D+ M CONSTRUCTIONS WITH GENERAL OVERRINGS
J. W. Brewer and E. A. Rutter

Suppose that T is a domain and K is a field that is a retract of T, that is, sup-
pose T = K+ M, where M is a maximal ideal of T. Each subring D of K deter-
mines a subring R =D + M of T. This construction has been studied extensively in
two situations. The first systematic investigation of the properties of R is due to
R. Gilmer [8, Appendix 2, p. 558] and Gilmer and W. Heinzer [9], who required that
T be a valuation domain. More recently, a similar investigation has been conducted
under the hypothesis that T = K[X], M = XK[X], and K is the quotient field of D [4].
The interest in this case arises because R is the symmetric algebra of the D-
module K. In both cases the properties of R are related to those of D; in the case
of a valuation domain, the relationship of D to K also plays an important role. In
this paper, we investigate the construction described above, without placing any
limitations on T. The authors find it remarkable that things proceed as well as in
the special cases considered earlier. Of course, in the more general context the
properties of T and M, or more often of T g, also play a crucial role.

More specifically, we focus attention on four properties: we obtain necessary
and sufficient conditions for R to be a coherent domain, a Priifer domain, a Noether-
ian domain, and a GCD-domain. What is most satisfying is that the conditions are
expressed solely in terms of the properties of the components of the construction. If
K is the quotient field of D, it is also possible to describe the prime-ideal lattice of
R and thus to compute the Krull dimension of R. If R is a Priifer domain, so are D
and T. Their ideal class groups are shown to be related by a short exact sequence.
This yields conditions for R to be a Bézout domain. Unfortunately, if R is a Priifer
domain it has the n-generator property whenever D and T do. Thus, this construc-
tion casts no light on whether invertible ideals in Priifer domains can require more
than two generators. The paper concludes with a brief consideration of methods for
obtaining domains T of the form K + M that satisfy the conditions of the theorems.

It is undoubtedly possible to characterize other properties. We have limited
ourselves to these four because they have received attention in the special contexts
investigated earlier, and because they seem adequate to demonstrate that such prob-
lems can often be handled in more generality than had previously seemed feasible.
It seems quite likely that at least some of the results of this paper can be extended
to a somewhat more general situation. As Gilmer [8] noted, the assumption that K
is a retract of T is often not essential. Instead, it can be assumed that K = T/M, in
which case R is replaced by the pullback of T and D. However, we have chosen to
follow Gilmer’s lead in this regard, and for the sake of clarity and simplicity we
limit ourselves to the case of a retract.

Our interest in this problem was kindled by the recent paper of D. Dobbs and
I. Papick [5], which gives necessary and sufficient conditions for R to be coherent
when T is a valuation domain. We have benefited from possessing a preprint of that
paper. We have also been helped by access to Doug Costa’s thesis, which contains
results concerning the case where T = K[X], and by correspondence with him con-
cerning this problem. Finally, we must thank our colleagues Ray Heitmann and
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Dave Lantz, both of whom have made valuable contributions to this paper. In addition
to their general assistance, Ray did most of the work in solving the n-generator
problem in the case where R is a Priifer domain, and Dave contributed the proof
used to show that R is coherent in the case where K is the quotient field of D.

The letters T, K, M, D, and R will retain throughout the paper the meanings
assigned to them in the opening paragraph. It being necessary to exclude the situa-
tions wherein the construction degenerates, we also assume without further mention
that M # 0 and D # K.

LEMMA 1. If theve exists a nonzevo ideal A of T that is finitely genevated as
an R-module, then D is a field and [K:D] < .

Proof. Clearly, A is finitely generated over T, and hence MA # A. For other-
wise, MTy1 - ATy = AT and therefore ATy = 0, by Nakayama’s lemma. This is
impossible, since 0 # A C AT),. It follows that A/MA is a nonzero (T/M = K)-
module that is finitely generated as an (R/M = D)-module. Since K is a field, A/MA
can be written as a direct sum of copies of K. Thus, K is a finitely generated D-
module. But then D is a field, since the field K is integral over D and obviously
[K:D] < oo,

For the purpose of casting the next result in generality sufficient to cover all
the situations that arise, we use the following terminology from [14]. A domain S
with quotient field L is called a finite conductor domain if for each pair x, y € L,
xS N yS is a finitely generated S-module. Every coherent domain is a finite con-

ductor domain, as is every GCD-domain [3, Theorem 2.2] and [8, Theorem B,
p. 605].

PROPOSITION 2. If R is a finite conductor domain, then exactly one of the fol-
lowing conditions holds:

(i) D is a field, [K:D] < , and M is a finitely generated ideal of T.
(ii) K is the quotient field of D and Ty is a valuation domain.

Proof. If K is not the quotient field of D, then there is an x (0 # x € K) such
that xD N D = (0). Clearly, xR = xD +xM = xD + M, since x is a unit in T and M
is an ideal of T. Now R is a finite conductor domain, and xR and R are principal
fractional ideals of R. Therefore, xR N R is a finitely generated R-module. But

xXRNR=D+M)ND+M) =xxDND)+(MNM) = M.

Hence, M is a finitely generated ideal of T, and by Lemma 1, (i) holds.

If K is the quotient field of D, let a and b be nonzero elements of T. Now
aR N bR D aM N bM, and the latter is a nonzero ideal of T. Moreover, since R is a
finite conductor domain and K is the quotient field of D, it follows from Lemma 1
that

aRN bR # aM N bM.
Choose x € (aR N bR) \ (aM N bM). Write x = (d; + m;)a = (d, + m)b with
d;, d2 € D and mj;, m € M. One of the elements d; and d; is nonzero, say
d, # 0. Since d; +m; ¢ M, d; + m; is a unit in Ty;. Therefore,
a = (dl + ml)'l (dz + mz)b € bTM,

and thus aTy,; € bTy,. It follows that T, is a valuation domain.
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This is a convenient juncture for recording some observations that we shall use
frequently.

R and T have the same quotient field. This is a general remark about integral
domains that have a nonzero ideal in common.

If T is integrally closed, the integral closure of R is J + M, where J is the in-
tegral closure of D in K. This follows easily from the fact that R and T have the
same quotient field.

If D is a field and [K:D] < o, then T is a finite R-module. Indeed, if
{1, bp, -+, by} is a field basis for K/D, then {1, by, -, b} is an R-module
generating set for T.

If K is the quotient field of D, then T =Rp)\ {o} is a localization of R. More-
over, R is a faithfully flat D-module. That no maximal ideal of D blows up in R

is obvious; moreover, as a D-module, R is the direct sum of D and a D-module,
namely M, which is a direct sum of copies of K, a flat D-module.

We come now to our first theorem. Recall that a domain S is cohevrent if di-
rect products of flat S-modules are flat. Other characterizations include “finitely
generated ideals are finitely presented” and “any two finitely generated ideals of S
have finite intersection” [3, Theorems 2.1 and 2.2]. Thus, Noetherian domains and
Priifer domains are coherent.

THEOREM 3. R is cohevent if and only if T is coherent and exactly one of the
Sfollowing holds:

(i) M is a finitely genevated ideal of T, D is a field, and [K:D] < .
(ii) K is the quotient field of D, D is coherent, and T\ is a valuation domain.
Proof (=>). By Proposition 2, two cases arise.

If D is a field, [K:D] < =, and M is a finitely generated ideal of T, then T is a
finite R-module. It follows from [11, Corollary 1.5, p. 476] that T is coherent.

If K is the quotient field of D, then T, being a localization of R, is coherent,
and by Proposition 2, Ty, is a valuation domain. To see that D is coherent, one can
show directly that the intersection of two finitely generated ideals is finitely gen-
erated, or, given a finitely generated ideal I of D, one can use the faithful flatness
of R over D to descend the finite presentation of IR = I@D R to a finite presenta-
tion of I.

(<=). Suppose the conditions of (i) hold. We shall need the following general
remark. Let {1, by, -, b} be a field basis for K/D. If ¢ is the R-homomor-

phism from R" to T given by ¢(r;, -+, ) = 27 r; b;, then ¢ is surjective and the

kernel of ¢ is isomorphic to M2-1 . The only statement that needs justification is
the one about the kernel. Write r; =d; + m;. Then ¢(r;, -+, r) = 0 if and only if

27 (d; + myb; = 0, which implies 27 d;b; = 0; thus d; = --- = d,, = 0, since
1, b,, -+, b, are D-linearly independent. Also, 22 m;b; = 0, which entails

my = - 2121 m;b;. The isomorphism from M™-! onto the kernel of ¢ is given by

. n
(m,, -, m ) & (- 27 m;b;, m,, -, mn).
2

Therefore,
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0—>M! R > T -0

is a presentation of T as an R-module, and since M is finitely generated, T is a
finitely presented R-module. To show that R is coherent, we shall argue that direct
products of flat R-modules are flat. Thus, let {Ea} be a collection of flat R-
modules. For each «, the T-module Ey ®r T is T-flat, and since T is coherent,

Ha (Eq ®R T) is T-flat. But since T is finitely presented,

IE,Rr T) ~ (HEQ)@QRT
o .

o

[1, Exercise 9, p. 43]. By the descent lemma of D. Ferrand [17, p. 946}, I, E, is
R-flat. ’

Suppose the conditions of (ii) hold. Since Ty, is a valuation domain, C/MC is a
K-vector space of dimension at most 1 for each ideal C of T. Indeed, let
a, b € C\ MC. Then either a/b or b/a lies in Ty, say

a/b=t/k+m) (teT, meM, ke K\ (0).

Then (k + m)a = bt or, what is the same thing, a =k !tb - k~! ma. Thus
a= (k~1t)b (mod MC). . _

Now, let A and B be nonzero, finitely generated ideals of R. Then
AT N BT = (A N B)T is finitely generated, say by cj, ***, ¢, € A N B. This is pos-
sible since T is a localization of R. Since

R(cy, """ €n) 2 MR(cy, -+, cn) = MT(c1, *, cn) = MT(A N B) = M(A N B),

if we can show that (A N B)/M(A N B) is finitely generated over R, it will follow
that A N B is finitely generated. It is clearly sufficient to prove that

(A N B)/M(A N B) is finitely generated over D. Therefore, consider the exact
sequence

0—-ANB - A@PB - A+B — 0.

Tensoring with R/M = D, we obtain the exact sequence

(A N B)/M(A N B) & (A/MA) @ (B/MB) & (A +B)/M(A +B) — 0.

We claim « is monic. Tensoring

(A/MA) @ (B/MB) & (A +B)/M(A +B) — 0
with T or K, we see that the sequence

T
(1Aa/MA) @ (TB/MB) 28 T(a +B)/M(A + B) — 0
is exact. Since A and B are finitely generated, the K-dimension of TC/MC is 1
for C = A, B, or A+ B. Therefore T X 8 is not monic, and therefore B is not
monic. Now the kernel of 8 is a nonzero submodule of the torsion-free D-module
(A/MA) @® (B/MB), each factor being embeddable in K, the quotient field of D. But
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a maps onto the kernel of 8, and (A N B)/M(A N B) is embedded in one copy of K.
This proves that a is monic. '

Now the D-modules at both ends of 8 are finitely generated submodules of
direct sums of copies of K, and consequently they are finitely presented [3, Theorem
2.1]. It follows that the kernel (A N B)/M(A N B) of a is finitely generated [1,
Lemma 9, p. 21].

The Noetherian case is much easier to handle.

THEOREM 4. R is Noethevian if and only if T is Noethevian and D is a field
with [K:D] < o,

Proof (=>). Since M is a finitely generated ideal of R, it follows from Lemma
1 that D is a field and [K:D] < «. Thus, T is module-finite over the Noetherian
ring R.

(«). T is a Noetherian ring and module-finite over the subring R. This is the
situation covered by P. M. Eakin’s Theorem [6].

The Priifer-domain case also presents little difficulty.

THEOREM 5. R is a Priifer domain if and only if T is a Pviifer domain, K is
the quotient field of D, and D is a Priifer domain.

Proof (=). Since T is a localization of R, T is a Priifer domain... Moreover,
since Priifer domains are integrally closed, K is the quotient field of D, by Proposi-
tion 2. That finitely generated ideals of D are invertible may be seen directly, or
one can argue this, using the fact that the faithfully flat D-module R is a Priifer
domain.

(<«=). Given a finitely generated nonzero ideal I of R, we must show that I is a
projective R-module [2, Proposition 3.2, p. 132]. What comes to the same thing,
since R is a domain [12, Corollary 3.2, p. 108], is to show that I is a flat R-
module. Now IT =I®g T is T-projective, since T is a Priifer domain. More-
over,

0 # I/MI C IT/MTI = IT/MI ~ IT ®¢ (T/M) =~ IT ®t K,

a K-vector space. In particular, I/MI is a torsion-free D-module, and D is a
Priifer domain. Consequently, I/MI is D-flat, and it follows from the descent lemma
of Ferrand that I is R-flat [7, p. 946].

Recall that the class group €(S) of a Prifer domain S is the multiplicative
group of invertible fractional ideals of S modulo the subgroup of nonzero principal
fractional ideals. The class group may also be regarded as the multiplicative group
of isomorphism classes of invertible fractional ideals of S. In the construction of
this paper, the class groups of the Priifer domains R, D, and T are nicely related.

PROPOSITION 6. If R is a Prifer domain, theve exists an exact sequence

1 —> #(D) %> #(R) > ¢ (1) —> 1,

wheve alJ] = [JR] and B[1] = [IT] for all finitely genevated fractional ideals J of D
and 1 of R. Heve, [1] denotes the isomorphism class of the ideal 1.

Proof. Clearly, @ and 8 are well-defined homomorphisms. Also, since the
quotient field K of D is contained in T, Ba[J] = [JRT] = [JT] = [JKT] = [T] for each
fractional ideal J of D. Thus «a(%(D)) € Ker 8. Suppose a[I] € Ker 8. We may
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assume I is an integral ideal of R, since [I] has such a representative. Therefore
IT = xT, with x € T. Since T = Rp\ (0) we may choose x € I, say x =d + m with
de D and m € M. Suppose I =R(d; + m;) +--- + R(d¢ + my) with d; € D and

m; € M. Then

d; + m; = (k; + n;)(d + m) = k;(d + m) +n;(d + m),

and therefore

k{d+m) = (d; +m;) - n;(d+m) € L.

Therefore, I D R(Dk; + --+ + Dky){d + m). Since M is an ideal of T, we see that
l«:l"l M C M and hence Rk; D k; M D M. Ii follows that

R(Dk; + -+ + Dk¢)(d + m) D M(d +m).
Hence, for 1 <i<t,
d; + m; = k{(d+ m) +ni(d + m) € R(Dk + ++- + Dkp{d + m).
But these elements generate I. Therefore, I = R(Dk; + --- + Dk¢)(d + m). Hence
[I] = [R(Dkj + -+ + Dky)] = @[Dk; + --- + Dk].

It follows that Ker g C a(®(D)) and therefore that Ker g = a(#(D)).

It follows immediately from the relation T = Rp\ (o) that g is an epimorphism.
It remains only to show that @ is monic. Suppose that ¢[J] = [R]. As before, we
may assume that J is an integral ideal of D. Since JM = M as above,
JR=JD+IJM=J+M. Thus, J+M = (D + M){(d + m) = Dd + M, because
(D +M)(d+ m) D M. It follows that J = Dd, since both sums are direct. Therefore,
[J] = [D] and @ is monic.

Remark., Our proof shows that when T is a Bézout domain, each finitely gen-
erated ideal I of R can be written in the form I =(k;, ---, k,, 1)-b-R
(k; € K, b € I). In particular, I is R-isomorphic to the extension of a finitely
generated ideal of D. This is often useful in cases where T is a valuation domain
or K[X].

THEOREM 7. R is a Bézout domain if and only if T is a Bézout domain, K is
the quotient field of D, and D is a Bézout domain.

Proof. Because Bézout domains are precisely the Priifer domains having trivial
class group, the result follows from Theorem 5 and Proposition 6.

We can easily describe the prime-ideal lattice of R in case K is the quotient
field of D.

PROPOSITION 8. Let K be the quotient field of D. If Q is a prime ideal of R,
then either Q =P N R for some prime ideal P of T,or Q=P + M for some prime
ideal P of D.

Proof. Because T =R D\(0) » there exists a one-to-one correspondence between
primes of R that miss D\ (OS and primes of T. On the other hand, if Q N D # (0),
let de QND, d# 0. For me M, d"!m € M C R, and hence m € Q. Therefore,
Q2> M. But R/M=D.
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Consequently, the lattice of prime ideals of R looks like the lattice of prime
ideals of D “pasted” at M to that of T. This gives the following result.

COROLLARY 9. If K is the quotient field of D, and if D and T have finite
Krull dimension, then R has finite Krull dimension equal to

max { height (M) + dim (D), dim (T)} .

A Priifer domain S is said to have the n-genevator property if each finitely
generated ideal of S can be generated by n or fewer elements. If is an open ques-
tion whether all Priifer domains have the 2-generator property. As the following
result shows, the construction of this paper fails to shed new light on this question.

THEOREM 10. R is an n-genevator Priifer domain if and only if T and D are
n-genevator Pviifer domains.

Proof (=>). By Theorem 5, T and D are Priifer domains. Moreover, T is a
localization of R and D is a homomorphic image of R.

(<=). By Theorem 5, R is a Priifer domain. Let I =(a;, ---, a)) be a nonzero
finitely generated ideal of R. Since Ry is a valuation domain, IR is principal
generated by some aj, which we may assume to be a;. Then there exists u ¢ M
such that for 2 <j <k, a; = (rj /u)a; with rj € R. Thus, I is R-isomorphic to
I(u/a;) = Ru+Rr, + -+ + Rry, which is an ideal of R not contained in M. It is
therefore harmless to assume that I ¢ M.

Thus, (I+ M)/M is a nonzero (R/M)-submodule of R/M = D. Since D is an n-
generator Priifer domain,

I+M = R(d; + mj) + -+ +R(d, + my) + M

with d; € D, d; # 0, and m; € M for 1 <i<n. Because T is also an n-generator
Priifer domain, IT = T(k; + mj) + --- + T(k, + m;) with k; € K and m; € M. Now,
since I ¢ M, some k; # 0, say k; # 0. We may assume, in fact, that k; # 0 for
each i; for if this is not already the case, we can replace k; + mj with

(ky + m) + (k; + m}). But then

IT = T(d; + m}) + -+ + T(d, + m}),

where m; =kild;m;, since d; + m{ =d;k{! (k; + m}) and d;k;! is a unit in T.

We claim that I=(d; + my, ---, d, + m)R. It suffices to verify that this equal-
ity holds locally at each maximal ideal P of R. By Proposition 8, there are two
types of maximal ideals, those that contain M and those that have trivial intersec-
tion with D. If P is a maximal ideal of R with P N D = (0), then Rpt = TpT, and
the desired equality certainly holds since it already holds when the ideals are ex-
tended to T. Now suppose that P is a maximal ideal of R with P D M. Before
considering what happens in this case, note that if A is an ideal of R not contained
in M, then ARp D MRp. This is because these ideals must be comparable, since
Rp is a valuation domain. But if MRp D A, then

A CARpNR C MRpNR =M,
since M is prime in R. In particular, if d € D, d # 0, and m € M, then

(d+m)Rp> MRp and dRp 2D MRp. Therefore, (d+m)Rp=dRp. It is apparent
from these observations that
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IRp = IRp+MRp = (d) + m)Rp+ -+ +(d, + m )Rp+ MRp

(dj +m))Rp+---+(d, + m )Rp

(d), -+, d)Rp = (d; + mj, -, d_ + m))Rp.

Our next result concerns GCD-domains, and we refer the reader to [8, Appen-
dix 4, p. 601] and [13, pp. 32-33] for the relevant facts. We remark that Bézout do-
mains and unique-factorization domains afford the most common examples of GCD-
domains.

We shall adopt the following notation. Let S be a domain, and suppose that B is
a torsion-free S-module. If 0 # by, b2 € B, we shall write ¢ = infg(b;, bz) pro-
vided ¢ € B, Sc D Sb; +Sb;,, and Sc is the minimal principal S-submodule of B
containing Sb; + Sb,. When infg(b;, by) exists, it is unique to within multiplication
by a unit of S. It is easily verified that S is a GCD-domain if and only if
infg (2, £,) exists for all 0 # ¢;, ¢, belonging to the quotient field of S.

THEOREM 11. R is a GCD-domain if and only if T is a GCD-domain, K is
the quotient field of D, D is a GCD-domain, and Ty; s a valuation domain.

Proof (). By Proposition 2, since GCD-domains are integrally closed [13,
Theorem 50, p. 33], K is the quotient field of D and Ty is a valuation domain.
Moreover, T, being a localization of R, is a GCD-domain, and D, being a retract of
R, is also a GCD-domain.

(«=). We begin with two observations.

First, if S is an integral domain contained in a field L, andif 0 # a, b, c € L
are such that infg(b, ¢) exists, then infg(ab, ac) exists and is equal to a-infg(b, c).

To see this, note that the map L 3 L is an S-homomorphism. Moreover, the map
is monic, because L is S-torsion-free and epic since L is S-divisible. Thus, the
map is an S-automorphism of L. Consequently, it induces a one-to-one inclusion-
preserving correspondence between the S-submodules of L. containing Sb and Sab
and also between Sc and Sac. Since corresponding submodules are isomorphic, they
require the same number of S-generators. Therefore, if there is a principal S-sub-
module of L minimal over Sb + Sc, then there is a principal S-submodule of L
minimal over Sab + Sac and it is induced by multiplication by a.

Second, let t; =k; + m; and t =k, + m2 belong to T, with m; € M and k; € K
and not both k;, k, equal to zero. Because T is a GCD-domain, infp(t;, t;) exists
and has the form k3 + m3, with m3 € M and k3 € K, k3 # 0, since Tt; + Tt; ¢ M.
Furthermore, infp(k;, k) =k # 0 exists because D is a GCD-domain with quotient

field K. Because kk;! is a unit in T, we may assume that
infT (t]. ’ tz) = k+m

with m € M. For this choice, a straight-forward calculation shows that
k +m = infg (t;, t;).

Now, let a and b be nonzero elements of R. Since T)s is a valuation domain,
aTy and bTp; are comparable, say a = (t/u)-b with t € T and u € T \ M, both
nonzero. Thus, ua =th. By our first observation, if infg (ta, tb) exists, then
infg (a, b) exists and is equal to (1/t) -infg (ta, tb). But infg (ta, th) = infg (ta, ua).
Again applying our first observation, we see that if infy (t, u) exists, then
infg (at, au) exists and is equal to a-infg (t, u). By our second observation,
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infg (t, u) does exist since u ¢ M, so that u = m +k, where k # 0. This completes
the proof.

We conclude by describing two large classes of domains, different from those
previously studied, admitting an arbitrary field K as retract, and to which the pro-
gram of this paper can be applied.

Let S be an abelian, torsion-free, cancellative semigroup with 0, and K a field.
The semigroup rings K[S] can be regarded as generalizations of polynomial rings.
Conditions on S for K[S] to be a Priifer domain, Bézout domain, GCD domain, and
so forth are given in [10]. Moreover, K[S] contains a maximal ideal M, the so-
called augmentation ideal, with the property that K[S] = K + M. For most choices
of S, K[S] is neither Noetherian nor a polynomial ring, and K[S] is never a valua-
tion domain.

Finally, let K be an algebraically closed field, and let L be a field of algebraic
functions of a single variable over K having positive genus. It is well known that by
intersecting all but one of the DVR’s on L that contain K, one obtains a Dedekind
domain S having infinite class group and the additional property that S = K+ M for
each maximal ideal M of S.

REFERENCES

[y

. N. Bourbaki, Commutative algebra. Addison-Wesley, Reading, Mass., 1972.

[\

. H. Cartan and S. Eilenberg, Homological algebra. Princeton Univ. Press,
Princeton, N.J., 1956.

3. S. U. Chase, Direct products of modules. Trans. Amer. Math. Soc. 97 (1960),
457-473.

4. D. Costa, J. Mott, and M. Zafrullah, The D +XDS[X] construction (submitted).

5. D. E. Dobbs and 1. J. Papick, When is D + M cohervent? Notices Amer. Math.
Soc. 22 (1975), A-303 #75T-A61.

6. P. M. Eakin, Jr., The converse to a well known theovem on Noetherian vings.
Math. Ann. 177 (1968), 278-282.

7. D. Ferrand, Descente de la platitude par un homomorphisme fini. C.R. Acad.
Sci. Paris Sér. A-B 269 (1969), A946-A949.

8. R. W. Gilmer, Multiplicative ideal theory. Queen’s Papers in Pure and Applied
Mathematics, No. 12. Queen’s University, Kingston, Ontario, 1968.

9. R. Gilmer and W. Heinzer, On the number of genevators of an invertible ideal.
J. Algebra 14 (1970), 139-151.

10. R. Gilmer and T. Parker, Semigroup vings as Prifer vings. Duke Math. J. 41
(1974), 219-230.

11. M. E. Harris, Some vesults on cohevent vings. Proc. Amer. Math. Soc. 17
(1966), 474-479.

12. S. Jdndrup, On finitely generated flat modules. II. Math. Scand. 27 (1970),
105-112.



42 J. W. BREWER and E. A. RUTTER

13. I. Kaplansky, Commutative rings. Revised edition. Univ. of Chicago Press,
Chicago, Ill., 1974.

14. S. McAdam, Two conductor theorvems. J. Algebra 23 (1972), 239-240.

University of Kansas
Lawrence, Kansas 66045



