ON VANISHING EICHLER PERIODS AND CARLESON SETS

Thomas A. Metzger

1. INTRODUCTION

Let Γ be a Fuchsian group acting on the unit disk D in the complex plane, and let q be an integer, $q \geq 2$. An analytic function f defined on D is said to be an *automorphic form* of weight q with respect to Γ if $(f \circ \gamma)\gamma^{q} = f$ for all γ in Γ .

The Bers spaces $A^p_q(\Gamma)$, $1\leq p\leq ^\infty$, are defined as those Banach spaces of analytic automorphic forms of weight q such that

$$\|f\|_q^p = \int_{D/\Gamma} |f(z)|^p (1 - |z|^2)^{pq-2} dx dy < \infty, \quad 1 \le p < \infty;$$

$$\|f\|_{\infty} = \sup_{D} |f(z)|(1 - |z|^2)^q < \infty, \quad p = \infty.$$

Any analytic automorphic form f of weight q can be integrated (2q - 1) times to get an analytic function $h = I^{2q-1}f$ which satisfies

$$(h \circ \gamma) \gamma^{-1-q} = h + c(\gamma, f)$$
 for all γ in Γ .

This $c(\gamma, f)$ is a polynomial of degree $s \le 2q$ - 2 and is called the *Eichler period* of f along γ . Bers [2] proved

THEOREM A. If Γ is a group of the first kind, and the Eichler period of ϕ in $A_q^{\infty}(\Gamma)$ vanishes for all γ in Γ , then $\phi \equiv 0$.

We shall extend this to say that if there exists a ϕ in $A_q^p(\Gamma)$ with vanishing Eichler period for all γ in Γ , then either $\phi \equiv 0$ or the limit set L is sparse in a special sense; *i.e.*, L is a Carleson set.

Conversely, Pommerenke [10] has recently shown that if L is a Carleson set, then there exists an f_0 in $A_2^{\infty}(\Gamma)$ such that $c(\gamma, f_0) = 0$ for all γ in Γ . I wish to thank Professor Pommerenke for our discussions on this topic. Also, I wish to thank the referee for pointing out a gap in the original proof of Theorem 1.

2. PRELIMINARIES

A closed set E of Lebesgue measure zero contained in ∂D is said to be a Carleson set if in the canonical representation of its complement $\partial D \setminus E$ as a countable union of disjoint open intervals I_n , the lengths $\ell(I_n)$ satisfy

Received January 28, 1976. Revisions received April 20, 1976, August 20, 1976, February 23, 1977, and April 24, 1977.

Michigan Math. J. 24 (1977).

$$\sum_{n=1}^{\infty} \ell(I_n) \log \ell(I_n) > -\infty.$$

As is well known, these sets are the zero-sets of Lip α functions (see [2]) where $g \in \text{Lip } \alpha$ if and only if $|g'(z)| = O((1 - |z|^2)^{\alpha - 1})$, $0 < \alpha \le 1$. We shall also consider the spaces of analytic functions $\text{Lip}(\alpha, p)$ consisting of those g such that

$$\left\{\int_0^{2\pi} |\mathbf{g}'(\mathbf{r}\mathbf{e}^{i\theta})|^{\mathbf{p}} d\theta\right\}^{1/\mathbf{p}} = O((1-\mathbf{r})^{\alpha-1}).$$

We shall need the result of Caveny and Novinger [4] that $f \in \text{Lip}(1, p)$, $1 \le p \le \infty$, implies $Z(f) = \{ \zeta \in \partial D: f(\zeta) = 0 \}$ is a Carleson set.

We conclude by noting:

LEMMA 1. Let k be a continuous function on \overline{D} and suppose $(k \circ \gamma) \gamma^{-1} - q = k$ for all γ in Γ . Then $k(\zeta) \equiv 0$ for all ζ in Γ .

The proof follows upon noting that $\gamma(0)$ clusters at ζ and ${\gamma'}^{q-1}(0) \to 0$, and so the continuity of k yields the result.

The following estimates on the mean growth and Taylor coefficients of f in $A^p_\sigma(\Gamma)$ will be necessary in our proof of Theorem 1.

LEMMA 2. Let Γ be any Fuchsian group and suppose that $f(z) = \sum_{k=0}^{\infty} a_k z^k$ is in $A^p_{\alpha}(\Gamma)$. Then

(i)
$$A_k = O(k^q);$$

(ii)
$$M_p(\mathbf{r}, \mathbf{f}) = \left\{ \frac{1}{2\pi} \int_0^{2\pi} |f(\mathbf{r}e^{i\theta})|^p d\theta \right\}^{1/p} = O((1-\mathbf{r})^{-q});$$

(iii)
$$|f(z)| = O((1 - |z|)^{-q-1/p}$$
.

Proof. (i) will appear in Lehner [8], and (iii) follows immediately from (ii). Hence it suffices to prove (ii). Let n(r, z) be the number of images of z under Γ which lie in the set $D_r=\{z\colon |z|< r\}$. It is well known that n(r, z) $\leq C(1-r)^{-1}$ for all z in D. Let Ω be a fundamental region for Γ , and define $\Omega_r=D_r\cap\Omega$. Then

$$\begin{split} (1-\mathbf{r})^{pq-1}\,M_p^p(\mathbf{r}^2\,,\,f) \, &\leq \, C_1\,\, \int_{\mathbf{r}^2}^{\mathbf{r}}\,(1-t^2)^{pq-2}\,M_p^p(t,\,f)\,\,t\,dt \\ \\ &\leq \, C_2\,\int_{D_{\mathbf{r}}}\int\,(1-\left|\mathbf{z}\right|^2)^{pq-2}\,\big|f(\mathbf{z})\big|^{p}\,\,dx\,dy\,. \end{split}$$

Since $D_r \subseteq \bigcup_{\gamma \in \Gamma} \gamma \Omega_r$ and $|f(z)|^p (1 - |z|^2)^{pq}$ is Γ -invariant, it follows that

$$\begin{split} (1-r)^{pq-1} \, M_p^p(r^2\,,\,f) &\leq C \, \int\limits_{\Omega_r} \int \, n(r,\,z) \, (1-|z|^2)^{pq-2} \, \left| f(z) \right| \, dx \, dy \\ \\ &\leq C_2 \, C (1-r)^{-1} \, \int\limits_{\Omega} \int \, \left| f(z) \right| (1-|z|^2)^{pq-2} \, dx \, dy \\ \\ &= C_3 (1-r)^{-1} \, \left\| f \right\|_p^P, \end{split}$$

and the proof of (ii) is complete.

If, moreover, Γ is of convergence type, then it follows that

$$\sum_{\gamma \in \Gamma} (1 - |\gamma z|^2) \leq M,$$

so that

(1)
$$\int_{D} |f(z)|^{p} (1 - |z|^{2})^{pq-1} dx dy \leq M ||f||_{p}^{p}$$

Inequality (1) follows from the fact that $D=\bigcup_{\gamma\in\Gamma}\gamma\Omega$, where the 2-dimensional measure of $\partial\Omega$ is zero, and from the fact that $|f(z)|^p(1-|z|^2)^{pq}$ is Γ -invariant (see [9] for complete details). It is (1) which will enable us to conclude that I^3 f is in Lip(1, 1) (i.e., when $f\in A_2^1(\Gamma)$), which seems to be the major difficulty in the proof.

3. THE MAIN RESULT

We now assert:

THEOREM 1. Let $f \in A_q^p(\Gamma)$, $1 \le p \le \infty$, $q \ge 2$, and assume that the Eichler period of f vanishes for each γ in Γ . Then either $f \equiv 0$ or L is a Carleson set.

Proof. We first show that if Γ is of divergence type and if F in $A_q^p(\Gamma)$ has vanishing Eichler periods, then $h \equiv I^{2q-1}f$ is identically zero. If

$$f(z) = \sum_{k=0}^{\infty} A_k z^k$$

then $A_k = O(k^q)$ and $h \in H^2(D)$, the Hardy class. Let $h^*(\zeta) = \lim_{r \to 1} h(r\zeta)$ for each $\zeta \in \partial D$. Since Γ is of divergence type, it follows that Γ is of the first kind; *i.e.*, every point of ∂D is in the limit set. Moreover (see [5]), the set of transitive points has measure 2π . For each transitive point ζ , there is a sequence of $\gamma_n \in \Gamma$ such that $\gamma_n(0) \to \zeta$ inside any Stolz angle. Since $h(\gamma_n(0)) = h(0) \gamma_n^{+q-1}(0)$, $\gamma_n^{+q-1}(0) \to 0$, and $h(\gamma_n(0)) \to h^*(\zeta)$ for almost every transitive point ζ , it follows that $h^* \equiv 0$. Thus h and, of course, f must vanish identically.

We now turn to the case where Γ is of convergence type. If $f \neq 0$, then it suffices to show that $h = I^{2q-1}f$ belongs to $\operatorname{Lip}\alpha$ for some $\alpha > 0$, or to $\operatorname{Lip}(1, p)$. This is sufficient because analytic functions in $\operatorname{Lip}\alpha$ or $\operatorname{Lip}(1, p)$ are continuous on

 \overline{D} and every closed subset of a Carleson set is again a Carleson set $(x \log(1/x))$ is a decreasing function for x < 1/e). Thus, if $h \equiv I^{2q-1}$ f is in $\text{Lip } \alpha$ or Lip (1, p) and has vanishing Eichler periods, Lemma 1 implies that $L \subset Z(h)$ (the zero-set of h) and thus L is a Carleson set.

Since $f \in A_q^p(\Gamma)$ implies that $|f(z)| = O((1 - |z|^2)^{-q-1/p})$, it follows that h belongs to Lip 1 if q > 2. If q = 2 and p > 1, then Lemma 2(ii) implies that h belongs to Lip (α, p) for all $\alpha < 1$ and thus h belongs to Lip $(\alpha - 1/p)$.

Hence the theorem is proved except in the case p=1, q=2. To handle this case, we shall show substantially more about h in certain cases. In particular, we shall prove that h belongs to Lip(1, 1) if $f \in A_2^1(\Gamma)$, and thus the result of [4] cited above will complete the proof of the theorem.

LEMMA 3. Let Γ be a group of convergence type and $f\in A^p_q(\Gamma),\ 1\leq q<\infty,$ $1\leq p\leq 2.$ Then $I^{q+1}\,f\in \, Lip\,(1,\,p).$

Proof. It suffices to show $I^q f \in H^p(D)$, the Hardy class. In order to do this, we define the *Bessel potential operator* J^t (see [6]) by

$$J^{t}\left(\sum_{n=0}^{\infty}a_{n}z^{n}\right)=\sum_{n=0}^{\infty}(n+1)^{-t}a_{n}z^{n}.$$

Since J^qf is in $H^p(D)$ if and only if I^qf is in $H^p(D)$, we need only apply Theorem 5(iii) of [6] to J^qf . This asserts that J^qf is in $H^p(D)$ if

$$\int\limits_{D}\int |f(z)|^p\,(1-|z|^2)^{pq-1}\;dx\,dy\,<\,\infty\,.$$

But this is precisely (1), so by the remarks at the end of Section 2, the proof of Lemma 3 is complete.

Remarks. (i) Lemma 3 allows us to improve some of the results on the Taylor coefficients of $f \in A_q^p(\Gamma)$ presented in [9].

- (ii) A similar proof using [7] enables one to show that $f \in A_q^p(\Gamma)$, $1 \le q < \infty$, $2 \le p < \infty$, implies $I^{q+1} f \in Lip(\alpha, p)$, $0 < \alpha < 1$. However, the case $\alpha = 1$ is still open.
- (iii) If one assumes the existence of factors of automorphy, then one can allow q to be arbitrary $(q \ge 1)$ and Lemma 3 is still valid.

It should also be noted that Theorem 1 fails completely if q=1, for if $f \in A_1^2(\Gamma)$ and the Eichler period of f along each f in f vanishes, then f in an automorphic function on the associated Riemann surface f in f in f in an automorphic function on the associated Riemann surface f in f

4. FUCHSIAN GROUPS WHOSE LIMIT SET IS A CARLESON SET

In response to a question by C. J. Earle, we give here a sufficient condition on Γ for L to be a Carleson set, and then verify that all finitely generated groups of the second kind satisfy the condition. It should be noted that Ch. Pommerenke has

proved the corollary below by a different method. However, his proof does not seem to be applicable to the infinitely generated case, whereas ours, presumably, does apply in this case. If Ω is the Ford fundamental region for Γ , define $\overline{E} = \partial \Omega \cap \partial D$ and denote the Lebesgue measure of a set F in ∂D by m(F).

THEOREM 2. Let Γ be a Fuchsian group with m(L) = 0. Suppose further that $\sum_{\gamma \in \Gamma} \ell(\gamma(\overline{E})) \log[2\pi/\ell(\gamma(\overline{E}))]$ converges, where $\ell(\gamma\overline{E})$ is the linear measure of $\gamma(\overline{E})$. Then L is a Carleson set.

Proof. Since m(L) = 0, one can replace \overline{E} by $E = \overline{E} \setminus L$ and the series $\sum_{\gamma \in \Gamma} \ell(\gamma(E)) \log \left[2\pi/\ell(\gamma(E)) \right]$ will again converge. Represent the open set $\emptyset = \partial D \setminus L$ as the union of disjoint open intervals I_n . Breaking E into its components E_i , we see that for each i there exists a set Γ_i such that

$$I_i = \bigcup_{\gamma \in \Gamma_i} \gamma(E_{j(i)}).$$

Now $\gamma(E_{j(i)}) \cap \gamma(E_{k(i)}) = \emptyset$ for $k \neq j$, since E is a fundamental set for \mathscr{O} . Thus, we have

$$S = \sum_{i=1}^{\infty} \ell(I_i) \log \frac{2\pi}{\ell(I_i)} = \sum_{i=1}^{\infty} \sum_{\gamma \in \Gamma_i} \gamma(E_{j(i)}) \log \frac{2\pi}{\ell(I_i)}.$$

But $\ell(I_i) \geq \ell(\gamma(E_{j(i)})$ for each i and j, so that $\log \frac{2\pi}{\ell(I_i)} \leq \log \frac{2\pi}{\ell(\gamma(E_{j(i)}))}$. Thus $S \leq \sum_{i=1}^{\infty} \sum_{\gamma \in \Gamma_i} \ell(\gamma(E_{j(i)})) \log \frac{2\pi}{\ell(\gamma(E_{j(i)}))}$. But E is the union of the $E_{j(i)}$, and thus we see that $S \leq \sum_{\gamma \in \Gamma} \ell(\gamma(E)) \log \frac{2\pi}{\ell(\gamma(E))}$. The proof is complete.

COROLLARY 1. If Γ is a finitely generated group of the second kind, then L is a Carleson set.

Proof. Since Γ is finitely generated and of the second kind, it follows that m(L)=0. Moreover, there exists an $M=M(\Omega)$ such that the distance from ζ to L is larger than M for all ζ in $\overline{E}=\partial\Omega\cap\partial D$. Now, using the fact (see [1]) that there exists a $p=p(\Gamma)<1$ such that $\sum_{\gamma\in\Gamma}(1-|\gamma(0)|^2)^p<\infty$, we have for this p

$$\begin{split} \sum_{\gamma \in \Gamma} \ell(\gamma(\overline{E}))^{p} &= \sum_{\gamma \in \Gamma} \left\{ \left. \int_{\gamma(\overline{E})} \left| d\zeta \right| \right\}^{p} \\ &= \sum_{\gamma \in \Gamma} \left\{ \int_{\overline{E}} \left| \gamma'(\zeta) \right| \left| d\zeta \right| \right\}^{p} \leq \sum_{\gamma \in \Gamma} M(1 - |\gamma(0)|^{2})^{p} m(\overline{E}) < \infty \right. \end{split}$$

Since $\sum_{\gamma \in \Gamma} \ell(\gamma(\overline{E})) \log [2\pi/(\gamma(\overline{E}))] \leq \sum_{\gamma \in \Gamma} (\ell(\gamma(\overline{E})))^p$, the proof is complete.

REFERENCES

- 1. A. F. Beardon, Inequalities for certain Fuchsian groups. Acta Math. 127 (1971), 221-258.
- 2. L. Bers, Automorphic forms and Poincaré series for infinitely generated Fuchsian groups. Amer. J. Math. 87 (1965), 196-214.
- 3. L. Carleson, Sets of uniqueness for functions regular in the unit circle. Acta Math. 87 (1952), 325-345.
- 4. D. J. Caveny and W. P. Novinger, Boundary zeros of functions with derivative in H^p. Proc. Amer. Math. Soc. 25 (1970), 776-780.
- 5. C. Constantinescu, Über die Klassifikation der Riemannschen Flächen. Acta Math. 102 (1959), 47-78.
- 6. T. M. Flett, The dual of an inequality of Hardy and Littlewood and some related inequalities. J. Math. Anal. Appl. 38 (1972), 746-765.
- 7. ——, Lipschitz spaces of functions on the circle and the disc. J. Math. Anal. Appl. 39 (1972), 125-158.
- 8. J. Lehner, Proc. of London Math. Soc. Instructional Conference at Cambridge, England, (1974), to appear.
- 9. T. A. Metzger, On the growth of the Taylor coefficients of automorphic forms. Proc. Amer. Math. Soc. 39 (1973), 321-328.
- 10. Ch. Pommerenke, On automorphic forms and Carleson sets. Michigan Math. J. 23 (1976), 129-136.
- 11. ——, On the Green's function of Fuchsian groups. Ann. Acad. Sci. Fenn., to appear.

Department of Mathematics University of Pittsburgh Pittsburgh, Pennsylvania 15260