DISTRIBUTIVE NOETHER LATTICES
D. D. Anderson

1. INTRODUCTION

R. P. Dilworth [4] introduced the concept of a Noether lattice as an abstraction
of the concept of the lattice of ideals of a Noetherian ring. In [2], K. P. Bogart
showed that a distributive regular local Noether lattice of dimension n is isomorphic
to the sublattice RL, of ideals of F[Xl, LI Xn], where F is a field, generated by
the principal ideals (X;), ---, (X,) under multiplication and joins. In [3], Bogart
further showed that each distributive local Noether lattice is a certain quotient of
RL,. E. W. Johnson and J. P. Lediaev [7] characterized the distributive Noether
lattices that can be represented as the lattice of ideals of a Noetherian ring.

By a semigroup, we shall mean a commutative semigroup with 0 and 1, written
multiplicatively. In Section 2 we show that the lattice of ideals of a semigroup is a
quasi-local distributive multiplicative lattice, and we give a necessary and sufficient
condition for a multiplicative lattice to be the lattice of ideals of a semigroup. As a
corollary, it follows that a distributive local Noether lattice is the lattice of ideals
of a certain type of semigroup. In Section 3 we show that every distributive local
Noether lattice can be embedded in the lattice of ideals of a Noetherian ring. In
Section 4 we consider distributive regular Noether lattices. Two characterizations
of distributive regular Noether lattices are given. An interesting result proved in
this section is that if in a principally generated distributive multiplicative lattice
two primes are not comaximal, then their join is again prime.

2. SEMIGROUPS

Let L be a multiplicative lattice. An element M of L is meet (join-) princi-
pal if AMAB=AAB:M)M (if (AMVB:M)=AV (B:M)) for all A and B in
L. An element M of L is weak-meet (weak-join) principal if

MAB = (B:M)M (BM:M) = BV (0:M))

for all B in L. A principal element is an element that is both meet-principal and
join-principal. We say that a multiplicative lattice is gquasi-local if it has a unique
maximal element.

Let S be a commutative semigroup with 0 and 1, written multiplicatively. The
set-theoretic union or intersection of each set of ideals is again an ideal. Thus
L(S), the lattice of ideals of S, is easily seen to be an infinitely distributive multi-
plicative lattice. (Recall that a lattice L is said to be infinitely distributive if

AN (\/a Ba) =V, (A ABy) forall A ¢ L and {By} C L, where {a} isan
arbitrary indexing set.) The set of nonunits of S forms the unique maximal ideal of

S, so that L(S) is quasi-local. Each principal ideal (x) of S is meet-principal in
L(S); however, it need not be weak-join-principal. For example, if S = {0, 1, x, y}
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with multiplication x = x2, y = y2, and Xy = 0 = yx, then (x) and (y) are not weak-
join-principal in L(S). Note that (x, y) is principal in L(S), but is not join-irreduci-
ble.

A principal ideal (x) of S is (weak-) join-principal if and only if for all
b, c € S, xb =xc # 0 implies (b) =(c). Thus L(S) is principally generated if and
only if for every x € S, xb =xc # 0 implies b =Ac for some unit A € S. A semi-
group satisfying this condition will be called a weak-cancellation semigroup. For a
weak-cancellation Noetherian semigroup S, L(S) is a distributive local Noether lat-
tice. The converse is also true, and it will follow from the next theorem.

THEOREM 1. Let L be a multiplicative lattice. L is isomovphic to the lattice
of ideals of a semigroup if and only if

(1) L is infinitely distributive,

(2) L is quasi-local, and

(3) theve exists a sel S of weak-meet-principal elements of L that genervates L
under joins, and is closed under products, and whose elements are join-irreducible.

Proof. Clearly, the lattice of ideals of a semigroup satisfies (1), (2), and (3).
Now (2) and (3) imply that S is a semigroup (with 0 and 1). Let L(S) be the lattice
of ideals of S; we show that L(S) is isomorphic to L via the map 6: L(S) — L given

by 6(J) =\/{x € S] x € J} for each ideal J of S. Clearly, 6 is well-defined, pre-
serves order, joins, and products, and is surjective. Thus it remains to show that
for two ideals J and K in S, the inequality 6(J) < 6(K) implies J C K. For xq € J,

%o < 0(3) < 6(K) = V{x € 8| x € K}, so that by the distributive law
XQ =x0/\(\/{x€S|x€K}) =\/{x0/\x[xeK}.

Since each x € K is weak-meet-principal, xg =\/{(x0 :x)x| x € K}. Now each
(x0 :X) is a join of elements of S; also, S is closed under products, and x¢ is join-
irreducible. Thus Xy must be a multiple of some x € K, so that xg € (x) C K.

In a local Noether lattice, a weak-meet-principal element is principal and join-
irreducible [2]. The following theorem now follows immediately from Theorem 1.

THEOREM 2. A distributive local Noether lattice is the lattice of ideals of a
weak-concellation Noethevian semigroup.

Suppose L is a distributive local Noether lattice. Then L is isomorphic to
L(S), where S is a weak-cancellation Noetherian semigroup. If we define a ~ b
whenever (a) = (b), then S* =8/~ is a Noetherian semigroup with the property that
xa = xb # 0 implies a = b; moreover, L(S) and L{(S*) are isomorphic.

3. AN EMBEDDING THEOREM

We say that a Noether lattice L is embeddable if there exist a Noetherian ring
R and a product-preserving lattice monomorphism L — L(R) that sends principal
elements to principal elements and 0 to 0.

THEOREM 3. A distributive local Noether lattice is embeddable.

Proof. Let L be a distributive local Noether lattice. By Theorem 2, L = L(S),
where S is a weak-cancellation Noetherian semigroup whose only unit is 1. Let
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{x, =+, Xx,} be a minimal basis for the maximal ideal of S. Let Zg be the addi-
tive semigroup of nonnegative integers, and let T =Zg X *-* X Zg (n times). We de-

fine the congruence ~ on T by the rule that (aj, -+, ay) ~ (by, -+, b,) if
X?l"'Xin — X?l...xgn.

Let & be the semigroup T/~, let F be a field, and let F[X, & ] be the semigroup
ring over & with coefficients in F. The basis elements of F [X, & ] will be denoted
by X(a;, -+, ap), where (aj, +--, a,) € &. Since F[X, ] is a homomorphic image
of the polynomial ring F[X,, ---, X, ], it is Noetherian. The map 6:8 — F[X, 9]
determined by

al a -
X, ex, o~ X, v, a))

induces a map 6: L(S) — L(F[X, #]). (The congruence ~ ensures that both maps
are well-defined.) Clearly, 6 preserves joins, products, and order, and it takes O
to 0. Since principal elements in L(S) are join-irreducible, 8 takes principal
elements to principal ideals.

Next we show that 6 is injective. Let J, K € L(S), and suppose 6(J) = 6(XK).

a) ay, . . aj ay
For x;° --- x_ " € J, it suffices to show x;" --- X, " € K. Now
- a] an
(X(ay, =+, ay) = (0(x; " x, ) € 0(K),
so that X(a;, ---, ay) =f;j;+ -+ +fmim, where f1, -+, f,, € F[X, #] and
j1 5 ***» Jy are homogeneous elements in 6(K) with j; = 6(y;) for some y; € K.

Writing each f; as a sum of homogeneous elements and collecting terms, we obtain
the relation X(a;, -+, a,) = fj, where f € F[X, &#] is homogeneous and j € 6(K) is

a a
homogeneous with j = 6(y) for some y € K. Thus x;1 .- x," € (y) C K.

It remains to show that 6 preserves meets. This follows easily from the fact
that the images of ideals of S are homogeneous in F[X, ¢].

Bogart [2] has defined a Noether lattice embedding as an embedding that further-
more preserves prime and primary elements. Our embedding need not be a Noether
lattice embedding. However, if & is a torsionless cancellation semigroup, then a
homogeneous ideal of F[X, &#] is prime (primary) if and only if it is prime (pri-
mary) with respect to homogeneous elements [8, p. 124]. Thus, if & is a torsion-
less cancellation semigroup, then the embedding is actually a Noether lattice embed-
ding. Applying this construction to RL,, we find that & = Zg X --- X Zp (n times),
and hence we obtain Bogart’s embedding into F[X, #]=F[X,, -+, X, ]

In [7], E. W. Johnson and J. P. Lediaev prove that a distributive Noether lattice
is representable as the lattice of ideals of a Noetherian ring if and only if it satisfies
the weak-union condition. (Recall that a lattice L satisfies the weak-union condition
if for each set of three elements A, B, and C of I with A £ B and A £ C, there
exists a principal element E < A with E £ B and E £ C.) A multiplicative lattice is
called an r-lgttice if it is modular, principally generated, and compactly generated,
and if its greatest element is compact [1]. Observing that a lattice-ordered abelian
group is the group of divisibility of a Bézout domain, we can show that a distributive
r-lattice domain L can be represented as the lattice of ideals of a ring (necessarily
a Priifer domain) if and only if L satisfies the weak-union condition.
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4. REGULAR DISTRIBUTIVE NOETHER LATTICES

We begin with a short proof that a distributive regular local Noether lattice of
dimension n is isomorphic to RL, [2]. First we remark that RL, is isomorphic to
the lattice of ideals of S_, the free semigroup on n elements.

THEOREM 4. Every distributive vegulay local Noether lattice L of dimension
n is isomovphic to L(Snh), the lattice of ideals of the free semigroup on n elements.

Pyoof. By Theorem 2, L is isomorphic to L(S), the lattice of ideals of S, where
S is a Noetherian weak-cancellation semigroup whose only unit is 1. Now S is a
homomorphic image of S,, say 8: S, — S with X; — y;, where X;, -+, X,
(yy, *-+» ¥p) is a minimal basis for S, (for S). Since dim S, = dim S, 0 is prime
in S; thus S is a cancellation semigroup. To show 6 is an isomorphism, it suffices
to show each (y;) is prime. But S/(y;) is again regular and hence a domain; there-
fore (y;) must be prime.

We mention another interpretation of RL,. Let R be a local ring, and let
X1, ***, Xn be an R-sequence of length n. The collection of all ideals generated by
monomials in x;, ***, X, is a distributive regular local Noether lattice of dimension
n [6], [9]. Theorem 8§ is a global generalization.

As for rings, we define a Noether lattice to be regular if Ly is a regular local
Noether lattice for every maximal element M of L. A regular Noether lattice is
easily seen to be a finite direct product of regular Noether lattice domains. In par-
ticular, a distributive regular Noether lattice is a finite direct product of distributive
regular Noether lattice domains. A principally generated multiplicative lattice do-
main is called a UFD if every principal element is a product of principal primes. A
distributive Noether lattice domain is regular if and only if it is a UFD. Further,
any localization of a distributive regular Noether lattice is still regular.

The next theorem, while interesting in its own right, will be used to give our
first characterization of distributive regular Noether lattice domains.

THEOREM 5. Suppose L is a principally generated distributive multiplicative
lattice. Fov any two primes P and Q of L, either P\ Q is prime or PV Q =1,
where 1 is the greatest element of L.

Proof. Let A and B be principal elements, with AB < P V Q. By the distribu-
tive law, AB = (ABA P) V (AB A Q). Because AB is principal, there exist C and D
in L such that AB/\ P = ABC and AB A Q = ABD. Hence

AB = ABC V ABD = AB(C Vv D).

Since AB is principal, I=CV DV (0: AB). We can assume AB £ P and AB £ Q;
therefore ABC < P implies C < P, and ABD < Q implies D < Q. Hence
I=PVQV(0:AB) =PV Q, since AB(0:AB) = 0 < P implies (0:AB) < P.

Remark. If in a principally generated distributive multiplicative lattice A is
P-primary, B is Q-primary, and A and B are not comaximal, then A VB is
P V Q-primary.

THEOREM 6. Let L be a vegulay distvibutive Noether lattice domain, and let
P be a nonzevo prime in L. Then rank P =r if and only if theve exist r distinct
nonzevo principal primes Py, --+, P, whose join is P. Furthermove, these princi-
pal primes ave uniquely detevymined.
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Pyroof. The proof will be by induction on r = rank P. The case r = 1 needs no
further proof, since L is a UFD. Suppose the result is proved for all primes of
rank less than r, and let Q < P be a prime of rank r - 1. By induction,

Q=P;V -V P._y, where Py, ---, P,._; are distinct nonzero principal primes.
Now Q < P implies there exists a principal element A with Q < Q V A < P. Since
L is a UFD, we may write A as a product Q; --- Q, of principal primes. Since P
is prime, say Q< P, then

Q <Q\/AS QVQI = Pl \/"‘VPr_l\/QIS P,

and P; V --- VP._|V Q, is prime. Therefore P=P; V ... VP._; VQ;.

Conversely, suppose P =P; V ---V P,., where Py, -+, P,. are distinct nonzero
principal primes. Now Lp is a regular distributive local Noether lattice, and
P,p, -+, P.p are distinct nonzero principal primes in Lp. Hence

rank P = rank Pp =r.

We are now in a position to characterize distributive regular Noether lattices.
For a multiplicative lattice L, we define Spec(L) = {P € L| P is prime}. Clearly,
two regular distributive local Noether lattices are isomorphic if and only if their
spectra are isomorphic as posets. We extend this result to arbitrary distributive
regular Noether lattice domains.

THEOREM 7. Two distributive vegular Noethevr lattice domains L and L' ave
isomovphic if and only if Spec (L) and Spec (L') are isomovphic as posets.

Proof. Let 6: Spec (L) — Spec(L') be an isomorphism of posets. If P is a
prime of rank one (that is, a principal prime) in L, then 8(P) is a principal prime
of rank one in L'. We first extend 6 to principal elements of L. Since L is a
UFD, each principal element X has a unique decomposition into a product of princi-
pal primes, say X =P, -+ P,,. We define 6(X) = 6(P;) - 6(P,). This map is well-
defined and injective, and it preserves products of principal elements and maps onto
the set of principal elements of L'. We extend 6 to L — L' by linearity: if
X=X,V VX,, where X, ---, X, € L are principal, then we define

B(X) = 0(X,) V- VO(X,)
in L'. First, we must show that 6: L — L' is well-defined. Suppose
X, Vo VX, =Y Ve VY,
are two representations of A € L as joins of principal elements. We must show
that 6(X;) V -+ V 6(X,) = 6(Y;) V--- V 6(Y,,). Now, for each maximal element M
of L, 0yp: Spec(Lyp — Spec(Lp(m) is an isomorphism of posets, and hence it ex-
tends uniquely to an isomorphism 6ys: Ly — L (). Thus
(0(X) VeV XM = (6(Y1) Vs VO(Y )M
for every maximal element M of L. Hence
OX )V VOX) = 6(Y) V-V o(Y,).

A similar proof shows that 6 is injective. The remaining details are easily
verified.
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Suppose L is a distributive regular Noether lattice domain, and let K be the
set of nonzero principal primes of L. Let FP(K) be the set of all finite subsets of
K. We may embed Spec (L) into FP(K) by sending 0 to the null set, and
P=P,V--VP, to {Py, -, P}, where P,V -V P, is the unique representa-
tion of P as a join of principal primes (Theorem 6). As a subset of FP(K),

X = Spec (L) satisfies the conditions

(1) the ascending chain condition (ACC),
(2) Z CY € X implies Z € X, and
(3) {P} € X for every nonzero principal prime P.

Conversely, suppose K is any set, and let X € FP(K), the set of all finite sub-
sets of K. Further, suppose X satisfies the conditions (1), (2), and (3). Then there
exist a (unique) distributive regular Noether lattice domain L, a bijection 6 from
the set of nonzero principal primes of L. onto K, and an isomorphism of posets
§: Spec (L) — X such that for each P € Spec (L), 8(P) = {6(P}), ---, 6(P,)}, where
P=P; V...V P, is the unique decomposition of P as a join of principal primes.

We sketch the existence of such a lattice L. Let F be a field, and let
R =F[{Xy| a € K}] be the polynomial ring over a set of indeterminates indexed by
by K. Since X satisfies ACC, it has maximal elements, say {Mg}. Since each Mg
is a finite subset of K, we have a finitely generated prime ideal Pﬁ generated by the

Xq’s with a € MB‘ Let S=R - UB Pﬁ, so that S is a multiplicatively closed set

in R. Let T = Rg; then, by Theorem 4.1 of [5], T is Noetherian. Consider the sub-
set L of L(T) defined by all finite sums of products of ideals of the form (X,)s.
As in [2], it is easily seen that L is closed under joins, products, intersections, and

residuals. Now the prime elements of L are precisely those ideals (xy;, ***, Xgn)s
where (Xg1, ***, Xgn)s & Pgs for some prime ideal Pg of R and the maximal ele-
ments of L are elements of the form PBS = (Xg1s "t Xgn)s, where {ozl , o, an}

is a maximal element Mg of X. Thus LPBS; RL,, where [MBI =n. Hence L isa

regular distributive Noether lattice. A principal prime of L is of the form (Xg)g.
Thus we have a bijection 6 from the set of principal primes of L. onto K. We can
extend 6 to an isomorphism 8: Spec (L) — X by defining 8(P) = {0(P;), -, 6(P,)},
where P =P, V-V P, is the decomposition of P into a join of principal primes.
Thus we have the following characterization of distributive regular Noether lattice
domains.

THEOREM 8. Lef L be a distributive rvegulav Noether lattice domain, and let K
be the set of nonzero principal primes of L. The set X = Spec (L) may be considered
as a subset of FP(K), the finite subsets of K. As a subset of FP(K), X satisfies the
conditions

(1) Acc,

(2) Z CY € X implies Z € X, and

(3) {P} € X for every nonzevo principal prime P.

Conversely, suppose K is a set and X C FP(K) satisfies the three conditions

above. Then there exist a unique distributive regular Noether lattice domain L and
a bijection 6 from the set of nonzero principal primes of 1. onto K that extends to
an isomorphism of posets 9: Spec (1) — X given by 6(P) = {6(py), =+, 0(P) 1,
where P=P; V -.- V P, is the unique decomposition of P into a join of nonzero
principal primes.
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THEOREM 9. A distributive vegular Noether lattice L is Noether-lattice em-

beddable into a vegulay Noethevian ving of the same Krull dimension.

Proof. Since L is a finite direct product of domains, we may assume that L is

a domain. Thus, by the previous construction, L is embeddable in the Noetherian
domain T (with the notation as in the previous construction). It is clear that this
embedding is actually a Noether lattice embedding. From the resulfs of [5], it fol-
lows that the prime ideals Pgg are precisely the maximal ideals of T. Hence T is
locally regular and hence regular, and dim T = dim L.

N =
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