INVERSE LIMITS AND THE COMPLETENESS
OF QUOTIENT GROUDPS

David Wigner

In [5], G. KSthe gives an example of a complete topological vector space and a
closed subspace such that the quotient space is not complete. In this paper we con-
sider the question under what conditions the quotient of a complete abelian topologi-
cal group by a closed subgroup is complete. We give sufficient conditions on the
closed subgroup, and in general we define functors L! from abelian topological
groups to abelian groups such that the vanishing of L! for the closed subgroup im-
plies the completeness of the quotient. The L! are shown to be closely related to
the derived functors of the inverse limit, and we can conclude that the derived func-
tors of the inverse limit of a strongly dense inverse system (in the sense of R. F.
Arens [1]) of complete metrizable abelian groups depend only on the natural topology
of the inverse limit. All topological groups considered in this paper will be abelian,

but not necessarily Hausdorff. We declare a sequence 0 — A % BL Cc—0 of abe-
lian topological groups and continuous homomorphisms to be exact if it is exact as a
sequence of abstract groups, 0 is a homeomorphism onto its range, and 7 is an
open mapping. We use the following facts about exact sequences; the proofs are not
difficult, and we omit them.

LEMMA 1. Let 0 - A — B — C — 0 be an exact sequence, and let a: A — A'
and vy: C" — C be continuous homomovphisms. Then there exist commutative dia-
grams

0 > A > B > C —> 0
0 —> A'——> B’ > C > 0
and
0 ——> A > B" > C" > 0
Q%) idAl l I'y
Y
0 > A > B > C > 0

with exact rows.

Here B" is the fiber product of C" and B over C. This implies that the cate-
gory of abelian topological groups is a quasi-abelian category in the sense of N.
Yoneda [7].

LEMMA 2. Let
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0 —>A > B, > C > 0
id 5 Bl id
\ v
0 > A > B > C ——> 0

be a commutative diagram with exacl vows. Then B is an isomovphism; that is,
there exists a mapping By: B — B such that By -B is the identity.

If A is an abelian topological group, A will denote the Hausdorff completion of
A for the group uniformity.

THEOREM 1. If 0 — A L BLC—0isan exact sequence, then

0—A g BLCis left exact as a sequence of topological groups (0 is a topological
inclusion, and T is open onto its rvange.) If B is metvizable, then 7: B — C is sur-
jective.

For the proof, see N. Bourbaki [2, p. 163].

THEOREM 2. Let 0 = A — B 5 C — 0 be a short exact sequence of abelian
topological groups, and let A be metrizable. Then T: B — C is surjective.

Proof. There is an invariant pseudometric on B that induces the group topology
of A. Let B; denote B with the topology induced by this pseudometric. We get an

exact sequence 0 — A —B; —»C; — 0 whose Hausdorff completion
0—A— Bl — Cl — 0 is exact, by Theorem 1. Consider the diagram (diagram Q)

> A > E > C > 0
0 —> A > B, > C, >0,

where E is the fiber product of f31 and C over f]l . Because of Lemma 2, we get a
natural isomorphism of B onto a dense subgroup of E, whence B= E, since E is
Hausdorff. Hence T is surjective.

THEOREM 3. Let A= HaeI My be a product of metrizable abelian topologi-
cal groups. Then 7:B—>Cis surjective.

Proof. Consider the sequences 0 > My — E, — C — 0 induced by the projec-
tions Cy: A — M, . Then, for each «, the sequence 0 = My - E5 - C — 0 is
exact. Because the product of exact sequences is exact,

o— Mfr, - N, - M &—o0
I I I

is exact. Consider the diagram (diagram Q%)
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0 >

Y

LTJ’-(——M
o

1d}&

> 11
1

§><———>>

Y
g —> g, —— IIC ——> o0,
I I

where 6 is the diagonal mapping. Again because of Lemma 2, we get a natural iso-
morphism of B with a dense subgroup of E; therefore B =E. Hence 7 is surjec-

tive.

Because each abelian topological group A is isomorphic to a subgroup of a
product Il of metrizable groups, we can find a short exact sequence
0-ALn0%Lc—0. We define LY(A) as the quotient of C by the image of il under

7. Given another embedding o,: A — II; of A in a product of metrizable groups,
we can form the diagram

g-+0]
0 > A >IIG9H1 > D > 0
id, la lx
M g T
0 > A > 11 > C —> 0

0 >ﬁ1 '(Bﬁ > 1 > 0
ids T
0 > 11 > D >C —> 0

1

whose rows are exact, by Theorem 3. This gives an isomorphism between the quo-

tient of C by 711 and the quotient of D by p(Il @ II,). We conclude that L1(A) is
well defined. Note that L!(A) = L1(A).

L THEOREM 4. If 0 — A %L C — 0 is an exact sequence with L1(A) = 0, then
7: B — C is surjective.

Proof. We embed Bina product Il of complete metrizable groups and con-
—> 7

sider the diagram
—> B B
I > D

D is complete, and since B is closed in II, 7B is closed in D, hence complete.
Hence 7 is surjective.

> 0

idg

;>><-——;>>

0

> A —>

> 0.

In the remainder of this paper, we assume familiarity with the theory of the
derived functors of the inverse limit (see for instance [3]), which will be shown to
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be intimately related to the derived functors (in the sense of Yoneda [7]) of the com-
pletion functor. Following Arens [1], we call a directed inverse system [Ay]yep of
abelian topological groups a sirongly dense invervse system if for each B € 1 the

natural mapping :lzin Ay — AB has dense range. It is clear that every quotient of a

strongly dense inverse system is strongly dense. We need the following lemma.

LEMMA 3. Let 0 — [A,] — [By]l = [Cyl — 0 be a short exact sequence of
strongly dense inverse systems of topological grvoups; that is, for each o, let

0 X
0 — Ay — B, —= Cy — 0

be an exact sequence of topological groups; also, let 0 E’l, A—-B X, C be the se-
quence of inverse limits. Then ¢ is a topological embedding and X is open onto its
range, which is dense in C (that is, 0 — A — B — C is left exact as a sequence of
topological groups).

Pvoof. The only nontrivial assertion is that x is open onto its range. It will be
enough to show that if U is open in B, and if
Pa: B — By, y: C — Cy, Ogt A — Ay
are the natural mappings, then X(p&l(U)) D x(B)N H&l(xa(U)). If
x € X(B) NI, xq(0),

we can write x = x(y) and I, (x) = x (u), with u € U. Then x4(py(y) - u) =0, and
since U is open and 0, has dense range, we can find n € A such that

bq 0gMm) +pu(y) = pa @) +puly) € U.

Then v = ¢(n) +y € p&l(U) and x(y) = x, which proves the lemma.

Now Yoneda [7] has defined the derived functors for each left exact functor from
a quasi-abelian category to the category of abelian groups. These functors are
unique, subject to the conditions of effaceability and exactness. In particular, we
can define the derived functors of the functor L that assigns to each abelian topolog-
ical group the abstract group of points in its completion.

The L are then unique, subject to the conditions
(1) L%=1,

(2) for each short exact sequence 0 = A — B — C — 0 there exists a (func-
torial) long exact sequence

0 — L9%A) — L9B) — LY%C) — LI(A) — L1(B) — LI(C) — L2(a) — -,

(3) if x € L (A) and i > 0, there exists a short exact sequence

0-ALB>Cc—>0

such that x is in the kernel of o : LY(A) — Li(B).

The discussion above shows that L! is the first derived functor of L. Let L! de-
note the ith derived functor of L.
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THEOREM 5. Let A be the inverse limit of a stvongly dense divecled inverse
system [Ay], where each Ay is a product of complete metrizable abelian topologi-
cal groups. Lel 11 be any product of complete melvizable abelian topological
groups. Then, for all i > 0,

(a) Li(1) = 0,
() LiA) Z1umf) [a,].
Heve 1im() denotes the ith devived functor of the inverse limit (see [3]).

Note that every complete group A is representable by an inverse limit, as in
the theorem.

Proof (by induction on i). Suppose i =1 and x € LI(II); since L! is effaceable,
there exist a group E and an inclusion ¢: I — E such that ¢.(x) = 0. But

A - T
0—1II - E— E/Il — 0 is exact, by Theorem 3, so that the exactness of the se-

A NG
quence E — E/II — LY(11) —» LY(E) implies x = 0. This proves (a) for i = 1. For
(b), we embed [A,] in a flasque inverse system [B,] of products of complete
metrizable groups (see [3]). Here B, = Hﬁ<a Ag, for all a. We define
B = 1lim By = Hae 1Ay . We get a short exact sequence of inverse systems

0 — [Ag] — [By] = [Cy] — 0 in which each C, is complete; this gives rise to an
exact sequence

0—A—B—C—1lml) (@4, — o,
so that L!(A) = B/C = 1lim! [A,]. This proves (b) for i = 1. Now assume the theo-
rem is true for all j (0 <j <1i). Since Lit!l is effaceable, there exists, for each
x € Lit(1I), an exact sequence 0 — II %, E such that ¢,(x) = 0. Now each coordinate

projection of II = Hﬂ M?? - Mn gives rise to an invariant pseudometric pyp on I

that can be extended to E. We consider the Hausdorff completion E;; of E with re-
spect to Py - More generally, we consider, for each finite subset ¥ C I, the comple-

tion Er of E with respect to the invariant pseudometric ZneF py . The Erx form
an inverse system in a natural way, we have for each F an exact sequence

0— II My 2 Bp —Ex/ II M, —0

ner ner

of complete metrizable abelian topological groups, II ~ lim H?7 €F M?I , and we

define F

G = lim Eg, H = lim EF/ II M,

7
F F nel

The sequence 0 — Il X G — H — 0 is exact, and x*(x) = 0, since ¢ (x) = 0. But

since [ HnEF M, ] is a flasque system,

1im () [Eg] — lim(i)I:EF/ II Mn‘J

F ner
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is surjective; therefore, by the induction hypothesis, the natural mapping
LY(G) — L!(H) is surjective, and the exact sequence

Li(G) — Li(H) — Li+1(n) z(__’t Li+l(G)

implies x = 0. This proves (a) for i + 1. For (b), we embed [A,] in a flasque sys-
tem [B,] whose inverse limit will be a product of complete metrizable groups. If
[Cy] denotes the quotient system and C its inverse limit, then we get natural iso-
morphisms

Li(c) = LI*1(A)  and  1im™® [c,] = 1im(D) [A].

This completes the proof.

COROLLARY. If [Aqy] is a strongly dense inverse system of products of com-
plete, metric, abelian topological groups, the functors lim(1) [A,] depend only on the
natural group topology of the inverse limit group A.
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