BROWDER-LIVESAY INDEX INVARIANT AND EQUIVARIANT KNOTS

Chao-Chu Liang

Let T be a differentiable fixed point free involution on a (4n + 3)-dimensional homotopy sphere Σ^{4n+3} , denoted by (T, Σ^{4n+3}) . We know that (T, Σ^{4n+3}) always admits an invariant (4n + 1)-dimensional sphere S^{4n+1} [6, p. 81]. Furthermore, we may require that $(\Sigma^{4n+3}, S^{4n+1})$ be a simple knot [2].

As in [4] or [7], we may apply equivariant surgery in $X = \overline{\Sigma} - (S \times D^2)$ to obtain two 2n-connected Seifert submanifolds V_1 and V_2 of dimension (4n+2) such that $TV_1 = V_2$ and $\partial V_1 = S^{4n+1} \times \{0\}$, $\partial V_2 = S^{4n+1} \times \{\pi\}$. The set $V_1 \cup V_2$ divides $X_1 \cup V_2$ into two parts W_1 and W_2 with $TW_1 = W_2$.

Gluing V_1 and V_2 in the boundary of W_1 by the map $T\colon V_1\to V_2$, we obtain a (4n+3)-manifold Y. Let $\Sigma_1=Y\cup S^{4n+1}\times D^2$ by some PL-homeomorphism h: $\partial Y\to S^{4n+1}\times S^1$. We see that $(\Sigma_1\,,S^{4n+1})$ is a simple (4n+3)-knot. Choosing a basis $\left\{b_1\,,\cdots,b_m\right\}$ for $H_{2n+1}(V_1)$, we have a Seifert matrix A, which is the matrix for the mapping $j_1\colon H_{2n+1}(V_1)\to H_{2n+1}(W_1)$ with respect to the bases $\left\{b_i\right\}$ and $\left\{c_i\right\}$ determined by the Alexander duality. Let A^T be the transpose of A. Then $(-1)^{2n+2}A^T$ is the matrix for the mapping $j_2\colon H_{2n+1}(V_2)\to H_{2n+1}(W_1)$ with respect to the bases $\left\{T_*b_i\right\}$ and $\left\{c_i\right\}$.

From [3], we know that $A + (-1)^{2n+1} A^T = A - A^T$ is unimodular. But by using the same argument in [4], we can show that $A + A^T$ is also unimodular. For the involution (T, Σ^{4n+3}), Browder and Livesay defined an index invariant $\sigma(T, \Sigma^{4n+3})$. (For its definition, see [1] or [5].) The purpose of this note is to prove the following result.

THEOREM. $\sigma(T, \Sigma^{4n+3}) = index(A + A^T)$.

Proof. In Σ^{4n+3} , we construct an invariant submanifold M of codimension 1 as follows:

$$M = V_1 \cup S^{4n+1} \times re^0 \cup S^{4n+1} \times re^{i\pi} \cup V_2$$
.

It is easy to see that M is 2n-connected, and $\{b_1\,,\,\cdots,\,b_m\,,\,T_*b_1\,,\,\cdots,\,T_*b_m\}$ forms a basis for $H_{2n+1}(M)$ by the natural inclusion $V_i\to M$, i=1 or 2. M divides Σ^{4n+3} into two parts E_1 and E_2 , with $TE_1=E_2$. Under the inclusion $W_i\to E_i$, i=1 or 2, we have a basis $\{c_i\}$ for $H_{2n+1}(E_1)$ and $\{T_*c_i\}$ for $H_{2n+1}(E_2)$.

Browder and Livesay [1] defined a symmetric bilinear form B on $H_{2n+1}(M)$ by $B(x, y) = x \cdot T_* y$. Since [3, p. 542] the $m \times m$ matrix $(b_i \cdot b_j) = A - A^T$, and $b_i \cdot T_* b_j = 0$, we see that B is represented by the matrix

$$\begin{pmatrix} 0 & A - A^{T} \\ A^{T} - A & 0 \end{pmatrix}$$

Received February 4, 1976.

Partially supported by the University of Kansas General Research Fund.

Michigan Math. J. 23 (1976).

with respect to the basis $\{b_1, \dots, b_m, T_*b_1, \dots, T_*b_m\}$.

Let $i_j: H_{2n+1}(M) \to H_{2n+1}(E_j)$, j=1 or 2, denote the map induced by the inclusion. From the Mayer-Vietoris sequence

$$0 \to H_{2n+1}(M) \xrightarrow{(i_1, -i_2)} H_{2n+1}(E_1) \oplus H_{2n+1}(E_2) \to 0$$

we have $(i_1, -i_2)$ represented by

$$\begin{pmatrix} A & A^{\mathrm{T}} \\ A^{\mathrm{T}} & A \end{pmatrix}$$

with respect to the bases $\{b_i, T_*b_i\}$ and $\{c_i\} \cup \{T_*c_i\}$.

Let D be the $2m \times 2m$ matrix

$$\frac{1}{2} \begin{pmatrix} (A + A^{T})^{-1} + (A - A^{T})^{-1}, & (A + A^{T})^{-1} - (A - A^{T})^{-1} \\ (A + A^{T})^{-1} - (A - A^{T})^{-1}, & (A + A^{T})^{-1} + (A - A^{T})^{-1} \end{pmatrix}.$$

It is easy to check that $D^{-1} = \begin{pmatrix} A & A^T \\ A^T & A \end{pmatrix}$.

We construct a new basis $\{a_i, T_*a_i\} = F$ for $H_{2n+1}(M)$ from $\{b_i, T_*b_i\} = G$ by $F = D \cdot G$. Then with respect to the bases $\{a_i, T_*a_i\}$ and $\{c_i\} \cup \{T_*c_i\}$, $(i_1, -i_2)$ is represented by the identity matrix. In particular, $\{a_i\}$ is a basis for kernel i_2 . With respect to the new basis $\{a_i, T_*a_i\}$, the symmetric bilinear form B is given by the matrix

$$D\begin{pmatrix} 0 & A - A^{T} \\ A^{T} - A & 0 \end{pmatrix} D^{T} = \begin{pmatrix} (A + A^{T})^{-1} & 0 \\ 0 & -(A + A^{T})^{-1} \end{pmatrix}.$$

From [1, p. 75] or [5], we see that the Browder-Livesay index invariant

$$\sigma(T, \Sigma^{4n+3}) = index(A + A^T)^{-1} = index(A + A^T). \qquad q.e.d.$$

From [3, p. 544], we see that the Kervaire invariant of V_1 is the Arf invariant of A. Since $A+A^T$ is a symmetric, even, unimodular matrix, Lemma 2 in [6, p. 36] shows that the Arf invariant of A is zero. Hence, S^{4n+1} is standard [6, p. 27]. But the same proof also works [4] for semifree involutions (T, Σ^{4n+3} , S^{4n+1}). Using the fact that (T, Σ^{4n+3} , S^{4n+1}) can be made equivariant knot-cobordant to a simple one ([2] or [7]), we have the following corollary.

COROLLARY. Let S^{4n+1} be a homotopy sphere embedded as the fixed point set of some semifree involution T on a homotopy sphere Σ^{4n+3} . Then S^{4n+1} is standard.

REFERENCES

- 1. W. Browder and G. R. Livesay, Fixed point free involutions on homotopy spheres. Tôhoku Math. J. (2) 25 (1973), 69-87.
- 2. S. E. Cappell and J. L. Shaneson, The codimension two placement problem and homology equivalent manifolds. Ann. of Math. (2) 99 (1974), 277-348.
- 3. J. Levine, *Polynomial invariants of knots of codimension two*. Ann. of Math. (2) 84 (1966), 537-554.
- 4. C.-C. Liang, Semifree involutions on sphere knots. Michigan Math. J. 22 (1975), 161-163.
- 5. ——, Involutions on homotopy spheres and their gluing diffeomorphisms. Trans. Amer. Math. Soc. 215 (1976), 363-391.
- 6. S. López de Medrano, *Involutions on manifolds*. Ergebnisse der Mathematik und ihrer Grenzgebiete, Band 59. Springer-Verlag, New York-Heidelberg, 1971.
- 7. N. W. Stoltzfus, Equivariant concordance of invariant knots. Dissertation, Princeton University, Princeton, N.J., 1974.

Department of Mathematics University of Kansas Lawrence, Kansas 66045