A LOCAL FORM OF LAPPAN’S FIVE-POINT THEOREM
FOR NORMAL FUNCTIONS

D. C. Rung

A necessary and sufficient condition for a meromorphic function f to be normal
in the unit disc D is that

)]
sw ) (1 - [2[7) <, where ') = oo

(see [3]). Ch. Pommerenke [5] asked whether there exists a class of sets & such
that if there is a set E € & for which the quantity sup_ .} fH(z) (1 - |z]2) is

sufficiently small then f is a normal function. P. Lappan’s beautiful answer [2,
Theorem 2] shows that f is a normal function in D if and only if for some five-point
subset A of the extended plane €, sup_ .1 (A) #(z) (1 - ]z IZ) < e, This result has

an elegant proof which combines a result of A. J. Lohwater and Ch. Pommerenke [4,
Theorem 1] with the Nevanlinna theory on completely ramified values of a function
meromorphic in the finite plane W. Our contribution is to make precise and to gen-
eralize slightly the result of Lohwater and Pommerenke, and this in turn leads to an
extended form of Lappan’s theorem.

Before proving the extended Lohwater-Pommerenke theorem we attend to a few
details. Let p be the hyperbolic distance on D. For a € D and r > 0, let

D(a, r) = {z € D: |z -a|] <r} and N(a, r) = {z € D: p(a, z) <r}. Note that if {z,}
and {z!} are two sequences in D such that p(z,, z;) — 0 (n — =), then

(0) (1- |z, D/Q-zi) =1 (n— ).

In the sequel we use the Hardy-Littlewood “o” notation.

THEOREM 1. Let f be mevomovphic in D and o > 1. The following two
statements arve equivalent.

(i) There exists a sequence {z,} such that

lim ff(z)(1- [z,|2)% = .

n — oo
(ii) Theve exist a sequence {{,} and a sequence of positive numbers {¢,}
satisfying
(1) g, =o(l-1]¢ |9 (-,

n
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142 D. C. RUNG
such that the sequence of functions {g,(t)} = {#(¢, +e,t)} is a novmal family in W
with no constant limit functions,

If either statement is tvue, the sequences {z,} and {¢,} can be chosen such
that

(2) 0(zp, €)= o1 = |z, |1,

Proof. The proof is basically that used by Lohwater-Pommerenke with a minor
modification. First we show (i) => (ii), and so we suppose

tHz,) (1 - |2,]|2)% = Ay~ as n—w.

Letting r,, = (1 - |2z,|2)%/VA, and noting that dp = |dz|/(1 - |z|?), we easily show
that the discs D(z,, r,) have hyperbolic diameters d, satisfying

n?’

d, = o(l - |z,]H*-! (n - ).

We are going to find the companion sequence {Cn} in the discs D(z,, rn), and then
(2) will hold.

In D(z,, r,) consider the continuous function
(3) #(2) (g - |2 - zal),

which is zero on the boundary of D(z,, r,) and equals VA, at z=2z,. Let {, bea
point in D(z,, r,,) such that

n’

1) (cn - [€n-2zal) = max @) (rn - |z - z4]).

z€ D{z,,r,)

Then we have

(4) \/—Kn < f#(?;n) (ry - Icn - an) = My,

and M, — © as n — », Also &, = (f#({,))"1 — 0 as n — ». In addition, if
z € D(z,, 1),

Tn-~ Icn = Zn|

r, - 1Z-Zn| ‘

(5) it(z) < f#(t’n)(

We need ¢ +¢ t e D(z,, ry), and this occurs if

n?

'tl < rp- Isn'znl _

n-

Fix R > 0 and suppose ltl < R. For all n such that M, > R,
z = {,+e,t € D(zg, Tp).

Thus (5) and the definition of M, combine to give

(6) eft) = e _fHe +e t) < ——.
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Notice also

(7) gh(0) = ¢_ff(¢,) = 1, forall n.

By Marty’s criterion, {g,(t)} is a normal family in W. For any subsequence
{gni(t)} which converges locally uniformly to g(t) on W, {gﬁi(t)} converges locally

uniformly to g#(t) also, so that by (7), g(t) is meromorphic and nonconstant, and by
(6), is of order < 2.

It follows from (4) that VA, < f#(¢,)ry, and since r, = (1 - |z,|%)%/VA,,
En = ()1 < (1 - |2,]D)¥/A,.
This last inequality, together with (2) and (0), yields (1). This completes the first
part of the proof.

The reverse implication is essentially a backwards glance at the above, but for
future considerations we go into some detail. Suppose 1f(¢, +ent)} = {g,(t)} has a
convergent subsequence which we relabel as {gn(t)}. Let g(t) be the nonconstant
limit function. That the following are true is an easy exercise:

(a) glt) is meromovphic in D;
(8) (b) {gf(t)} converges locally uniformly to gt(t);

(c) If x € g(W) and g(t)) =, then theve exists a sequence of points {t,},
wheve t,, — t, as n — «, such that

tHM)e, = glit) — gft) as n— o and  1Q) = g ft,) =2,

wheve zg\) =f +e t.

Now suppose a A is selected for which g (ty) # 0. The proof is complete if we look
at (8) (c) and combine (1) and (0) to show

I
lim M) - [z [2)@ = 1im g‘;(t“) (1- [g,])
(1- ¢, [®e
= g#(ty) lim ——Iggl—— = w0,

Actually, we have proved more than (ii) = (i). The key point of Lappan’s proof is
that for any A € g(W) for which there is a t) € g-1(A) with g#(t)) # 0, there exists a
sequence {29)} for which f(zg\)) = A, for all n, and f#(zg\)) (1- lzg‘) |2)@ — «. By
a result from Nevanlinna theory, the nonconstant meromorphic function g can have
at most four distinct values A such that g#(ty) = 0 for all t, € g~!(a); that is, g can
have at most four completely ramified values. By combining these two facts, Lappan
obtained his five-point theorem. We observe here that the Nevanlinna theory actually
says more: for each value g omits (no more than two), the possible number of com-
pletely ramified values actually assumed by g decreases by two.

Lohwater and Pommerenke considered the function (3) (for a = 1) over the discs
D(0, s,), where the sequence {s,} was chosen so that lim, — e p(|2n|, sn) <,
although this condition was not stated in terms of the hyperbolic distance. Our proof
differs mostly in the choice of discs.
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We- define one more cluster set. If G € D such that G N 9D # ¢, if f is a func-
tion from D into @, and if @ > 1, let Ry (f, G) be the set of w € W for which there
exists a sequence {z,} with p(z,, G) = o(1 - |z,|2)®-! and f(z,) =w for each n.
In case G =D, o has no significance and we write R(f). We come to an extended
version of Lappan’s theorem which is also a generalization to o > 1 from Lappan’s
o = 1. This theorem merely summarizes the idea contained in the proof of Theorem
1 and the remarks thereafter.

THEOREM 2. Let f be mevomovphic in D and G C D such that GnNaD # Q.
For each fixed a > 1, the following two statements ave equivalent.

(i) For each sequence {z,} such that p(z,, G) =o(l - |z,|2)%*"1 <, we have
limy, o (z,) (1 - |2 |2 < oo,

(ii) If Ry(f, G) omits i values, 0 <1i < 2, then theve exists a set E C R,(f, G)
containing 5 - 2i distinct elements with the property that for each sequence {1}
with 1(¢,) € E and p({,, G) =o(1 - |¢,|2)% !, we have

Tim £#(g,) (1 - [€,]2)% <.

n — oo

In Theorems 1 and 2, if we restrict f to be a holomorphic function, a bit more
can be said. We restrict ourselves to o = 1 although what follows can be adapted to
the more general case. Suppose there is a sequence {zn} with p(z,, G) — 0
(n — ), and

(9) i#(z,) (1 - |zn|2) > (0> ).

Then the limit functions of the sequence {f({, +&,t)} = {g,(t)} must be holo-
morphic. The constant function « is not allowed. Consequently,

{en®} = {e £'(C, +e,0)}

is also a normal sequence and its limit functions are derivatives of the correspond-
ing limit functions of {g,(t)}. The convergence is locally uniform in both situations
(relative to the Euclidean metric), and Hurwitz’s theorem now applies also to the
derivative sequence. If a limit function g(t) has a completely ramified value A, then
there is a sequence of points {{n} with p(¢n, G) — 0, on which f'(¢,)) = 0 for each
n. Suppose we assume f is holomorphic and locally univalent in D (that is,
f'(z) # 0, z € D) and satisfies (9). Then any limit function g(t) has no completely
ramified values, and we can apply the remarks following the proof of Theorem 1 to
conclude that for eack X € g(W) € R;(f, G), there exists a sequence {zf{t)}, satis-
fying

(i) f(zg‘)) =, for all n;

(i) pzA), G) = 0 (n — );

(iid) lim, _, o M) (1 - |20 ]?) = .

We summarize this in

THEOREM 3. Let f be holomovphic and locally univalent in D and G C D such
that G N 9D # @. Then the following statements ave equivalent.

(i) There exists a value » € Ry(f, G) with the property that for all sequences
{zg‘)} with 1(z®)) =X and p(zg‘) , G) — 0 (n— %), we have
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(10) Im M- 203 < .

n —oo
(ii) For each sequence {z,} such that p(z_ , G) — 0 (n — =), we have

Iim fz)(1- |z,]) <.
n-— oo
We give an area condition which implies statement (i) and state it for G = D.

COROLLARY 1. Let f be holomorphic and locally univalent in D. Then f is
novmal in D if for some value N € R(f) theve is a value py, > 0 such that

(11) sp § )z aa < s
sz‘l()\) N(z, po)

Proof. It is easy to see that we can find a t > 0 so that for all z € £-1(a),
D(z, (1 - |z|?)t) ©N(z, pg). Then for z € £-1(x),

n(|£()| (1 - |2]2))2 < (0 lr@aa,

D(z, (1 - |z]|2)t)

whence (10) follows from (11).

Some condition is necessary on locally univalent functions in order that they be
normal. Lappan [1] has constructed a holomorphic function f which is not normal
but which is univalent in any N(z, pg), z € D, with py sufficiently small but inde-
pendent of z. It is curious to note that by a recent result of Yamashita [6, Theorem
1], this univalent property implies that f' is normal.

The author acknowledges with thanks the many helpful suggestions of the
referee.
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