
Sformly sepavated.

Proof. We are given that for each {C toe ﬂz there exists f € D such that

= 1(z,) (log(1/(1 - |z,]|2))-1/2 and 27 |C_ |2 > 6Hf||2 . By the hypothesis, there
must exist functions f; in D satisfying

) 2 _ 1 .
(1) |fi(zi)| = log 1 - lzilz ’
(ii) fi(zj) =0, j#i;
(1) g llp < M

We shall also use the fact [3, p. 291] that if £ = B¢, where B is a Blaschke product
and f € D, then ¢ € D and ||¢||D < |[f]lp. By (i) and (ii), f;(z) = B;(z) ¢;(z), where

lBi(z)l = que i |(z - Zj)/(l - Z; z)|. However,

/
lo(z;) | = | (¢, -log(1 - Z;2)) | < [¢] (log L - Tz_lz)l g

Therefore,
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] 1/2 _
(10g mll_z) - ifi(zi)l = |Bi(zi)| I(’bi(zi)l
1 1/2
< |By(z)] ;[ p | log W .

Therefore, |B;(z;)| > (1/(|¢;[p)) > 1/M for all i. Thus the sequence {z,} is uni-
formly separated. For our next theorem, we shall need the following lemma.

LEMMA 3. If x, y are such that 0 < |x| <1 and 0 < |y| <1, and
1- |x| |y| < 1/e, then

(1-y2)1/2(1 - x2)/210g log < (1 - xy)° log?

1-x2 1-y2~— 1-xy°
Proof. For 0<u< 1/e, ulog u)? is increasing. Since
(1-xy)2 > (1-x2)(1-y2)

and 1 - xy > (1 - x2)1/2(1 - y2)1/2 | we have for 1 - xy < 1/e,

1 S w2172 (1 - o2V /2102 1 1
Ty ) 2 @Ry et s T

1 1
> (1-x2)1/2(1 - y2)1/210 1o )
= y E -9 B (1-y?

(1 - xy) 10g2(

This proves the lemma.

THEOREM 6. If {k:i} is a Bessel sequence in D, then {kZi} is a Bessel
sequence in HZ.

Proof. We know by Bari’s theorem that if {k:} is a Bessel sequence in D,
1
then the infinite matrix C = {(k* , k;‘.)D} is a bounded operator on £2 with bound
i j

M. This implies that the rows and columns have uniformly bounded 2% norms. We
shall show that this implies that the matrix F = {(k, , kz.)HZ} has rows and col-
1 J

umns uniformly bounded in ol By Schur’s theorem, this will imply that the matrix
F is bounded.

Assume without loss of generality that |1 - Z; zj] <6< 1/e for all i and j. (If
not, partition the sequence of points into a finite number of subsequences which obey
this condition. Then if each of the subsequences is a Bessel sequence, so is the
union.) If |1 - iizjl < 1/e, then

(1 - IZiIZ)I/Z(l _ Izjlz)”zlog - 1 log 1

|2; |2 1- Izjlz

<A(1- lzil le[)logZ( ) < |1 - iizjllogz

( 1 )
1-2. 2. '
1)

the second inequality coming from the facts that u(log u)? is increasing on
0 <u < 1/e, and that 1 - |Zi| lzjl < |1 - iizjl. Therefore,

1
1- |z lzji
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2
1
log ———
(1- ]z |2/2(1 - |25]2)1/2 1-2;37;
|1- 72 | ~ log — 1 Jog — L
1 TP PAE

By Bari’s theorem, we have already remarked that

2
1
2 log 772
23 - ———— <M forallj.
i=1l log > log
1-|z| 1-|zj|2
Therefore,

0

(1- |z |92 - |2;]2)1/2
2 ll = JI <M forallj.
i=1 |1 "Zizjl

Therefore, {k, .} is a Bessel sequence in HZ.
1
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