ON VANISHING EICHLER PERIODS AND CARLESON SETS
Thomas A. Metzger

1. INTRODUCTION

Let IT" be a Fuchsian group acting on the unit disk D in the complex plane, and
let q be an integer, q > 2. An analytic function f defined on D is said to be an
automovphic form of weight q with respect to T if (fo y)y =1 for all ¥ in T.

The Bers spaces Ag(l"), 1 < p <, are defined as those Banach spaces of
analytic automorphic forms of weight q such that

Ie2 = § (e ]P0 - 257 2axay <=, 1<p <o
D/T

I£]l = sup |£@)](1- |2]2)% < w, p=w.
D

Any analytic automorphic form f of weight q can be integrated (2q - 1) times
to get an analytic function h = 129-1f which satisfies

(ho9)y''"9 = h+ecly, f) forall y in T.

This c(y, f) is a polynomial of degree s < 2q - 2 and is called the Eickler period
of f along y. Bers [2] proved

THEOREM A. If I is a group of the fivst kind, and the Eichley period of ¢ in
AT(T) vanishes for all v in T, then ¢ = 0.

We shall extend this to say that if there exists a ¢ in Ag( I') with vanishing

Eichler period for all y in I, then either ¢ = 0 or the limit set L is sparse in a
. special sense; i.e., L is a Carleson set.

Conversely, Pommerenke [10] has recently shown that if L is a Carleson set,
then there exists an fj in AOZO(I‘) such that c(y, fo) = 0 for all v in T. I wish to

thank Professor Pommerenke for our discussions on this topic. Also, I wish to
thank the referee for pointing out a gap in the original proof of Theorem 1.

2. PRELIMINARIES
A closed set E of Lebesgue measure zero contained in 9D is said to be a

Carleson set if in the canonical representation of its complement oD\E as a count-
able union of disjoint open intervals I, the lengths £(I,) satisfy
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o0

27 2(1,)log £(I,) > -.

n=1

As is well known, these sets are the zero-sets of Lip a functions (see [2]) where
g € Lip o if and only if |g'(z)| =0 ((1 - |z|2)®-1), 0 <@ < 1. We shall also con-
sider the spaces of analytic functions Lip(c, p) consisting of those g such that

1y

1/
Ig'(re“’)lpde} . o((1-r)®-1y,
0

We shall need the result of Caveny and Novinger [4] that f € Lip(1, p), 1 <p <,
implies Z(f) = {€ € aD: £() = 0} is a Carleson set.

We conclude by noting:

LEMMA 1. Let k be a continuous function on D and suppose (ko y)y'1-9 =k
forall y in T. Then k(€) = 0 for all € in L.

The proof follows upon noting that (0) clusters at ¢ and »'2-1(0) — 0, and so
the continuity of k yields the resuilt.

The following estimates on the mean growth and Taylor coefficients of f in
Ag(l‘) will be necessary in our proof of Theorem 1.

©0
LEMMA 2. Let I be any Fuchsian group and suppose that f(z) = Ekzo ay VA
is in Ag(I“). Then

(i) Ay = O(k?Y);
1

27 , l/p
(ii) Mp(r, £) = {57; S |£(ret?)|P a6 } =0((1 - )"
0

(iii) [f(z)| =0(( - |z|)-9-1/P,

Proof. (i) will appear in Lehner [8], and (iii) follows immediately from (ii).
Hence it suffices to prove (ii). Let n(r, z) be the number of images of z under I'
which lie in the set D, = {z: |z| <r}. It is well known that n(r, z) < C(1 - r)"!
for all z in D. Let £ be a fundamental region for I', and define €. =D, N Q.
Then

r
(- P iMBe?, ) < ¢ § (- 9PIZmB, 0 tat
2

T

< C, S S (1 - |z]|%)P9-2 |f(z)|P dxdy.

DI‘

Since D, C U'yel" ¥, and |£(z)|P(1 - |z|%)P? is T-invariant, it follows that
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(1- )Pt Mg(rz, f) < C SS n(r, z) (1 - |z|2)P2-2 |f(z)| dxdy
Q

r

< cze(1 - )t 5 S |#(z)|(1 - |z|%)P2-2 dxdy
Q

=1 P
= C,(l - |,
N L

and the proof of (ii) is complete.

Ii, moreover, I' is of convergence type, then it follows that

2 (- |ez?) <M,
vel

so that

(1) § Sl Pa - [2]%P9" axay < me|?
D

Inequality (1) follows from the fact that D = U e T Y% where the 2-dimensional
measure of 99 is zero, and from the fact that |f(z) |P(1 - |z|%)P9 is I'-invariant
(see [9] for complete details). It is (1) which will enable us to conclude that I> f is

in Lip(1, 1) (i.e., when f € AZ(I‘)), which seems to be the major difficulty in the
proof.

3. THE MAIN RESULT

We now assert:

THEOREM 1. Let f ¢ Ag(l"), 1<p<w, q>2, and assume that the Eichler
period of f vanishes for each v in I'. Then either f = 0 or L is a Carleson set.

Proof. We first show that if T" is of divergence type and if F in Ap(l") has
vanishing Eichler periods, then h = 129-1¢ jg identically zero. If

o0

f(z) = 2 Akzk

k=0

then Ay = O(k?) and h € H?(D), the Hardy class. Let h*({) = lim_ _,; h(rf) for each
§ € aD. Since I is of divergence type, it follows that I is of the first kind; i.e.,
every point of 9D is in the limit set. Moreover (see [5]), the set of transitive points
has measure 27. For each transitive point {, there is a sequence of y, € I" such
that 7,(0) — ¢ inside any Stolz angle. Since h(y,(0)) = h(0);271(0), 1:9-1(0) — 0,
and h(y,(0)) — h*() for almost every transitive point ¢, it follows that h* = 0.

Thus h and, of course, f must vanish identically.

We now turn to the case where I is of convergence type. If f # 0, then it suf-
fices to show that h = 129-1f pelongs to Lipa for some a > 0, or to L1p(1 p).
This is sufficient because analytic functions in Lipa or Lip(1, p) are continuous on
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D and every closed subset of a Carleson set is again a Carleson set (x log(1/x) is a
decreasing function for x < 1/e). Thus, if h = I29-1 f is in Lipa or Lip(1, p) and
has vanishing Eichler periods, Lemma 1 implies that L C Z(h) (the zero-set of h)
and thus L is a Carleson set.

Since f € AR(T) implies that 1£(z)| =0((1 - |2]|%)-2-1/P), it follows that h be-
longs to Lip 1 1f gq>2. f q=2 and p > 1 then Lemma 2(11) implies that h be-
longs to Lip(a, p) for all @ <1 and thus h belongs to Lip(a - 1/p).

Hence the theorem is proved except in the case p =1, q = 2. To handle this
case, we shall show substantially more about h 1n certam cases. In particular, we
shall prove that h belongs to Lip(1, 1) if f € A2 (I'), and thus the result of [4] cited
above will complete the proof of the theorem.

LEMMA 3. Let I' be a group of convergence type and f € Ap(I‘) 1 < q< e,
1<p<2 ThenI9"lf e Lip(1, p).

Proof. It suffices to show I%f € HP(D), the Hardy class. In order to do this, we
define the Bessel potential operator J* (see [6]) by

o0 [> o]
Jt( 27 anzn) =2, (n+1)ta zn
n=0 n=0

Since J9f is in HP(D) if and only if 19f is in HP(D), we need only apply Theorem
5(iii) of [6] to J9f. This asserts that J9f is in HP(D) if

SS l1(z)|P (1 - |z[?)P9"! dxdy < .
D

But this is precisely (1), so by the remarks at the end of Section 2, the proof of
Lemma 3 is complete.

Remarks. (i) Lemma 3 allows us to improve some of the results on the Taylor
coefficients of f € AE(I‘) presented in [9].

(ii) A similar proof using [7] enables one to show that f € Ap(I“) 1 <q<,
2 <p < =, implies 19%1f € Lip(a, p), 0 < a < 1. However, the case a=1is st111
open.

(iii) If one assumes the existence of factors of automorphy, then one can allow g
to be arbitrary (q > 1) and Lemma 3 is still valid.

It should also be noted that Theorem 1 fails completely if q = 1, for if f € A‘;“(l")

and the Eichler period of f along each y in I' vanishes, then h = Il f in an auto-
morphic function on the associated Riemann surface W = D/T. In [11], Pommerenke

has constructed a group I' of first kind with a nonconstant g in AD(W), so that
g'e A%(l“) and g' has vanishing Eichler period along each y in T.

4. FUCHSIAN GROUPS WHOSE LIMIT SET IS A CARLESON SET
In response to a question by C. J. Earle, we give here a sufficient condition on

I’ for L to be a Carleson set, and then verify that all finitely generated groups of
the second kind satisfy the condition. It should be noted that Ch. Pommerenke has
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proved the corollary below by a different method. However, his proof does not seem
to be applicable to the infinitely generated case, whereas ours, presumably, does

apply in this case. If @ is the Ford fundamental region for I, define E =98 N 9D
and denote the Lebesgue measure of a set F in 9D by m(F).

THEOREM 2. Let T be a Fuchsian group with m(L) = 0. Suppose further that

Eye r L)) log [21/L((E))] converges, where LyE) is the linear measure of
W(E). Then L is a Carleson set.

Proof. Since m(L) = 0, one can replace E by E = E\L and the series

Eyﬁ r L((E)) log[27/4(y(E))] will again converge. Represent the open set

¢ =9D\L as the union of disjoint open intervals I . Breaking E into its compo-
nents Ej, we see that for each i there exists a set I'; such that

L= U »E,.).
i i(i)
'}/61_‘1

Now y(EJ(l)) N y(Ek(l)) =@ for k # j, since E is a fundamental set for ¢. Thus, we
have

[~ ]

S = 27 1) log !Z(I) E 27 WE; i(i)) log
i=1 i=1 yeTl,

( )

27
But 2(I;) > ¢ y(EJ(l)) for each i and j, so that log E(I y < < log e ) Thus

s< 2. Ziyer, LAE;(;)) log 7771*3_— But E is the union of the Ej(;), and
thus we see that S < Z}ye T L((E)) log WE_)) The proof is complete.

COROLLARY 1. If T is a finitely genevated grvoup of the second kind, then L
is a Carleson sel.

Proof. Since T is finitely generated and of the second kind, it follows that
m(L) = 0. Moreover, there exists an M = M(Q) such that the distance from ¢ to L
is larger than M for all £ in E = 3Q N 3D. Now, using the fact (see [1]) that there

exists a p = p(I') <1 such that Z)ye r (1 - |9(0)|2)P < =, we have for this p

_ P
D tEP = D {S B ldcl}
v(E)

yeT vell

I

{S_ IY(C)[ ldCl} < 27 M(1 - |y(0)|2)pm(ﬁ) < oo

ye T yeT

Since Eye r L(E)) log[27/(»(E))] < E),E r (£((E)))P, the proof is complete.
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