STEENROD SQUARES AND REDUCTION OF
STRUCTURE GROUP FOR FIBRATIONS

Lewis Shilane

INTRODUCTION

All spaces considered in this paper will be assumed to have the homotopy types
of regular CW-complexes with integral homology of finite type. Z, coefficients will
be used for homology and cohomology, and A will denote the mod-2 Steenrod alge-
bra. We shall regard two principal fibrations G- E —- B and G' = E'— B' as
fiber-homotopically equivalent as principal fibrations, if there is a homotopy equiva-
lence G — G' that is a homomorphism and is compatible with a fiber-homotopy
equivalence of E — B with E' — B'. We shall be concerned with properties of prin-
cipal fibrations that are invariant under modifications of the type just described.

The diagram G — E T, B will therefore be used to denote any suitably chosen repre-
sentative of such a fiber-homotopy equivalence class of principal fibrations with
simply connected bases. For a representative that is a fiber bundle, the structure
group will be regarded as acting on the right on E. For a subgroup H of G, H\ G
will denote the space of right cosets of H, and G/H the space of left cosets.

E(w) will denote the Z, Serre cohomology spectral sequence of the fibration 7,
with Eg 9 = HP(B) ® HYG). In [1], [8, Section 4], [9], and [13], natural operations

stEpY - BRI (g 2<r <)

have been defined. These are compatible with the differentials, and they are com-
patible on E, with the act1on of the Steenrod algebra A on H¥E). If bX) g ¢ Ep 4
then Si(b Xg) = Sq]L qb@ g Of course, for any fibration, the action of A on the
cohomology of the total space the base space, and the fiber must be compatible with
the homomorphisms induced by the projection and the inclusion of the fiber in the
total space. Because of the properties of the st just mentioned, the Si clearly im-
pose additional restrictions upon the choices of the three spaces for a fibration.

In this paper, we consider two cases in which, for the fiber bundle G — E R B,
the assumption that the structure group G is reducible to a subgroup H leads to a

factorization of 7 of the form E - B X (H \ G) — B, where 7 is also a fiber bundle.
In the first case, H is normal; in the second case, G — H \ G is itself a fiber bun-
dle. The above-mentioned properties of the Si can therefore be employed with some
choices of 7 to show that such a reduction of the structure group is impossible.

For principal bundles over spheres, both types of reduction of the structure
group are worthy of consideration. As we shall see, the high connectivity of the
sphere leads to a reduction to an advanced stage in the Postnikov resolution of the
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path-space fibration over G, which is a normal subgroup of G. It is also possible to
determine the reducibility to a subgroup H of the second-type by looking at the exact
homotopy sequence for the fibration H — G — H \ G, since for a bundle G - E — 8"
the structure group can be reduced to H if and only if the homotopy class of the
classifying map S*~1 — G is in the image of m,_;(H) — m,_;(G).

We shall apply these principles to the calculation of the cohomology rings as
algebras over A of some principal bundles over spheres with compact Lie groups
as fibers. In Section 2, we also work in the other direction, using the known action
of the Steenrod algebra on H*(K), for compact Lie groups K, to show that for some
projections on left coset spaces K — K/G, the structure group cannot be reduced to
specific Lie subgroups H of G.

This material comprises part of the author’s doctoral dissertation at Princeton
University.

1. REDUCTION OF STRUCTURE GROUP

For the fibration G & E & B we have seen that, in E,(7),
Sib®eg = Sa" b g?.

Thus we lose all but one of the terms of

Siib®g) = 2 sdib®Sdtg
jtk=1

that the Cartan formula would give if the fibration were trivial and H*(E) were
simply H*(B) ® H*(G). We shall discuss some partial remedies for this loss in the
case where 7 is partially trivial, that is, the structure group can be reduced to
some proper subgroup.

Observation. Suppose the group of the fiber bundle 7 can be reduced to a nor-
mal subgroup H of G. Then there exists a principal bundle H — E L Bx(H \ G)

such that 7 factors as E 5 B x (H \ G) — B. This follows from the fact that the
group of 7 can be reduced to H if and only if the associated bundle

H\G - EXg(G/H) =Exg (H\G) — B

has a cross-section; this in turn is the case if and only if this associated bundle is
trivial. In this case the bundle H = E — E X (H \ G) can be viewed as having base
B x (H\ G).

THEOREM 1. Suppose the group of w can be veduced to a normal subgrvoup H
of G. Suppose g € HYH \ G) and p*(g) = g, wheve p is the projection G — H \ G.
Then for each b € HP(B), the element bX) g € Eg Un) survives to Efoq and is the
coset of T*(b X g).

Proof. Since the ring structure of E_(7) is compatible with that of E, and that
of H*(E), it suffices to prove the theorem for g =1 or b = 1. Suppose that § = 1.

Then E 5 B factors as E 5B X (H\ G) — B, and we see that #¥(b ® 1) = 7¥(b);
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observe that 7#*(b) is in the coset of E}i 0(17) determined by b®) 1 € Eg O(ﬂ). Now
suppose b = 1. The map G — H \ G has the factorization

G—E—-EXgH\G =BxH\G) — H\G,

so that i*7*(1® §) = g, showing that 1® g survives to EQ 9 and contains

F1QgE). =

We shall denote 7*(b ®) g) by b * g.

COROLLARY 1. If w satisfies the hypothesis of Theovem 1, and if in addition
E(m) collapses, then the A-subalgebra 7*(H*(B X (H \ G))) of H¥(E) is isomorphic
to H¥B) Q) Im p* with the Cartan formula action of A. The corvespondence is
b*g—b®&g, thatis, it sends each element to its coset in EE Un). If p* is sur-
jective, then this subalgebva is all of H¥(E).

Proof. Since ER ? = E} 9, the correspondence is one-to-one. The action of A
commutes with 7* and with (1 X p)*: H¥(B x (H \ G)) — H¥*(B X G). Since A acts on
H*(B X G) by the Cartan formula, it follows that if we regard A as having the Cartan

formula action on H*(B) Q) Im p*, the above-mentioned correspondence will be a
map of A-algebras. If Im p* = H¥(G), then

H*(B) ® Im p* = H¥B)® H*G) = E, (1) = E(n).

Because E is the graded module associated with a composition series for H*(E),
which is of finite type, we conclude that 7* is surjective. B

Remark. (See [7].) Suppose G is simply connected. Then we can modify G
within its homotopy type, by a modification of the type described in the Introduction,
and then choose Postnikov resolutions {GX} (k> 0) for G and {G,} (k > 0) for
the path-space fibration over G, with the following properties.

1. Each G, is a group with the homotopy type of a regular CW-complex, and
the projection j: G — G is a monomorphism onto a normal subgroup of G.

2. Each Gk-l has the homotopy type of a regular CW-complex, and the map
p: G — Gk-1 in the Postnikov resolution is the cokernel of j.

3. In the diagram G, % G £ Gk-1 (k > 1), the map p is a fibration that induces

isomorphisms in homotopy (and thus in homology and cohomology) in dimensions up
to k - 1. Also, j induces isomorphisms in homotopy for dimensions equal to or
greater than k.

4. Gy is (k - 1)-connected, and 7, (Gk-!) =0 for n > k. The spaces Gy and
GK-1 will necessarily be simply connected and have homology of finite type.

Notice that the hypothesis of the following theorem is satisfied if B is k-
connected.

THEOREM 2. Suppose the gvoup of w can be reduced to Gy. (Equivalently, the
classifying map for m can be lifted to BGk = (Bg)x+1 -) Then H*(E) has a subalge-

bra over A that is isomovphic to the tensor product of H*(B) with a subalgebra of
H*(G) containing all elements of dimension up to k - 1.

Proof. Let H =Gy, sothat H\ G = Gk-1, Apply Corollary 1, and the fact that
Im p* contains all elements of H*(G) of dimension less than k- 1. ®
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THEOREM 3. Suppose H*(G) is the algebrva Ax; , -+, x, ) genevated by a
n

simple sysiem of n elements that ave tvansgressive zn the universal fibration
G — Eg — Bg, and H*(Bg) = Zz[y11+l , e, Yin+l] with the Hopf algebva structurve

in which each y is primitive. Suppose H*(B) is a Hopf algebra. Let f: B — B be

such that t*: H¥(Bg; Z,) — H*(B; Z,) is 0. Let G — E 5 B denote the fibration
induced by f. Then the Z,-cohomology spectral sequence of m collapses.

Proof. As in Theorem 3.2 of [10], we show that the fiber-square spectral se-
quence for the diagram E — E collapses. The second-level term is

B_’BG

FSE, = (H*B)/Im £*) @ Tory,, ¢x(Z,, Z,) = H*(B)®E[zil, ez ]

n

Here we regard f* as a map of Hopf algebras and use E to denote an exterior alge-
bra. The generators zik are in filtration -1, while H*(B) is in filtration 0. Since

each of the differentials ‘d,. raises filtration by at least 2, we see that this spectral
sequence collapses. Thus FSE, = FSE, =~ H*(B) ® H*(G) as a module over Z,.
Since FSE,, is the graded module associated with a composition series for H*(E),
we see that H¥(E) ~ H*(B) Q) H*(G) as a module; in particular, the Serre spectral
sequence collapses. |

THEOREM 4. Suppose H*(G) is generated as an algebva over A by the classes
of dimension at most n - 2, and f: S — Bq, for some n greatey than orv equal to 2.
Suppose that either the ovder of f in 1,(Bg) is odd, ov that H*Bg) = 0. Then, for

the bundle G — E 5 S? induced by 1, the ving H¥(E) is isomorphic to H¥(S2 X G) as
an algebra over A.

Proof. We shall show that f* = 0 on reduced cohomology, so that the theorem
follows from Theorems 2 and 3. This is trivial when Hn(B ) = 0. In the other case,
let s be a generator of H, (S™; Z). For foo H a(8%; Z) — (Bg, Z), the element
f (s) is the image under the Hurewicz homomorphlsm of f € m(Bg), so that
m -f,(s) = 0 for some odd m. Then, under the reduction H (BG, Z) — H,(Bg; Z,),
the classes m-f (s) and f,(s) both go to the same element, which is 0. Thus

: H_(s™; 2)~—+H (Bg; Z,) is 0, and £*: HYBg; Z,) — H*(S™; Z,) is 0. ®

Now we present a version of the observation preceding Theorem 1, in which the
requirement that H be normal is replaced by the requirement that G = H\ G be a
locally trivial fiber bundle. This result has perhaps not been recognized previously.

THEOREM 5. Let G - E 5B bea locally trivial fiber bundle. Suppose the
structure gvoup of m can be veduced to H C G, wheve G — H\ G is a locally trivial
fiber bundle. Then theve exists a fibev bundle (not necessavily principal ov with

structure group H), H — E L Bx (H\ G), and 7 factors as E I B x (H\ G) —B.

Pyroof. There exists an open cover U B; of B such that up to fiber-homotopy

equivalence E = (E B; X G) / ~, where 27 denotes topological sum and the identi-
fications are as follows For (b, g) € B; X G we denote the corresponding element

of By XxGC 27 B; X G by (b;, g). Then, for b € B; N B;, we have the equivalence

J’
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(b;, g) ~ (bj, sj;(b) -g), for an appropriate s;;: B; N B; — H. Similarly, by employ-

ing an open cover U Vy of H\ G, we may construct G as 27 H X Vo) /~, with
identifications (h, vy) ~ (h-taﬁ(v), VB)’ where tyg: Vo N Vg — H. If h € H, and if
g € G is represented by (h, v,), then hg is represented by (hh, v,). Therefore

E = (( EBi) X H X (EVa)) /~, where (b, v) € (B; X V)N (BJ- XVB) implies
(b;, h, vg) ~ (bj, sij(b) -h-taﬁ(v), VB). Thus E is a bundle over B X (H\ G) with
fiber H, trivial over each open set B; X V.

An alternate proof, suggested by John C. Moore, dispenses with the requirement
that 7 and G — H \ G be locally trivial. The classifying map of 7 can be factored
through By. Let E' be the bundle over B induced by this map B — By . Letting H
act on the left on G, we see that E = E' X¢; G. Letting H act trivially on H \ G, we

have the relations E'Xy; (H\ G) = (E'/H) X (H\ G) = BX (H \ G), and we also have
the fiber bundle H = E'X; G2 E'X (H\ G). =

Notice that G — H \ G is a fiber bundle if H is a closed subgroup of the Lie
group G. Notice also that in Theorem 5 we could have dispensed with our general
assumption that B is simply connected. However, we continue to assume B is
simply connected, in what follows.

THEOREM 6. Theorvem 1 holds if the condition that H is novmal is replaced
by the condition that G — H \ G is a fiber bundle.

Proof. As in the proof of Theorem 1, we see that the result holds for b = 1.
The fiber-bundle map G — H \ G has the factorization

G- E=E'X;G—Exy H\G =BxH\G) — H\ G;
therefore the proof for g =1 may also be repeafed. |

COROLLARY 2. Corollary 1 also holds with the condition that H is normal
replaced by the condition that G — H \ G is a fiber bundle.

2. EXAMPLES AND APPLICATIONS

In this section, we present some applications of the spectral sequence operations
and of the results of Section 1. Descriptions of many of the fibrations that are em-
ployed, and of the cohomology and homotopy groups of the Lie groups and homogene-
ous spaces involved in these fibrations, can be found in [6, p. 217] and [5, pp. 132~
133]. Other references are supplied with some of the examples.

We shall now consider certain examples of a principal bundle E over a sphere,
with a Lie group as fiber, using our techniques to calculate H*(E) as an A-algebra.

Example 1. (See [4, Section 17].) Let G = G, (the exceptional Lie group).
Then

H*(G) = A(X3s X5, Xé)’
H*(BG) = ZZ [y41 Yo, Y7]7

7T4(BG) = 7.
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If f: S* — B is of odd degree in m4(Bg), then f*: H%(Bg) — H4(S?) is an epimor-
phism. The fiber-square spectral sequence for the diagram E — Eg has

m !
S4 — Bg
FSE, = FSE, = Tor H*(SY), 2
= Tor (Z,, Z,) = Elz4, 25, z4].

Z‘Z [Yi:Y6’Y7]

The next-to-last equality in this sequence involves a standard technique for calcu-
lating Tor (see [10, Theorem 2.4]). In the Serre spectral sequence for ,

E, = E[s4] ® Alx3, x5, X¢). Thus E,, is generated by s @ x5, 1® x5, and

1 (X x¢. We shall denote the unique classes in these cosets by s4 * x3, 1 * x5, and
1 *x¢. As aring, H¥E) = E[s4 *x3, 1 ¥ x5, 1 * x¢]. Since Sl(1®x5) =1 xg
and 1 * x4 is the only 6-dimensional class in 1) x¢, we conclude that

Sqal(1 * x5) =1 * x¢, and that Sq!(1 * x¢) = Sq! Sq!(1 * x5) = 0. We cannot immedi-
ately determine whether Sq2(1 * x5) = s4 * x3. However, Sqi(sy * x3) =0 (i > 1),
since this must be true for dimensional reasons when i = 1, 2, or 3, and when i > 3,
Sqi(s4 * x;) must have filtration greater than or equal to 5.

The exact homotopy sequence of the fibration S3 — G, LA SO('7)/SO(5) can be
employed to show that 7r3(S3) — 773(G) is an epimorphism. Thus 7 can be reduced to

an S3—bund1e, and there is a fibration > - EL g% x (SO(7)/S0O(5)). Since
Im p* = Axg, xg4), the image of 7* must be E[1 * x5, 1 * x¢]. Since this ring is an
A-subalgebra of H*(E), we conclude that Sq2(1 * xs5) = 0.

Example 2. Again let G = G, and let f: st - Bg be of even degree. Then f*
is necessarily 0 on reduced cohomology. Therefore the spectral sequence of 7 col-
lapses. Using the reducibility of 7 to an s3 bundle, we conclude that H*(E) has an
A-subalgebra that is isomorphic to E[s4]® A(x5, x¢) and is generated by
s4*1lesg®1 and 1 *x5 € 1 x5, together with 1 * x¢ € 1(®) x¢. There are
also unique classes 1* x; € 1® x5 and s, * x3 € s,&) x3. The products involving
these last two elements and elements of the subalgebra can be computed by employ-
ing dimensional considerations and the ring structure of E(7). For instance,

(1 *x3)-(1 *x5) € 1) x3X5, and thus this product is uniquely determined, there
being only one 8-dimensional class in H¥(E). We conclude that H*(E) ~ H*(S% X G,)
as a ring. Some Steenrod squares can be determined. As above,

Sql(1l * xg) = 1*xg,

and Sal(1 * x5) = 0 = Sql(1 * x¢) for i > 1. Since S3(s4® x3) = 54 x4, which con-
tains only one class, it follows that Sq3(s4 * x3) =5, * X . We cannot resolve
whether Sql(1 * x3) =0 or s4 * 1.

Example 3. (See [4, Section 22].) Again let G =G,. Then 79(Bg) = Z, and
HY%Bg) = 0. Consider the nontrivial bundle G, — E — S?. Since H*(G,) is gener-

ated over A Dby its classes of dimension less than or equal to 7, we conclude (using
Corollary 1) that H*(E) = H*(S? x G,) as an A-algebra.

Example 4. Let G =F,4. Then
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H*G) = A(xs3, X5, X¢, X15, X23),
H*Bg) = Z,[Y4) Yo Y75 Y165 Y24
19(Bg) = Z;,
H7(B;) = 0.

The subalgebra over A of H*(G) generated by the elements of dimension less than
or equal to 7 is A(x3, X5, X¢). Thus for the nontrivial bundle F4 — E — S?, the

algebra H¥(E) has a subalgebra over A which is isomorphic to H¥*(S? x G,).
Example 5. Let G = Spin(7). Then

H*(G) = A(X3 > X5, X¢g, X7);
H*(BG) = ZZ[W4, W6, W7 ) b8],

m9(Bg) = Z, D Z,;,
H)(Bg) = 0.

The subalgebra of H*(G) generated by the elements of dimension less than or equal
to T is the whole ring, so that for each bundle G — E — S? we have the isomorphism
H*(E) ~ H*(S? x G) as A-algebras.

Example 6. Again let G = Spin(7). Then m4(Bg) = Z. If f: S* — Bg is of odd
order, then f* is an epimorphism in cohomology. In the fiber-square spectral se-
quence for the diagram E — E we have the relation

. ml {
st L g,

FSEZ = TOI‘F > (sz Zg) = E[U7, us, Uy, V7].
LZ [w4,w6,w7,b8]

Since the generators of this last algebra are in filtration -1, we conclude that

FSE, = FSE_ , and that in the Serre spectral sequence for G — E 7, 54 , the stage
E, is generated by s, x3 and 1 x5 and 1) x(, together with 1) x-.

The exact homotopy sequence of G, — Spin(7) — S’ shows that 7 can be re-

duced to a G,-bundle. The spectral sequence of G, — E T, 8% x 87 can be used to
show that there is a class 1 ¥ y; in 1) y7 such that E[i * y;] is an A-subalgebra

of H*(E). Thus Sqi(1 * y,) =0 for i > 0.

Similarly, from the homotopy sequence of Spin(5) — Spin(7) — SO(7)/SO(5) we
conclude that the unique classes 1 * x5 € 1) x5 and 1 * x4 € 1) x¢ generate an
A-subalgebra of H¥(E). Thus Sql(1 * Xg) = 1 * x¢, and it is also true that
Sqi(1 * x5) =0 for i > 1, and Sqi(1 * x¢) = 0 for i > 0. Let s4 * x3 denote the
unique element in s4®x3 . Then, reasoning as in Example 1, we conclude that
Sqi(s4 * x3) must be 0 for i > 0. Thus H*(E) ~ Efsy * x5, 1 ¥x;, 1 ¥ x5, 1 * x4]
as an algebra, and the only nontrivial Steenrod square is Sq!(1 * xg) = 1 * x¢ .
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If f is of even order, the spectral sequence of 7 collapses. In this case we are
left with some unanswered questions. For instance, for the unique classes
1*x3¢€ 1(x3 and s4* 1€ 54 1, does Sql(l * x3) =54 ¥ 1?

Example 7. Let G = Spin(9). Then
H*(G) = A(X3) X5, X¢, X7, Y15),
* _

HY(Bg) = Z,[wy, we, wq, wg, bygl,

H(Bg) = 0.
For each nontrivial bundle G —» E 5 §9 , the spectral sequence collapses. The A-
subalgebra of H¥(G) generated by the elements of dimension less than or equal to 7
is A(x3, X5, X¢, X7); thus H*(E) has an A-subalgebra generated by a class

sg*1lesqg®1,aclass 1 *x3 € 1®x3,aclass 1 *x5 ¢ 1® x5, a class
1*x,€el ®x6, and a class 1 * x; € 1) x;. Looking at the exact homotopy se-

quence of Spin(7) — Spin(9) LA S1%, we see that 7 can be reduced to a Spin(7)-bundle.
It is easily seen that p*(s;5) =y;5. Suppose then that Spin(7) = E 5 89x S15 ijsa
fiber bundle, and let 1 * y,5 denote 7*(sy5). Then, as an A-algebra,

H*(E) ~ H¥SH @ A(1 * x5, 1% x., 1 *x4, 1 ¥x,, 1 *y,5) ~ HXS9% Q).

Example 8. (See [3, Section 9].) Let G = SU(3). Then

H*(G) = Alx,, xg),

H*(BG) = ZZ [Y4, Y6]’

14(Bg) = Z,D Z;.

Since the A-subalgebra of H¥(G) generated by all elements of dimension less than
or equal to 5 is the whole ring, we conclude that for each bundle G — E — S7, the
A-algebra isomorphism H*(E) ~ H*(S7 X G) holds. The same is true when S7 is
replaced by a sphere of higher odd dimension. Similar results hold for other SU(n),
since H*(B SU(n)) has only even-dimensional cohomology. For instance, one can ex-
ploit the fact that the first non-0 homotopy group of odd dimension of BSU(4) is

71'9 = Z8 @ Z3 .
Example 9. Let G = Sp(2). Then

H*G) = Alx;, x9),
H*(BG) =17 [Y4; YS];
T5(Bg) = m14(Bg) = Z,.

Consider a bundle G — E & §5. The A- subalgebra of H*(G) generated by elements
of dimension less than or equal to 3 is E [x3]. Thus H*(E) has an A-subalgebra
generated by the unique classes sz * 1 € s5® 1 and sg * X3 € 55®x3. The exact

homotopy sequence of Sp(1) — Sp(2) LA S’ shows that 7 can be reduced to a
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Sp(1) = S3-pundle. Since p*(s7) = x7, we see that for the unique class

1*x; € 1® x, the algebra Efss * 1, 1 * x;] is also an A-subalgebra of H*(E).
Thus H*(E) ~ H*(S’ x Sp(2)) as an A-algebra. The same reasoning with S® re-
placed by S6 shows that for each bundle G — E — S©, the A-algebra isomorphism
H*(E) ~ H*(S® x Sp(2)) holds.

The following examples employ Theorem 5 but do not require the spectral-
sequence operations in any essential way. We shall occasionally use the fact that the
Steenrod operations commute with the homomorphisms induced by the projection and
fiber inclusion in a fibration.

We show, in the case of certain classical fibrations consisting of the projection

of a Lie group on a homogeneous space, G — K I K/G, that the structure group can-
not be reduced to a particular Lie subgroup H of G. Under the assumption that this

reduction is possible, there is, by Theorem 5, a fibration H — K o, (K/G) x (H\ G).
The existence of this fibration will lead to a contradiction.

Example 10. (See [3, Section 9].) Let G = SU(3), let K = G,, and let
H =SU(2) =S3. Then K/G =56 and H\ G =8°. If the group G of the bundle 7
were reducible to H, we would have the spectral sequence

E,(#) = H*(S® x %) @ H*(H) = E[s;, s5]®@ E[s;],
which converges to H*(K) = A(x3, X5, X¢4). By comparing ranks in each dimension,
we see that this spectral sequence collapses. We must have the relations 7*(sg) = x5
and 7¥(sy) = X¢ . But Sql (x5) = X¢ , while Sql(s5) = Q.

Example 11. Let G = Spin(6), let K = Spin(7), and let H = Spin(5). Then
K/G =8% and H\ G =85. If the group G of 7 were reducible to H, we would have
the relations

E,(#) = H¥(S® x $°) @ H*(H) = E[sg, s51®@ Alxs, x7),

and this spectral sequence would converge to H¥(K) = A(ys3, y5, V¢, ¥7). Thus, it
would be true that 7*(sg) = y5 and 7*(sy) = y, . However, these statements are con-

tradictory, since Sql(ys) = y¢, while Sql(ss) = 0.

Example 12. (See [3, Section 10] and [4, Theorems 8.7 and 8.8].) A situation
quite similar to that above is obtained if we specialize the following to the case
where n is odd. For any n > 1 and k <n, let G =SO0(n - 1), let K = SO(n), and let
H=80(n - k - 1). Then K/G =8"-1, Here of course we are considering the well-
understood problem, whether the (n - 1)-sphere has k independent vector fields.
Suppose k is the largest power of 2 dividing n. If the group G of 7 were reducible
to H, we would have the fibration

SO(n - k - 1) — SO() 5 sn-1 x (SO - 1)/SO( - k - 1)).

There are classes x € HA"X-1(H\ G) and y € H*-K-1(K) such that 7*(x) =y. But,
as calculated'in Theorems 6.1 and 7.2 of Chapter 4 of [11], the class Sqk(y) is the
generator of H*-1(K), while for dimensional reasons SqX(x) = 0.

Example 13. (See [2] and [12, p. 151].) Let G =Fy, let K = E4, and let
H = Spin(9). Then

H\ G = II = the Cayley projective plane.
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If the group G of 7 were reducible to H, we would have the relations

H*((K/G) X 1) ®) H*(H)

E, (7)

(Alzg, 2;7) ® Z, [rs]/r?é)® Alws, W5, Wg, W7, Y15),

and this spectral sequence would converge to
H*(K) = A(x3, X5, Xg, Xg, X5, X]7, X33) -

Since H'(K) = 0, the class 1® w- cannot persist to a non-0 class in E{7). How-
ever, since EPZ) 47) =0 for 2 <p <1, the class 1®w7 persists to E,. Yet a

class in E(Z) 7(7) cannot be in the image of any d,., giving a contradiction.

Example 14. (See [2] and [12, p. 151].) Let G = E¢, let K = E,, and let
H=F,. If the group G of 7 were reducible to H we would have the relations

H*((K/G) X (H\ G)) ® H*(H)

E,(7)
= (A2, 2155 227) @ Alwg, W) Alx;, X5, X4, X5, Xp3),
and this spectral sequence would converge to
4 4 4
H*(K) = (Zz [r3 y T, rg]/(r_?, » I'g, 1‘9)) ® A(1‘15 » 17, To3, 1‘27) .

The class w;;( 1 persists to E, . The only possibility for it to be in the image of
some d,. occurs if it is equal to d,(z; ¢ &) z¢); however,

do(z; o ®xg) = (2,0@ 1) -;(1®x¢) = 0.
Thus 7*(w;;) must be the unique 17-dimensional class rj;. But Sql(r,,) = r% ,
while Sql(w,-) = 0.

Example 15. (See [4, Section 20].) Let G = Spin(9), let K = F4, and let
H = Spin(7). Then K/G =1 and H\ G =815, If the group G of 7 were reducible
to H, we would have the relations

Ez(ﬁ) = H*(H X SIS)® H*(H) = ((22[38]/32)®E [515]) ® A(X37 X5, X6, Y7):

and this spectral sequence would converge to H*(F4) = Alws, ws, wg, Wi5, W23).
The class s;g X 1 must persist to E,. The only possibility for it to be an image
occurs when it equals d7(eg &) x¢), which is however

(1@ xy) dAeg®@ 1) +(eg®1)-a;(1®x¢) = 0.

Thus 7*(s;5) = w;5. This gives a contradiction, since Sq%(w,z) = w,3 while
Sq8(s;s) = 0.
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