THE mod p SMITH INDEX
AND A GENERALIZED BORSUK-ULAM THEOREM

Ewing L. Lusk

1. INTRODUCTION

In [3], R. Fenn proved a generalization of the Borsuk-Ulam Theorem, using the
index theory for spaces with free Z,-actions developed by C.-T. Yang in [5]. Here
we extend the index theory, using a slightly different approach, to spaces with free
Zp—actions for arbitrary primes p, and we use it to generalize Fenn’s theorem to
Z,-homology spheres with free Zp-actions. In particular, let S™ be a Zp-homol-
ogy m-sphere, and let T: S™ — S™ be a piecewise linear homeomorphism of period
p. Let f: S™ — S™M he a map whose degree d is not divisible by p, and let
g: S™ — R™ be an arbitrary map.

THEOREM 1. If m > (n - 1)(p - 1), then there is a pair {x, y} of distinct
points in S™M such that £(x) = Tf(y) and g(x) = g(y).

THEOREM 2. If m > n(p - 1) - 1, then there is a set {xgq, -, xp_l} of p dis-
tinct points in S™ such that

f(xg) = Ti(x)) = -+ = TP~} f(xp_l) and  g(xy) = glx;) = - = g(xp_l).

In the case where p = 2, each of these two theorems reduces to Fenn’s theorem.
If £ is the identity map, then the requirement that T be PL may be dropped. In
this case Theorem 1 is a slightly stronger version of a theorem in [1], and Theorem
2 appears in [4]. Theorem 2 can be used to show as in [3] that if M is manifold
covered by R"™, then for each map

F: 8™ — (Sm/Zp) XM (m>n(p-1) -1)
whose degree is prime to p, there is a point y € (Sm/Zp) X M such that F-1(y)
contains at least p points.

There are several parts to the argument. The first is the development of the
index theory for free Zj-actions, given in Section 2. In Section 3 we find an upper
bound for the cohomology of a certain configuration-like space and hence for its in-
dex. The proofs of the theorems occur in Section 4.

2. THE INDEX HOMOMORPHISM

Let X be a simplicial complex, and suppose that T generates a free, simplicial
Z-action on X, where p is prime. Let C(X) denote the simplicial chain complex
of X with coefficients in Z,. It can be shown that if z is an invariant cycle in C(X).

-1
then z =c¢ + Tgc + -+ + Ti ¢, for some ¢ € C(X). The homology groups of the
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chain complex (1 + Ty+ .-+ + T};Z_l) C(X) are isomorphic to the homology groups of
X/Zp. The requ1rements that X be a complex and T be simplicial can be elimi-
nated by the technique of Cech theory.

In the case p = 2, Yang [5] denotes these groups by H,(X; T) and defines for
each n an index homomorphism v: H(X; T) — Z, . Its bas1c properties are that
the index of a class is preserved under the homomorphism induced by an equivariant
map, and that the fundamental class of an m-sphere has index m. Motivated by the
approach in [2], we give here a different definition, which is simpler than Yang’s in-
ductive approach, generalizes his definition to primes other than two, and makes
particularly simple the proofs of the various properties. In what follows, all homol-
ogy and cohomology is taken with Z,, coefficients.

We recall that a free Zp-action on a space X induces a principal covering
X - X/ Zp, and that there is a principal covering E Zyp — BZy such that equival-
ence classes of coverings are in one-to-one correspondence with homotopy classes
of maps from X/Z to BZp. This means that if Z acts freely on X, there is a
map cx: X/ Zp — B Zp, depending on the action but otherwise unique up to homotopy,
such that if f: X — Y is an equivariant map between spaces with free Z -actions and
f: X/Z — Y/Z, is the induced map, then the diagram

is homotopy- commutative. We also recall that the cohomology of BZ, is known to
be the tensor product of a polynomial algebra on a two-dimensional class with an ex-
terior algebra on a one-dimensional class in the case p is odd, and.a polynomial
algebra on a one-dimensional class in the case p = 2. In either case, there is one
generator g, in each dimension n.

Definition. Let Zp act freely on X, and let cx: X/Z, — BZ be the classify-
ing map for the covering X — X/Z . Let z be an element of Hy(X/Z). Then the
index v(z) is the element of Z defmed by [ex(gn)](z).

PROPOSITION 1. If f: X — Y is an equivariant map, then v(f (z)) = v(z) for
all z € H (X/Z o)-

proof. v (2) = [c¥eg)1(E,(2) = [[ciegn)](@) = [ckle)]() = v(z).

PROPOSITION 2. Let z € Hn(X/Zp) Then v(z) # 0 if and only if for each
space Y supporting a free Zp-action and each equivaviant map f: X — Y the condi-
tion f «(2) # 0 is satisfied in H,(Y/Z,).

PTOOf If f: X — Y is an equivariant map-and v(z) # 0, then v(f (z)) = v(z) # 0,

so that f «2z) # 0. To prove the converse, apply the hypothesis to the map X — EZ
that 1nduces the classifying map. Then, if (cx), (z) # 0, we have the relations

v(z) = [ex(g)](z) = g, [(cx), (2)] # 0.
Definition. Let X support a free Zp-action. Then the index v(X) is the largest
dimension n for which there exists an element z in H,(X/Z) such that v(z) # 0.

PROPOSITION 3. The index v(X) is the largest n such that
cx: H (BZ,) — HNX/Z},) is nonzero.
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Proof. Let v be the index in the definition, and let v, be the index in the
statement of the proposition. If v;(X) = n, then there exists an element z in
Hn(X/Zp) such that v(z) # 0, which implies c¥ is nonzero. Hence v,(X) > v (X).
If v,(X)=n, then c%: H(BZ,) — H(X/Z;) is nonzero; in particular, c(gn) # 0.
Therefore there is a z in Hn(X/Zp) such that [c¥(g,)](z) # 0, which implies that
v1(X) > vy(x).

To compute the index of certain spaces, we recall that if G acts freely on a
space X, there exists a cohomology spectral sequence whose Ej-term is given by

ES'* = H3(G; HY(X)) and which converges to H*(X/G).
THEOREM 3. If H(X) =0 for 0 <i< m, then v(X)> m.

Proof. Consider the map of covering spaces
X —> EZp
l Cx l
X%, —> BZ,

Since the spectral sequence described above is natural and E Z is contractible, c;‘(

must be an isomorphism in dimensions less than or equal to m. The result now
follows from Proposition 3.

COROLLARY 1. If S™ is a homology m-sphere, then v(S™) = m.

3. A BOUND FOR THE COHOMOLOGY OF A CERTAIN SPACE
Let
F'(R™, p) = {(x{, x,, -, x,) € (R™MP| x; # %54 for i=1, -, p- 1 and x; # X,} .

There is a free Zy-action on F'(R", p), defined by cyclic permutation of coordi-
nates. In this section we find a bound for the index of F'(R™, p).

Let

K = {(Xl’ Tty Xp) € (Rn)p, Xl = XZ’ or XZ X3, tt,0or X -1 =X or

P p’

Xp = X1} N snp-l

Then FY(R", p) equivariantly deforms onto sPP-1 _ K. We shall find a lower bound
for H,(K) and then apply Alexander duality in SnP-1.

Definition. Let J = (i(1), -+, i(r)) be an ordered set of positive integers wholsAe
sum is p. Define the length ¢(J) to be r in this case. Let

X(i(1), -+, i(r)) = {(x;, -, xp) € (R)P| x; = x5 = =+ = Xy(1); X(1)r1 = = Ki(1)4i(2)}
= see = -1,
X (L) beetiro1 )bl = 0 = Xi(L)boeotife) ) NSPP7 L

Then X(i(1), ---, i(r)) is a sphere of dimension rn ~ 1. If I is an ordered set of

positive integers with £(I) = j <k, not necessarily having sum p, we define
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X(I, k, m) to be equal to U X(i(1), ---, i(r)), where the union is taken over all se-
quences (i(1), ---, i(r)) such that

s§li(s)=p, i(1), -, iG) =1, i(G+1) =m, j<r<k.

We allow I to be empty, in which case £(I) = 0.

m
tEMMA 1. | U %@,k @ [nxG, &k m+1) = U x@ k-1, m+s).

q=1 s>1
Pyoof. Let I=(i(1), ---, i(§)). If (xq, **-, xp) is the left-hand side, then for
some q < m,
Xp =7 FX) 77 (A Hee (G T T XA i
and
Xi(QeetiGHl = 777 S X (I - 4+i(jHmt1 -

The fact that @ < m causes at least two equations to overlap, and therefore Kk, the
total number of equations, can be reduced by at least one. Hence

(x1, ~x)e U x@Gk-1,m+s).
s>1

(Of course, the union is actually finite.) If the point (x;, -, xp) is in the right-hand
side, then its coordinates satisfy the equation

Ki(Ipeeetiiirl = 777 T X - +i(jHmts -

If we rewrite this equation as two equations, one of which is

X Wil = 777 T XA W+ (jHm o

it can be seen that (x1, ---, Xp) € X(I, k, m). If s> 1, splitting this same equation
shows that (x;, ---, xp) € X(I, k, m +1); if s =1, we split one of the other equations.

w
LEMMAz.ﬂwam;mcmdw,Hi“JFOX@k,m+sﬂ:=0y
0<i<n+k- 2.

Proof. The proof is by induction on k. Since X(0, 1, p) is an (n - 1)-sphere,
the lemma is true when k = 1. Next we use downward induction on £(I) to prove the
lemma for w =0 and k > 1. The largest £(I) can be is k - 1; in this case,

X(I, k, m) is an (nk - 1)-sphere, and the lemma is true if w = 0. Now suppose I is

Wl
fixed and that the lemma is true for all U c=0 X(J, k, m +s) with 2(J) > ¢(I). Ob-

r
serve that if I = (i(1), ---, i(j)), then X(I, k, m) =Uq:1 X(J, k, q), where
J = (i(1), -+, i(j), m) and r is some number less than or equal to
‘B

p-(iy+ - +ij;+m).

Therefore we apply the Mayer-Vietoris sequence, together with induction on r and
Lemma 1. Part of this sequence is
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r-1

U X(J’ k, q)) @ H]_X(J; k) 1’) - Hi X(I: k, m)

o
g=1

- Hi_l( U x6, x - 1,r+t)> =

£>0

Now the left side is zero for 0 <i <n +k - 2, by the inductions on r and £(I); and
the right side is zero for 0 <i <n +k - 2, by the induction on k. Therefore

H; X(I, k, m) = 0 for 0 <i<n+k - 2. This is the statement of the lemma if w = 0.
To complete the induction step we again apply the Mayer-Vietoris sequence, this

W
time to the union US:o X(1, k, m + s). Part of this sequence is

w-1
-——>Hi(U X(1, k, m+s))@H X(I, k, m +w) — H U X(1, k, m+s))

s=0

—>Hi_1( U X,k—l,m+w+t>—>

t>0
The left side is zero for i <i <n +k - 2, by induction on w, and the right side is
zero by induction on k. This completes the proof.
Let
= {(x1, =+, xp) € (RMP| x; =x,1 N snp-l
and let Y(I, k, m) = X(I, k + 1, m) N Z. Then, like X(I, k, m), Y(I, k, m) is a union

of spheres of dimension rn - 1, for j <r < k; and indeed Lemmas 1 and 2 are true
if X(I, k, m) is replaced by Y(I, k, m).

LEMMA 3. H;(K)=0 for 0<i<n-+p - 3.
2
Pyroof, TFirst observe that if we let X = Us:l X0, p-1, s),then K=X U Z,
By Lemma 2, H;(X) =0 for 0 <i <n+p- 3, and H;(Z) = 0 in the same range, since

7 isa ({p - 1)n - 1)-sphere. Furthermore, X NZ = Us:l Y(0, p - 2, s), and there-
fore by Lemma 2 and the remark following it, H;(X N Z) =0 for 0<i <n+p - 4.
An application of the Mayer-Vietoris sequence completes the proof.

THEOREM 4. H'F'R™, p)=04i>(n-1)(p-1).

Proof. By the remarks at the beginning of this section,
HiF'(Rn, p) Hl(Snp 1 - K) = an 1 I(Snp-l 4 K) °

Now we apply the homology exact sequence of the pair (S"P-1 K), together with
Lemma 3, to obtain the desired result.

COROLLARY 2. Let Z, acton F'(R™, p) by cyclic permutation of coordi-
nates. Then H;(F'(R™, p)/Zp) =0for i>n-1)(p - 1).

Proof. One can apply Lemma 3 of [2], among other arguments.
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4. PROOFS OF THEOREMS 1 AND 2

As in [3], we may assume that f is PL and nondegenerate, since it can be ap-
proximated by such functions. If T: S™ — S™ js a free PL Zp-action on 8™, there

are triangulations L and K of S™ such that the maps L L K I, K are simplicial,
and we may assume that the triangulations are so fine that if

f(xg) = Ti(x}) = -+ = TP i(x, ),

then st(x;; L) N st(x;; L) = ® for i # j. Suppose further that each simplex of K and

L is oriented so that EUEL 1-0 and qu{ 1-p each represent the fundamental

cycle of S™ if the sums are taken over all m-simplices. These will be called the
posilive orientations of these simplices. Let

A={(xq, =, xp_1) € S™X - X 8™| f(xg) = Tf(x)) = -+ = TP H{x,_1) }.

We shall show that A has a triangulation that can be oriented so that A is an invari-
ant cycle of index m.

If h: L — K is simplical and ¢ and p are oriented simplices of L. and K of the
same dimension, then we let the statement h(c) = p signify that h maps ¢ onto p in
an orientation-preserving manner. Now suppose that ¢ 0, ---, oP-1 are r-simplices
of L such that f(¢0) = Tf(g !) = --- = TP 1 {(¢ p"l), oriented so that f(¢?) is a posi-
tively oriented simplex of K. Suppose oi= <ab, e air> for each i, with

f@)) = Ti@}) = - = ™' f@ph

for each j, noting that <aB, LN air> may or may not be the positive orientation for
ol. Let C(c9, ---, 0P-1) denote the simplex

0 ... -1 0 ... -1y .. 0 ... ,p-1
(@g, -, aP™h, @J, -, aPh), -, @%, -, aP))

of 8™ x .- x S™ . Then the collection J of all such simplices is a triangulation for
A. We orient each C(¢0, -+, oP-1) by prefixing it by (-1)J, where j is the number

of simplices in the set o0, --- oP-! for which <a an> is the negative orien-
tation for oi .

LEMMA 4. Lel C be the m-chain consisling of the sum of all the m-simplices
of J, orvienled as above. Then C is a cycle.

Proof. Let C(79, ---, 7P-1) be an (m - 1)-simplex of J. We shall show that if

b

it occurs in @C, then it occurs once with negative orientation for each time it occurs
with a positive orientation. Let oJ and 7 be the m-simplices that lie on either
side of 7J, for each j. Since 7J inherits opposite orientations from ¢J and 7J , we
may dssume that

i _ ) eee ol - j
T) = <a(%’ ’ d%n—l)’ OJ <b a()’ a ’ rn l>
.= j J al ... J
nj (ag, ¢, af, cal )

and that these are the positive orientations for o) and nj under TJf for all i-
There are essentially three cases.
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Case 1. The simplices £(c9), -+, f(aP-1), f(50), :--, f(nP-1) are all distinct,
and

£(0% =Ti(o!) = =TP-1f(eP- 1) =p;, (0 =Ti(n!) = =TP-li(nP-1) = p,,

where p; and p, are positively oriented simplices of K. The following diagram

illustrates this situation in the case m = 1. Note that 71 = < ap

) a(l) ag-l
0 0
270 n LI B p-INGT!
b’ 0 b ! pP1 Pl
f f f f f f
v v v v \ ')
fa fGab i (™
£0Y) £ £oh £ich f@P £(cP
Here C contains
(a0, =+, 0P71) = {0, -, bP7Y), (@], -+, aB71), =+, (@0, e, aPl))
and
CnO, -+, np-1) = {(@2, -+, 1), (%, -+, ¢PY), (@7, -+, aP7L),
0 1
e (am_ oo a_p )>
Therefore, in 3C, C(79, ---, 7P-1) = <(a0, e, apl), e, (aom_l, - aﬁ;h)) oc-

curs once with each orientation and hence cancels out.

Case 2. The simplices £(00), ---, f(oP-1), £(n0), ---, f(nP- 1) are not all distinct,
but it is not possible to choose &) = oJ or &= nJ for each j=0, ---, p- 1 such that

£(£%) = Ti(E!) = .o = TP-1§(eP-1),

In this diagram f(o!) = f(y!) and f(oP-!) = f(nP-1), but TP-1£(£P-1) + T£(£!) re-
gardless of the choices of £P-1 and £1.
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1
ag ag ag—l
0 0
fo 'I.'O n 01 'T.'l n]_ F, Wl
0 0
b c b1 C1 bp_l cp—l
£ f £ £ £
v v v v
£( )
2 f(a T T f(ap 1
£%) £(c") ewh=£cch fP H=£ (P

Here C(79, -+, 7P-1) does not occur at all in 2C.

Case 3. There is at least one j such that

() £(c% = Tf(ol) = - = Téf(od) = TIE(-nJ) = --- = TP-1f(oP"})
or
(b) f(n0) = Ti(nl) = -+ = Tif(nd) = Tif(-0d) = -+ = TP L(cP1) .

(Note that the relation TJf(cJ) = TIf(nJ) is impossible.) It suffices to assume that
(a) occurs and that it occurs for only one value j.

ag a% ag_l
7 o . 3 n e L 1 NG
0 - -1
bO c bj cj P 1 P
£ £ £ £ £ £
N
v v / v 1 v
) £(ab )
f(ag) T T f(ag) T T 0
0 _ -1
£ £(cD) £h=£(eh) £@Ph O

Then the simplices
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C(UO; "ty Oj: Y Up—l) = <(b0? "t bJ; .”’ bp-l)’ (ag’ a(j.)i Tty ag-l)a
- (asn_ »ee, aP” 1 )>
and
0 ... _nj ... -1y = _ 0 .. @b e -1 0 .1 ... ,p-1
Ce0, ~, =i, e, oP1) = = (@O, -+, ed, oo, bP7Y), @, &), v, aBh),
e (g0 ee. gP-1
, (@0, e 2P l))
occur in C. (The minus sign occurs because <cj, ag, LN ag_1> is the negative
orientation for nJ.) In the boundary of each of these simplices, the simplex
C(TO, T, Tp-l) = <(a8’ R ag—l)y ) (aSn—l’ Tty a?rl'}l)>

occurs with the same orientation but cancels out because of the sign difference.
This concludes the proof that C is a cycle.

Consider the Z-action on S™M X .-+ X 8™ generated by the homeomorphism h,
where h is defined by the equation h(xg, - _1) (Xp-1, X0, ", Xp-2). This ac-
tion is free when restricted to the invariant subspace A and the cycle C is invariant
under this action. Therefore C represents a cycle C in A/Z . We shall now show
that C has index m.

LEMMA 5. Let K and L be homology m-spheres, and let f: K — L be a non-
degenevate simplicial map of degree d. Then, if fy: C(K) — C(L) s the induced
chain map and 7T iS an m- szmplex of L, theve exist d simplices that ave mapped

onto T in the sense that fy ('r) is a chain whose coefficients add up to d.

Proof. Let 271- 0; and 271- 7; be the fundamental cycles of K and L, re-
spectively. Then fy ( 271- oi) is homologous to d 27 1- 7;; but since there are no
(m + 1)-chains, we see that fy (E 1- oi) =d2J1- 7;. Therefore

I tylo") = ar
f#((Il):iTlO

and the result follows.
THEOREM 5. C is a cycle of index m.

Proof. Define a simplicial map ¢ of J onto L by the equation
$(C(00, -+, 0P-1)) = £(c9).

Then ¢ is equivariant with respect to the actions generated by h on A and T on
S™, It is easy to see that since £71(0?) contains d simplices in the sense of
Lemma 5, the simplex (0% will occur dP times in o 4(C). Since we are assuming
that d is not a multiple of p, this says that 0#(C) is a nonzero multiple of the funda-
mental ¢ycle of S™. The theorem now follows from Proposition 1 and Corollary 1.

Proof of Theorem 1. Suppose the conclusion is false. Then g(x) # g(y), for
every pair (x, y) of points in S™ such that f(x) = Tf(y). Thus, if (x4, -, Xp—l) € A,
we see that g(x) # g(x,) since f(xg) = Tf(x,), and g(x;) # g(x,) since
Tf(xl) = Tzf(xz) implies f(x;) = Tf(x,), and so forth. Therefore the map
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Y: A — (R")P defined by ¥(xq, -+, x 1) = (g(xg), -+, glx Xy 1)) is actually a map
into F'(R™, p), equivariant with respect to the actions that cyclically permute the
coordinates. Therefore y: A/Z, — F'(R", p)/Z, is defined, and ,( [c]) has in-
dex m, which contradicts Corollary 2 if m > (n - 1) p-1).

Proof of Theovem 2. The argument is the same as above, except that the space
F'(R™, p) is replaced by the space (R?)P - ARn, which has the homotopy type of

Sn(p-l }-1 )
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