THE STRUCTURE OF JORDAN H-ALGEBRAS
J. A. Loustau

1. INTRODUCTION

In [3], I. N. Herstein considered an associative ring R with the property that
for each x in R there exists a polynomial p,(X) with integral coefficients, in an in-
determinant X, such that x2 px(x) - X lies in the center of R, and he proved that
every associative ring with this property is commutative. Further, Herstein and
S. Montgomery [6] have extended Herstein’s result by proving that if an associative
division ring with involution has the property that to each symmetric element x = x*
there corresponds an integer n > 1 such that x™ - x is central, then the ring is
commutative or four-dimensional over its center. In [1], W. Burgess and M.
Chacron have demonstrated that in an associative ring R with involution, the prop-
erty that x2 px(xz) - X is central for each symmetric element implies that R is an
integral extension of its center of degree not larger than 2. It is our aim to deter-
mine the structure of a Jordan algebra over a field of characteristic not 2 that satis-
fies the condition of Herstein’s theorem [3]. In particular, we shall call a Jordan
algebra J a Jordan H-algebrva if for every x in J there exists a polynomial py(X),
in an indeterminant X with integral coefficients such that x2 px(x) - x lies in the
center of J. The following result is our main theorem.

THEOREM 1. Let J be a Jovdan H-algebra over a field of chavacteristic not
two; then J is isomorphic to a subdivect sum of Jovdan algebvas {Ji}ie , Wheve
each J; is either an associative algebva ov a simple periodic Jovdan alge%ra of
capacity two.

We remark that in [7], an associative ring R is called an H-ring if for every x
in R there exists an integer n(x) > 1 such that xn(x) - x is in the center of R.
However, from results in [3] and [2, p. 220] it follows immediately that this condi-
tion and the centrality of x2 px(x) - x are equivalent. Though we have not proved
this equivalence for Jordan algebras, we shall use here the more general condition
to denote a Jordan H-algebra.

As corollaries to Theorem 1 we shall prove that if J is as in Theorem 1, then J
is associative if either its idempotents are central, or it contains no idempotents
different from zero or one, or it contains a unique nonzero idempotent. Further, we
shall prove analogues, for Jordan algebras over a field of characteristic not 2, of
results given in [4] and [9].

The proof of Theorem 1 will proceed as follows. After some preliminary
lemmas, we shall reduce the problem to one of determining the structure of a sub-
directly irreducible Jordan algebra satisfying the hypothesis of Theorem 1. Next,
the subdirectly irreducible case will be divided into two cases, depending on whether
the algebra contains an idempotent different from zero and the identity, that is,
whether the algebra contains a nontrivial idempotent. When the subdirectly irreduc-
ible algebra contains nontrivial idempotents, the algebra will be a simple periodic
Jordan algebra of capacity 2. The proof of this will proceed similarly to the proof
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of the corresponding result for periodic Jordan rings [14]. We shall achieve the
proof of the remaining case by first imbedding the algebra in an algebra of continu-
ous sections, to prove that it is associative provided it has no nonzero nilpotent ele-
ments. Then we shall show that it is associative, by employing an argument for as-
sociators similar to the one used in [3] for commutators. At several stages in the
proof of Theorem 1, we shall have occasion to use arguments similar to those em-
ployed in [3] and [14]. For the reader’s convenience we shall include these argu-
ments.

Finally, we remark that as in [3], a more general condition is sufficient in the
division ring case. In particular, a Jordan division algebra J of characteristic dif-
ferent from 2 is associative provided for each x in J there exist an integer
n(x) =n > 1 and a polynomial p,(X) with integer coefficients such that
xtlp (x) - x™ lies in the center of J. Because we shall have no occasion to refer
to this resulf, we shall not prove it here; we merely note that it can be proved in an
analogous manner to the corresponding result in [3], by means of Lemma 1 of [10].

2. PRELIMINARY LEMMAS

Throughout the remainder of this paper, all Jordan algebras will be over a field
of characteristic different from 2, Z(J) will denote the center of the Jordan algebra
J, and N will denote the set of nilpotent elements. We begin by proving some
lemmas that will be useful in both subdirectly irreducible cases. The first one and
its proof coincide essentially with the result of Herstein’s [3].

LEMMA 1. If J is a Jovdan H-algebra, then N is an ideal contained in the
center of J.

n
Proof. Let x € N, and suppose that x> = 0. Then, since x? p,(x) - x € Z(J),
we see that x*¥q(x) - x2p,(x) € Z(J), where

a0 = [0, pyx?p,(x) and y = xZp, ().

Hence x%q(x) - x € Z(J). Continuing this process, we deduce after n - 1 steps that

X =X - xznr(x) e 7Z(J),

where r(x) is a polynomial in x with integral coefficients. Thus N C Z(J), and it
follows immediately that N is an ideal.

For a Jordan ring J with an idempotent e, we shall use the Pierce decomposi-
tion J =J;(e) + J;,5(e) + Jo(e) of J with respect to e. Also, in accordance with
[14], we say that x in J is anti-integral provided there exists a polynomial q,(X)
with integral coefficients and such that x2q,(x) - x = 0. With this terminology we
can prove the next lemma, which is useful in the application of the techniques of [14]
for periodic Jordan rings to Jordan H-algebras.

LEMMA 2. Let J be a Jordan H-algebra and e an idempotent in J. If
J1/2(e) # (0), then J has prime charactevistic and every element of J;/,(e) is
periodic.

Proof. Let x be a nonzero element of J,/,(e). We begin by showing that x is
anti-integral. Without loss of generality, we can suppose that the element
y = X2 px(x) - x € Z(J) is not zero. Now let y =y, +y;,, +¥p, with y; € J;(e) for
i=0,1/2, 1. Then, since y € Z(J), we see that ye = (ye) e and hence
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1 1 1
y1 t5y1/z2=ye =\yi1t5yr/2)e=yi1+7¥y1/2.
2 2 4
Thus, 0 =y, = (x2p,(x) - )}, or equivalently,

(szx(x))l/z = Xy/2 = X.

it2 , and

n . n
Now, if py(x) = Ei=0 t;x! for integers t;, then x2p,(x) = Ei:O t;x

n
(x2 py(x)); /2 = Z)O ti(xi+2)1/2 = 27 tixi+2,
1=

where the last sum is taken over all odd indices i. Hence, if qy(X) = 2J t, x1
(summed on the odd indices i), then

x2q,(x) = [x%p, ()], ), = %,

and x2q,(x) - x = 0.

If F is the base field of the algebra J, and if F has characteristic zero, it fol-
lows that the subring of J generated by x # 0 in J; /,(e) is an associative ring in
which 0 # ax is anti-integral for each integer &. But then Proposition 13.1 of [14]
implies that the ordinary integers form a field, which is absurd. Hence, F has
prime characteristic p.

Let Z, denote the Galois field of p elements. Then, if x is a nonzero element
of J;/(e), it follows that Z,[x] is a finite, associative, commutative algebra. But

n
then there exist positive integers m and n with (xP - x)™ = 0. Moreover, since p
is odd, xP" - x € J1/2(e) N N. But J;,,(e) N Z(J) = 0, since each z € J1/2(e) N Z(J)
satisfies the equations 1 z = ez = elez) = 1 z. Thus xPn = x, and the proof of Lemma

2 4
2 is complete.

The next two lemmas are analogous to results of J. M. Osborn in [14]. First we
need some terminology. In accordance with [14] and [8], a pair of orthogonal idem-
potents e and f of a Jordan algebra J is called connected if Jy;2(e) N J1/2(f) con-
tains a unit in JU_.,, and it is called weakly connected if J; /Z(e) nJ, /Z(f) is not
Zero.

LEMMA 3. Let J be a Jovdan H-algebra; then J does not contain thvee con-
nected idempotents.

Proof. Let e, e,, e3 be three connected idempotents in J. By 'the coordiniza-
tion theorem [8, p. 137], there is an alternative algebra with involution (A, *) whose
symmetric elements S(A, *) are contained in the nucleus of A, and with the property

that J' =JUe1+e2+e3 = 8(A3, J,). In other words,
o B*u 6% v
J' = B v wle*v|: a,v,peSA %, Y=uywl, n¥=vyv-!

6 £ n
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Since the nucleus of A is invariant under *, we can suppose without loss of general-
ity that A is associative. For convenience, we let D denote Aj.

Let by, be a unit in J;/(e;) NJy/2(ez), and let by3 be a unit in
JI/Z(el) N J; /2(e3), each chosen so that its entries lie in the nucleus of A. Next,

let D=2 Dij for i, j =1, 2, 3 be the Pierce decomposition of D by €, e,, ;.
Then

bj, =e; by, +teyb;,

where e; by, € Dy, e;bj, € Dy, and juxtaposition denotes the associative product
in D. If e; bj2 =h+ s, where h is symmetric and s is skew-symmetric, then

0= (elblz)‘2 = (h +8)% = (h + s2) + (hs + sh),

and it follows that hs = -sh and h? = -g2

Let B be the subring of D generated by h and s, and let Y be the subring of B
generated by hz, Then ¢ is contained in the center of B. Moreover, since

h =%(e1 by, +by,e;) € Jy/,(e)), we see that h is periodic, and hence h? is peri-

odic. Therefore y is finite with identity e'. If x in ¥ is a nonzero nilpotent, then
x € Ji(ey) +Jp(e;), and therefore xh (the product taken in J) is in J1/2(e;). Thus
xh = 0, since the elements of J;/,(e;) are periodic and J is power-associative. But
then Uy, = Ub12 has nonzero kernel in JU , which is impossible, since b;, is a

unit in JU

eytep
eptey Hence, Y contains no nonzero nilpotent elements, and therefore ¢
is a direct sum of a finite number of Galois fields. Let e" be a primative idempo-
tent in ¥; then e" is in the center of B. Now, replacing B by e€"B and ¥ by e" ¢,
we find that e" B is an algebra over e"y spanned by {e", e"h, e"sh, e"s} with

(e"h)(e"s) = -{e"s)(e"h) and (e"h)2 = -(e"s)2.

For simplicity of notation, it will suffice for our purposes to suppose that ¢ is a
field and consider B an algebra over Y with spanning set {e', h, sh, s}.

Our next task is to prove that B is a simple algebra. Let C be an ideal of B,
and suppose that a = @, e' + @, h+ a3 sh+ays, with a; € Y, is a nonzero element
of C. Then

(ah - ha)s = (-2a5 h*)e' + (20, h%)h
is an element of C. Hence, whether or not a3 = a4 =0, there exist 8;, B, € ¥, not

both zero, with
0#a'=pye +Bh e C.

If 8, # 0, then
(a's - sa')sh = -28, hte',

and it follows that in any case e' € C, so that C =B and B is a simple associative
algebra of dimension at most 4 over Y.

Now (e, b;,)(e;b;5) = (eyb;,)(e;by,)*=(h+s)(h-s)eS. Therefore B con-
tains the component of b12 in D, = D1(el)' However, b, , connects e; and e, and
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is periodic; hence, e;, e € B, and it follows that B is isomorphic to ¢, . If we let
€12, €21 € B be the usual matrix units, then {el y €125 €21 ez} is a basis for B
with ei"z = e,;, since B* = B. Similarly, we can do the same for e, and e3 to get

€13, €31. Next, let e;3 = ;) €13 and e3; = e3; €, ; then, over the prime field Z
of ¥, we get a Jordan H-ring K of capacity 3 contained in S(A;, J,).

By Lemma 15.2 of [14], for each pair of elements u and v in Zy, there exist
element p, 0, T € Z, not all zero with p%® + 02y + 72y =0. But then the element
p%  pop pTV
x=| p2o o2u oTV

pT oTHL T2V

is in K and squares to zero. Hence x € N € Z(K). However, this implies that two
of the elements p, 0, 7 are zero, which in turn implies that all three must be zero;
this gives a contradiction and completes the proof of Lemma 3.

Using Lemma 3, we can prove the final result of this section.

LEMMA 4. If J is a Jovdan H-algebra with ovthogonal idempotents e, f, g
such that e and f ave connected, then g is not weakly connected to e.

Proof. We begin by supposing that J) /,(e) N J;/,(g) is not zero and show that
this implies that J contains three connected idempotents. An appeal to Lemma 3
will then complete the proof of Lemma 4.

Let ¢ # 0 be an element of Jl/z(e) N Jy/,(g); then c is periodic, so that ¢ is
idempotent for some n. Let c® =u+v, with u € Jy(e) and v € J;(g). If v =0, then
u+0and ¢c=cue€ Jj(u). But

J1(w) = JU, = JUuy_ = JU U, U, S Jye),

which is impossible. Similarly, u # 0, and it follows that u and v are connected
orthogonal idempotents in J.

Next, let b connect e and f, so that b is periodic and b™ =e + f for some
positive integer m. Now we consider 2bu. Since J;,,(e) € J;,,(u) +Jy(u), we see
that

2bu € Jy (W) J(u) € Ty o) and  2bu € Iy (8 Io() C Iy (0.

If bu =0, then b € Jy(u). But b is a unit in JU..¢, and u € JU, ¢, so that uUy # O.
Hence u(.‘ZR2 - R 2) # 0, and it follows that 0 # uR 2 But b e J (u) so that

uR b2 = =0, and thls contradiction implies that bu # 0 Thus, 2bu weakly connects e

and f. By Lemma 2, 2bu is periodic, in other words, there exists a positive integer
s with (2bu)® =u;, + w, where u; € J,(u) and w € J|(f) and both are idempotent.
Moreover, as above, both u, and w are nonzero. Further, (2bu)2 = h; + h,, where
h e Jl(u) and h, € J,(f), is also periodic and hence h, = (2bu)2u is periodic.

We claim that ((2bu)2u){ = u for some positive integer (. By restricting our
attention to the subalgebra generated by b and u, we can assume, by virtue of the
Shirshov-Cohn Theorem, that J is a special Jordan algebra [8]. In particular,
Jc At where A is an associative algebra and where for each pair x, y € J, xy
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denotes the product in A and x.y the product in At . We want to show that in this
notation,

[(ab.uw)? . u]! = u.

Let A=A} +A;g +Ag; +Ago be the Pierce decomposition of A with respect to u.
Then b € Ajg +Ag; +Agg and ubu = 0. Therefore

(2b.uw)? .u = (bu+ub)? . u = (bub +ub2u)..u = ub?u.

Therefore, we must show that in turn (ub?u)f = u. Using the fact that (ub? w? is
idempotent, we obtain the relations

t = 2(u- (ub2wd .b = ub+bu - Wb?u)lp - blub?u)l.
Hence,
t2 = bub - b(ub? Wb .
Therefore,
t4 = pubZub - b(ub? w1 b - bub2 ) p +bub2u)ltlp = 0.
But 2b.u € Jj/2(u), so that (2b.w)? . u € Jj(u); also, b € J;/2(u), so that

t € J;/2(u) and’hence t cannot be nilpotent. Thus t =0, and since b™ =e +{, we
have the relations

0 = tbm-! = yp™ +pub™-! - (ubZu)lb™ - blub?u)lpm-!

=u- ub2wl+t2pm-2 = y - (ub?u)l.

Hence u = (ub2u){, as we claimed.

But now
u; = uf = [(2b.w)?2 . u]s? = [[2b. w2 . u]¥]s = uS = u,

and it follows that u, v, and w are connected. Therefore, it follows from Lemma 3
that g is indeed not weakly connected to e.

Next we note that each Jordan H-algebra can be considered as a subdirect sum
of subdirectly irreducible Jordan H-algebras. Hence we shall restrict our attention
to the case where J is a subdirectly irreducible Jordan H-algebra with unique non-
zero minimal ideal S. Thus, if N # (0), then S € N. In order to determine the
structure of subdirectly irreducible Jordan H-algebras, we shall consider sepa-
rately algebras with idempotents, different from zero or the identity, that is, with
nontrivial idempotents, and algebras without nontrivial idempotents. We begin with
the former case.

3. THE CASE WITH NONTRIVIAL IDEMPOTENTS

In this section, J will always denote a subdirectly irreducible Jordan H-algebra
with a nontrivial idempotent e and Pierce decomposition J,(e) @J/,(e) @ Jole)
with respect to e. We shall prove that J is then a simple, periodic Jordan algebra
of capacity 2.
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LEMMA 5. If N # 0, then SC J (e) or S C Jgle), and S C J;(e) implies
N C Ji(e) for i =0, 1.

Proof. The first statement in the lemma follows from the fact that N is an
ideal and the sets Se and {se - s: s € S} are ideals, with Se € J;(e) and
{se -8s!se€ S} CJ (e). Next,x e N, x=x + X /2 tXg, with respect to e, im-
plies

1 1
X +5Xy/2 = Xe = (xe)e = x; +3%1/2-

Hence x;/2 =0. Now N=NNJj(e) +N N Jg(e) and NN Ji(e) (i =0, 1) are dis-
joint ideals of J. Since J is subdirectly irreducible, the lemma follows.

Using Lemma 5, we can prove our next result.

LEMMA 6. If N # (0), then J does not contain n primitive, orthogonal idem-
polents whose sum is the identily.

Pyoof. If n=2 and 1 =e +f, where e and f are primitive orthogonal idempo-
tents, then by Lemma 5 we can suppose that N € Jg(e) = J,(f). Moreover, since J
is subdirectly irreducible, J; /,(e) # (0). Take y # 0 in J)/,(e); then there exists a
positive integer m such that ym =u +v, where u2 =u € Ji(e) and v2 =v € Jple).
Further, u # 0 # v; for if v =20, then as in Lemma 4, u # 0 and y = yu € Ji(e). But

Ji(e) = JU, = JuUe - Ji(e),

which contradicts the choice of y. Since e and f are primitive,
u-=e, v =1, and y™ = 1.
Now if we take x # 0 in N, then xy € J; /,(e) N N = (0), so that
x=xy™m = (xy)y™-! = 0.

However, because x # 0, we must conclude that if 1 is the sum of n primitive
orthogonal idempotents, then n > 2.

n
Suppose that Eizl e;i, where the e; form a set of primitive, orthogonal idem-

potents, and suppose that J = Ei(j Jij is the Pierce decomposition of J with re-
spect to the e;. Since J is subdirectly irreducible, there exist integers k and ¢
such that Jy is different from zero. But then, as above, e} and ey are connected
idempotents in J, and hence, by Lemma 4, Jy; and J; are zero for each i different
from { and k. Since this implies that

IUg ve, = J1(el) DI @ Jy(ep)  and 2335 (@, j#kandi, j#0¢)
are disjoint ideals of J, we have proved the lemma.

LEMMA 7. J has capacity 2, and it has no nonzero nilpotent elements.

Proof. Let e be a nontrivial idempotent in J; then by hypothesis J;/,(e) is
nonzero, and by Lemma 2, x € J, /Z(e) (x # 0) is periodic. Therefore, J contains
connected idempotents u and v. We claim that u and v are primitive idempotents
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and that J = J;(u +v). Suppose that there exists x # 0 in J}/,(u + v), such that
X =x] +X2, where x; € J1/2(u) N Jo(v) and xp € J1/2(v) N Jo(u). Hence

x4 € [J1() +T ] NJyv) T, () +Tyw) N T,

Therefore, if x; # 0 and n is taken with x%n =g +h, where g is idempotent in
Ji(u) and h is idempotent in Jp{u) N Jo(v), then u, v, and h are orthogonal, and u
and h are weakly connected. But this contradicts Lemma 4; therefore

Jl/z(u +v) =(0). Since J is subdirectly irreducible, J = J;(u +v). Moreover, if
u is the sum of orthogonal idempotents e; and e, and if v = e3, then one of the
spaces J|2, J13, J23 must be nonzero. If Jy, # (0), then there exist connected
idempotents f and g with f € J;; and g € J, . However, Lemma 4 then implies
that J = J1(f +g) € J1(e; + e2), and therefore J;(v) = (0), which is impossible.
Similarly, the assumption that J;3 # (0) or J23 # (0) leads to a contradiction.
Thus u and v must be primitive idempotents, and Lemma 8 implies that N = (0).

It remains to show that J;(u) is a Jordan division ring. In fact, we shall prove
that it is a periodic field. If x is a nonzero element of J;(u) and x is anti-integral
over the integers modulo p, then x is periodic. If x is not anti-integral, then J;(u)
contains a nonzero element z in the center of J. Each nonzero y in Jj,,(u) isa
unit in J, so that 0 # zy? = (zy)y, and zy # 0 and zy € J;,,(u). Now, if y® =u+v
and (zy)™ =u +v, then

u+v = (Zy)(m—l)(n—l)+l = Z(m—l Hn-1)+1 .

Since J;(u)? =J;(u), the algebra J;(u) is periodic. Therefore, J;(u) is a periodic
Jordan algebra with a unique idempotent. Thus, by Theorem 16.2 of [14], J;(u) is a
periodic field. '

For our final result of this section we determine the structure of a subdirectly
irreducible Jordan H-algebra with a nontrivial idempotent.

LEMMA 8. Let J be a subdivectly ivveducible Jovdan H-algebra with a non-
trivial idempotent; then J is a simple periodic Jovdan ring of capacity 2. In partic-
ular theve exist a periodic field ® and an element |L € ® such that -u is a non-

Square and
- a Buy,
J_{(B Y ).a,B,'yE'iI)}.

Proof. We begin by noting that it follows immediately from Lemma 7 that J is
a simple Jordan algebra of capacity 2. By [8], J is a Jordan algebra of a nondegen-
erate symmetric bilinear form f. We write J =& (D V and take e = a + v for
@ e€d and ve V. Since a+v=e=e2=(a?+v2) + 2av, we see that o = 1/2 and
vZ=1/4. Now take w € V, with f(v, w) =0 and w # 0. Note that such an element
w exists, since J is subdirectly irreducible. If f(w, w) = i, then it is clear that the
subalgebra K of J generated by 1, v, and w is isomorphic to the 2-by-2 Hermitean
matrices over ¢ under the correspondence

BO"‘%BI By
Bg+Bvt+tBw <>

1
Bg BO‘EBI
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Next we claim that & is periodic. Since

0 u
(9 o)EJl/Z(e)’
p is periodic. If y € &, then with 8, = 7, we have the relation
0 yu )
(2 78) eaiz,

and it follows that ¥ is periodic; hence & is a periodic field and K is a periodic
Jordan ring of capacity 2.

It remains to prove that K =J. If K # J, then there exists x € J (x # 0) such
that v, w, x are pairwise orthogonal. Let a = ayv +a; w+ a;,Xx, with
g, &y, @, € &; then

al = ozg f(v, v) + oz%f(w, w) + a%f(x, X) .

Now, by Lemma 15.2 of [14], ag, @1, a2 can be chosen so that a2 = 0, which is im-
possible. Hence J = K.

4. THE CASE WITHOUT NONTRIVIAL IDEMPOTENTS

Our aim in this section is to complete the proof of Theorem 1 by showing that
every subdirectly irreducible Jordan H-algebra without nontrivial idempotents must
be associative. We shall achieve this by first showing that every such algebra with-
out nonzero nilpotent elements must be associative, or equivalently, every associa-
tor in a Jordan H-algebra without nontrivial idempotents is contained in N.

By a procedure analogous to the one employed in [5], each Jordan algebra with-
out nonzero nil ideals is isomorphic to a subdirect sum of prime Jordan algebras,
each with a nonnilpotent element that is nilpotent modulo every nonzero ideal (by a
prime Jordan algebra we mean an algebra in which the product of nonzero ideals is
never zero). By virtue of this, we can determine the structure of a Jordan H-
algebra without nonzero nilpotent elements by restricting our attention to a prime
Jordan H-algebra J with a nonnilpotent element a, nilpotent modulo every nonzero
ideal.

We begin by supposing that J has no nontrivial idempotents. Note that the cen-
ter Z(J) of J is an integral domain, so that we can imbed J in Q, a Jordan ring
with identity, by forming as in [5] the quotient ring of Z(J) in J. We claim that Q
has no nontrivial idempotents. If z/z € Q is idempotent, then zx2 = z2x, that is,
z(x% - zx) = 0. Hence x% - zx =0 in J. Now x%py(x) - x = z; € Z(J), so that

zxsz(x) -zx + x5 P, (x) - x% = zzy € Z(J),
and hence xz; = z, € Z(J). Therefore (zx)/z =z, /z; in Q, so that x € Z(J). But

now x(x - z) =0 implies that X =0 or x =z and x/z = 1, as we claimed.

Let x be a nonzero element of J. If x%p,(x) - x =0, then xp,(x) is a nonzero
idempotent, and therefore pr(x) =1. Hence x isa unitin J C Q. If
x2p_(x) - x # 0, then x2 p,(x) - x is a unit in Q and
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x[xpy(x) - 1) (x%p,(x) - x)-1] = 1

in Q. Therefore Q is a Jordan division ring.

We claim that Q is in fact a field. To prove this, we shall use an argument
analogous to the one for Theorem 2 of [3]. Let Z be the center of Q. If Z has
prime characteristic p and Z is algebraic over its prime field, then Q is a field,
since it is algebraic over Z and hence periodic [4, Proposition 15.1]. Hence, sup-
pose that Z is not algebraic over its prime field if it has characteristic p, and that
Q is not associative. Then, by [10], there must exist an element x € Q (x ¢ Z) that
is separable over Z. Since zx is in turn separable over Z for each z € Z, we can
suppose that x € J.

Let L = Z[x]; then by [13] there exists a pair of distinct, nonarchimedean ex-
ponential valuations p; and p2 on L suchthat p;(z) = p2(z) for all z € Z. In par-
ticular, p;(x) # pp(x). Now, if p;(x) > 0, then Q is associative, by an argument in
[3]. Hence we may assume that p(x) < 0. If Z has characteristic zero, then for
each i the valuation p; is p-adic on the rationals, and hence, if X is sufficiently
large, then

pi(P*x) = X +p,(x) > 0.

Thus, by replacing x by p*x, we can suppose that Z has prime characteristic and
pi is trivial on Z, the set of integers modulo p. If x%2py(x) ~-x=a € Z and
Px(x) = Z)?zo t; xi, then

pil@ = min  {p{t;x1*2), p;(x)}

i=0,1, ***,n

min  {p;(t) + (i +2)p;x), p;R)} = (n+2)p,;(x).

i-0,1, «--,n

Therefore, if pp(x) < 0, then pj(@) = pa(a) = (n+ 2) p2(x) <0, so that p;(x) = p(x),
which is impossible. Hence p,(x) > 0; but then

0 > pyla) = pala) = pa(x) > 0,

which again is impossible. Hence Q must be a field, and J is an associative inte-
gral domain.

Next we suppose that J is a prime Jordan H-algebra with a nontrivial idempo-
tent e. Since J is prime, we see that J;,,(e) # (0) and J has prime characteristic
and a nonzero periodic element. Moreover, since the nilpotent elements of J are
central, N = (0). Finally, as above, J contains a pair of connected orthogonal idem-
potents u and v, and as in Lemma 7, J =Jj(u +v) and u and v are primitive.

Next we want to show that J;(u) is a field. Let x € J(u), z = x2 py(x) ~ %, and
0+#ye Jy/p(u). Again, if z =0, then x is a unit; therefore, without loss of general-
ity, we can suppose that z # 0. Now 0 # zy € J/2(u); and hence zy is periodic.
Therefore, (zy)2 = z2y2 € Jj(u) is periodic. Consequently, Z,[uy?] is a finite,
commutative, associative ring without nonzero nilpotent elements and with a unique
nonzero idempotent. Hence, Zp[uyz] is a field. The element z is algebraic over
this field, so that there exists a positive integer m with z™ = u. But then

u = (x2p,(x) - x)™ = X[Xm'l(pr(X) - w)™],
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and x is a unit in J;(u). Similarly, Ji(v) is a field, and we have proved that J has
capacity 2. As in the proof of Lemma 8, it also follows that J is a simple, periodic
Jordan algebra. Combining these facts we have the following lemma.

LEMMA 9. Let J be a Jovdan H-algebva without nonzero nilpotent elements;
then J is isomorphic to a subdivect sum of Jordan algebras {J i}ie A Such that for
each i € A, J; is either an associative integral domain ov a simple peviodic Jovdan
algebra of capacily 2.

Note that in the proof of Lemma 9 we never used the fact that the prime homo-
morphic images of J could be chosen so that each contains a nonnilpotent element
that is nilpotent modulo each nonzero ideal. Hence we have in fact proved that every
prime homomorphic image of a Jordan H-algebra is either an associative, commu-
tative integral domain or a simple periodic Jordan algebra of capacity 2.

As we stated in the introduction to this section, our present aim is to prove that
a Jordan H-algebra without nontrivial idempotents and without nonzero nilpotent
elements must be associative. It is for this purpose that we shall next show that if
J is an H-algebra and N = (0), then each element of the ideal generated by all ele-
ments of the form (xy)z - x(yz) (%, y, z € J) is periodic. We shall accomplish this
by simultaneously considering the structure of J as given in Lemma 9 and consider-
ing J as a subring of a ring of continuous sections. We now develop this second
representation.

We know that J is isomorphic to a subdirect sum of Jordan algebras {J.};c .,

where each J; is as given in Lemma 9. Let "J be the complete direct sum of rings
{K;}icA, where K;=J; if J; is not associative, and where K; is the quotient field

of J; otherwise. Further, let ¢; denote the projection of J onto K;, and let E be

the set of all central idempotents of J. It is immediately clear that E forms a
Boolean algebra.

Let X(J) be the set of all maximal ideals of E topologized with the hull-kernel
topology. Hence, as described in [15], X(J) is a totally disconnected, compact,
Hausdorff space in which the set

AHe) = {Me X@T):e ¢ M}

is open and closed for each e € E. In fact, the sets JV(e) form a basis for the topol-~

ogy on X(J). Next, let J = J/IM for each M € X(J), and let g be the disjoint
union of the rings J M. Further, for each a € J define 0,: X(J) — 4 so that o,(M)

is the image of a in Jpf, and topologize J so that the sets
{o (A (e):aed and e € E}

form a neighborhood basis for each point in 4. Then each o, is continuous, and if

7: J — X(J) is defined by w-1(M) = J ), then, as in [11], (., 7) is a sheaf of Jordan
rings and J is isomorphic to the ring T'(X(J), ) of all continuous functions of X(J)

to J with respect to the mapping &£(a) = 02 . Moreover, J is a subdirect sum of the
rings Jy;. Let ¥, be the projection of J onto IM -

We claim that for each M, the ring J M has no nonzero nilpotent elements. To
show this, suppose that x € be(J) is nilpotent. In particular, take a positive integer
n such that x® is the zero Oy in Jp;. Next, let U= {N € X(J): 0 (N) =0}, where

y"
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y is a preimage of x in J. Because U is a neighborhood of M in X(—J-), there exists
e € E with M € #(e) € U. Define ¢ € X(J) — 4 by

oy(N) if Ne #(e),
o(N) =
On if N¢ H(e).

Since # (e) is open and closed, ¢ € I'(X(J), ) and ¢ = ¢, for some z € J. It fol-
lows immediately that z™ = 0, so that z = 0, since J has no nonzero nilpotents, and
hence x must be 0pg.

As in the previous paragra_;_)_h we can prove that for each idempotent e in EM,
there exists an idempotent f € J with y¥)\(f) = e. This follows from the fact that if y
is any preimage of e, then

U = {N e X(J): oyz_y(N) = 0N}

is a neighborhood of M, so that M € #(g) C U for some g € E. Thus the mapping
os € I(X(J), 7)) defined by

ofg=0y, 0on A(g) and of=0 otherwise

will have the desired properties.

Let A be the associator ideal of J; that is, let A be the ideal of J generated by
all elements of J of the form (xy)z = x(yz). We can now prove that every element
of A is periodic.

LEMMA 10. Let J be a Jovdan H-algebra without nonzevo nilpotent elements;
then for every a € A, theve exists an integer n =n(x) > 1 with a™ = a.

Proof. We begin by showing that if for some M e X(J), the projection ¥4(J) is
not associative, then y4(J) is periodic. Let I be the kernel of Y4 under the re-
struction of Yy to J. If 1 is a prime ideal of J, then by the remark following
Lemma 9, y4(J) is periodic. Hence it suffices to prove that I is prime.

If I is not prime, there exist ideals P and Q of J containing I and such that
PQ C 1. If there are elements a € P and b € Q neither of which is anti-integral
modulo I, then there are elements @ and 8 in the center of J with @8 € I and
a ¢ 1, B ¢ 1. Moreover, since &, B € Z(J), there exist elements v, 6 € Z(J) with
ay=1fe€ E and 86 =g € E, and with of = o and Bg = 3. Since o € I, it follows
that fg € JM, more precisely that fg = xh with x € J and h € M. However, then
fgh = fg, so that fg € M, and since M is maximal it follows that f € M or g € M.
But f € M implies that @ =fa € JM N J =1I. Hence the assumption cannot hold;

therefore P is anti-integral modulo I, and hence periodic modulo I, since Jy, has
no nonzero nilpotent elements.

Let P' be the image of P in J' = ¢/4(J). If P' contains an idempotent e' that
is not in the center of J', then J;(e') +J;,,(e') € P'. Therefore, if a' is a nonzero
element of J) ,,(e'), then a' connects a pair of nonzero orthogonal idempotents u'
and v' in P'. Now there exists an idempotent u of J with ¥ {(u) =u'. Moreover,
if ue E, then 1 -u € EM, which implies that 1y; = ¢p(u) =u' € P', where 1y de-
notes the identity of EM. Because this is impossible, u ¢ E. Now take g idempo-
tent in J, with ¢;(g) = 0 if ¢;(u) is central and ¢;(g) = ¢;(u) if ¢;(u) is not central.



THE STRUCTURE OF JORDAN H-ALGEBRAS 89

Next, let a be a pre-image of a' in J, and consider 2aUg,1-g . There exists h € E
with g+ h = u; if Ym(h) # OmM, then Ym(h) = 1 and u' = 1M + Ym(g). But this im-
plies that 2y\(g) = 0, and in turn we conclude that u' = 1, which cannot happen.
Therefore, Yp(g) = u', and YMm(2aUg 1 o) = a'. However, if 0 # 2aUg, ] g, then

there exist idempotents k € J;(g) and £ € J;(g) and £ € Jo(g) such that 2aUg | g
connects k and ¢, and k+ £ € E. Since a' ¢ Jg(u'), it follows that Ypg(k) # Opg .-
Therefore Yp(k + £) = 1 € P', which is again impossible. Thus, our assumption
is incorrect, and we see that every idempotent of P' is central in J°'.

If e' is idempotent in P' and €2 = e in' J, with Yy(e) = €', then e ¢ E. Hence,
- 1
if a € J)/,(e), then e'Y,(a) = 3 Ym(a). Moreover, if Yp(a) = Oy, then

Y¥m(ea?) = O, which is impossible since e and a can be chosen in J so that ea? is

a unit in J;(e). Hence P' must contain idempotents that are not central in Jy;. But
then an application of the argument given in the previous paragraph shows that we

can find connected orthogonal idempotents u and v in Jp; with

IMm = yM@1 @) @ Mm@ /2(0) @ Mm@ (v),

and u € P'. Since u € Z(J'), we can assert that
J' = (Wm@ () N3 + (Wm@)(v) N JY.

However, y)\(J);(u) and Yp(J);(v) are both homomorphic images of the subdirect
sum of fields, and therefore each must be associative. But this implies that J' is
associative, contrary to the hypothesis. Therefore I is a prime ideal of J and
Ym(J) is periodic, as we claimed.

Now take a € A, the associator ideal of J. For each positive integer n, let
U, = {M e X@): on_ (M) =0Mm}.

Clearly, the sets U, form an open covering of X(J). Since X(J) is compact, there

— m
are integers n;, -+, n,, with X(J) = Ui=1 Un, . Hence, if we let
m
t = II (nj - 1) +1,

H
Yt

i

then o a(M) =0 for all M € X(J). Therefore at=a, and Lemma 10 is proved.

We can now prove the desired result for Jordan H-algebras having no nontrivial
idempotents and no nonzero nilpotent elements. It will be useful to state this theo-
rem in a slightly more general setting.

LEMMA 11. If J is a Jovdan H-algebra without nontrivial idempotents, then
J/N is associative.

Proof. Our first task is to prove that J/N contains no nontrivial idempotents.
Suppose that e € J/N is idempotent; then, if a is any pre-image of e in J,
a2 -a € N. Thus, a is algebraic over F. Let J* denote the algebra obtained by
adjoining an identity to J, if J does not have identity. Now, applying Lemma 1 on
page 149 of [8] to F[a], we see that g(X) € F[X]X, where g(a) is a nonzero idem-
potent. Moreover, since g(0) = 0, then g(a) € J and hence g(a) is the identity 1 in
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J. Therefore, a is a unit in J, and therefore e is a unit in J/N, or equivalently, e
is a trivial idempotent.

Next take a in the associator ideal A of J/N. Then a is periodic. If a # 0,
then a is a unit in J/N, and it follows that J/N is isomorphic to a subdirect sum of
simple, nonassociative periodic Jordan algebras {Ji}ieA- Thus, if A # (0), then A
is also a subdirect sum of these algebras. But A is periodic, and [10, Corollary 1]
implies that A contains a nontrivial idempotent, which is impossible. Therefore
A =(0), and J/N is associative, as we claimed.

Returning to the subdirectly irreducible case, let J be a subdirectly irreducible
Jordan H-algebra without nontrivial idempotents. By Lemma 11, N # (0); hence, if
S is the minimal ideal of J, then S € N C Z(J). Therefore the set

A(S) = {x € J: xs=0 forall s e S}
is an ideal of J. Moreover, if x € N and xS # (0), then for each positive integer n,
xPS = x?"1(x8) = x718 = - =8,

which is impossible. Hence N C A(S). Next we shall prove that A(S) € Z(J).

LEMMA 12. Let J be a subdivectly irreducible Jovdan H-algebra without non-
trivial idempotents; then A(S) C Z(J).

Proof. We begin by considering (a, b, c¢) = (ab)c - a(be) for a, c € J and
b € A(S). If (a, b, ¢) # 0, then (a, b, ¢) € Z(J), and the ring J* obtained by adjoin-
ing an identity to J contains an element r such that 0 # r(a, b, c) =s € S. If

n 1 e s . . ip 12 .
ppb) = Ei:o t;b" with integral coefficients t;, and if b” py(b) - b € Z(J), then, using
the identity

(W, XY’ Z) = X(W’ y’ Z) + (w’ X’ Z)y

(which holds in every linear Jordan algebra [8, p. 34]), we see that

n n
0 # r(a, b, c) = r(a, bz( 27 tibl), c) =27 tir(A, b1+2, c)
i=0

i=0

n n
=| 22 t;i+2)bi*l |[r(a, b, ¢)] =| 20 t;i +2)biT! [[s] = 0.
i=0 i=0
Hence (a, b, ¢) must be zero for each b € A(S) and a, c € J.

Next we consider the identity
(X) Y, Z) - (X’ z, Y) +(Z, X, Y) = 0’

which can easily be seen to hold in every commutative ring. If we take x and z in
A(S) and y in J, then (X, y, z) = 0; combining this with the result of the previous
paragraph, we see that every associator involving two elements from A(S) must
vanish.

The Teichmiiller identity, which is again easily seen to hold in every ring,
states that for all w, X, y, 2z € J,
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0 = (wx, y, z) - (w, xy, 2) +(w, %, yz) - wx, y, 2) - (W, %, y)z.
If we take w, x € A(S), then, since A(S) is an ideal, we have the equation
0 = (wx, v, 2) - wix, v, 2),

or equivalently, (wx, y, z) = w(x, v, z).

If a € A(S) and b, ¢ € J with (a, b, ¢) # 0, then again there exists r € J* such
that 0 # r(a, b, c) € S. If we take a?p,(a) - a € Z(J), then, since (4, b, c) is con-
tained in an ideal in the center of J, we see that

0 # r(a, b, ¢) = r(a®p,(a), b, ¢) = rlap,(a)(a, b, c)]
= [p,(a)r] [a(a, b, ¢)] = p,(a)[ar(a, b, )] = 0.

Hence, (a, b, ¢) = 0. Finally, since J is flexible, (c, b, a) = 0; it follows that
A(S) c Z(J).

We are now in a position to complete the proof of Theorem 1.

LEMMA 13. If J is a subdivectly irveducible Jovdan H-algebva without non-
trivial idempotent elements, then J is associative.

Proof. By virtue of Lemma 12, we can begin by assuming that A(S) # J. Our
first task is to prove that J/A(S) is a field. For this purpose we shall show that
A(S) is identical with the set of nonzero divisors of zero of J. Take x € J and
y # 0, with xy = 0. If xS # (0), then xS =8 and yS = y(xS) = (yx)S = (0). Hence
y € A(S) € Z(J). Let T be the principal ideal of J generated by y. Then S C T, and
since y € Z(J), we see that xS C xT = (0). Thus, it follows that x € A(S), as we
claimed.

Let x, y € J, with x, y ¢ A(S). To prove that J/A(S) is'a field, it suffices to
prove that there exists a € J with X3 =§ in J/A(S). Take s € S; then xJs = S.
Because yS = S, it follows that there exists an a € J with

0 # xas = ys.

Hence xa - y € A(S), or equivalently, Xa = §.

Next we consider the set Z = {4 € J/A(S): a € Z(J)}. Take e € J, where & is
the identity in J/A(S). If Z # (0), take a € Z(J), with 0 # & € Z. Then
ae - a € A(S) € Z(J), so that ae € Z(J). But then all x, y € J satisfy the equation
0 = (ae, x, y) = ale, X, y), and a is not a zero divisor. Therefore, (e, %, y) = 0.
Similarly, (x, e, y) =(x, y, €) = 0, and it follows that & € Z. Next, if X € Z and
y € J, with Xy = €, then the same argument proves that § € Z, so that Z is a sub-
field of J/A(S). Moreover, we can suppose that'Z # J/A(S). Finally, we know that
%2p, (%) - X € Z for every x € J. By a theorem due to I. N. Herstein [3], J/A(S) has
characteristic p # 0, and either J/A(S) is purely inseparable over Z, or J/A(S) is
algebraic over the Galois field of p elements, and hence it is periodic. If Z = (0),
then %%p_ (%) - € =0 for all x € J, and again J/A(S) is periodic.

We claim that if Z # J/A(S), then all elements of J/A(S) not in Z are periodic.
Take a € J, with 4 ¢ Z and a not periodic. If we let e € J, so that & is the identity
in J/A(S) as above, then for every b, c € J
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e(b, a, ¢) = (b, ae, c) = (b, a, c) = (b, a2p,(a), c)

n n
( 27 tiai+2, c) = 27 tiai“(b, a, c),
i=0

i=0

n-2 . . -
where p,(X) = 27;_¢ ti;» Xi. But this implies that E?:o t;al*l - 8=0 or
(b, a, ¢) = 0. However, a is not periodic; therefore (b, a, ¢) = 0. Next, by the
Teichmiiller identity, if x =a and w is a polynomial in a, then for all y, Z € J,

0 = (wa, y, z) - (w, ay, z) - w(a, y, 2).
If (w, ay, z) # 0, then ay ¢ Z, and there exists a positive integer m with ayP" € Z.

But as above, ay is periodic; therefore there exists a positive integer u with

ayP" =ay. Hence, if v is the least common multiple of m and u, then mk = v and

. —_— — k-1
y = ayP = @™ g

But this is impossible, and it follows that (w, ay, z) = 0. Hence, for w = ap_(a),

e(a, y, z) = (a, y, 2) = (a%p,(a), y, z) = ap,(a)(a, y, z).

As before, this implies that (a, y, z) = 0. Therefore, a € Z(J), since J is flexible;
hence a € Z. Because this is contrary to the assumption, all elements of J/A(S)
that are not in Z are periodic.

Finally, let x, y, z € J, and suppose that (x, y, z) # 0. Then X, §, Z ¢ Z, and
therefore the field K obtained by attaching X, §, Z to the prime field of Z is finite.
Hence there exists a € J with the property that 4 generates the nonzero multiplica-
tive group of K, and in particular there exist integers t,, t,, t; and elements
X', y', z' € A(S) with

t t t
x=al+x', y=al+y, z=a3+z".
Since A(S) C Z(J), we have the relations
t t
(%,y,2) = (@1+x,2a2+y,2aB+2) = (a'1,2a2,a") = 0.

It follows that J is associative, and the proof of Theorem 1 is complete.

Before proceeding, we note that the structure of commutative, associative, sub-
directly irreducible rings is given in [12].

5. COROLLARIES

We shall now consider several corollaries to Theorem 1.

COROLLARY 1. If J is a Jovdan H-algebva and all idempotents of J arve cen-
tral, then J is associative.

Proof. As in the proof of Lemma 11, the idempotents in J/N are central, and
hence, by Lemma 10 and the representation of J/N given in the proof of Lemma 10,
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J/N must be associative. Let I be an ideal of J with the property that J/I is sub-
directly irreducible. If J/I is not associative, then J/I must be periodic, and it
follows that N C I. But then J/I is a homomorphic image of J/N. Therefore, each
subdirectly irreducible homomorphic image of J is associative, and the corollary
follows from Theorem 1.

COROLLARY 2. If J is a Jovdan H-algebva with a unique nonzevro idempolent,
then J is associative.

Proof. Let e be the unique nonzero idempotent of J. By Corollary 1 it suffices
to show that e is in the center of J. If it is not, then Jl/z(e) # (0). But this implies
the existence of another nonzero idempotent, which is impossible.

COROLLARY 3. If J is a Jovdan H-algebra without nontrivial idempotents,
then J is associative.

Proof. By Corollary 2, we can suppose that J has no nonzero idempotents, and
hence, as in Corollary 1, we can assert that J/N has no nonzero idempotents.
Moreover, by the proof of Corollary 1 it suffices to prove that J/N is associative.
But Lemma 10 implies that J/N is associative or has nonzero idempotents; there-
fore J/N is associative, as desired.

In Corollaries 1 and 3 we used the following result, which we state without
proof.

COROLLARY 4. Let J be a Jovdan H-algebra; then J is associative if and
only if J/N is associative.

Note that Corollary 1 is the analogue to Corollary 1 of [10] and Corollary 2 is
analogous to Theorem 16.2 of [14]. The next two corollaries are analogous to the
results of [4].

COROLLARY 5. Let J be a Jovdan algebra over a field of characteristic not 2,
and such that for every element X in J theve exist an integer n =n(x) > 0 and a
polynomial p(t) = p(t) with integer coefficients such that x-1p(x) = x®. If further
all the nilpotent elements of J ave in the center of J, then J has the structuve given
in Theorvem 1.

Proof. Since x*t1p(x) = x1, we see that (x2p(x) - x)x?-1 = 0. Note that without
loss of generality we can suppose that n > 1. Then

(x%p(x) - x)" = (x2p(x) - x) (x%p(x) - x)*"! = 0,

and it follows that J is a Jordan H-algebra.

COROLLARY 6. Let J be a Jordan algebra of characteristic not 2 such that
every element of J genevales a finite subving. If the nilpotent elements of J ave
all in the center, then J has the structuve given in Theovem 3.

Proof. This result follows immediately from Corollary 5 and the fact that
xm=xn for all x in J and some pair of integers m and n (m # n).

As our final corollary, we prove the following result, which is analogous to the
Jordan-ring case of [9].

COROLLARY 7. Let J be a Jovdan ving, and let p be a prime integer diffevent
Jrom 2. Suppose that for every x € J, px =0 and xP - x € Z(J). Then J is asso-
ctative.



94 J. A. LOUSTAU

Proof. By Theorem 3, it suffices to prove that if J is a simple Jordan algebra
of a symmetric bilinear form f that is three-dimensional over its center, then J
cannot satisfy the hypothesis of the corollary. Now J = F1 + V, where dim V = 2
over F, andif a@ +x, B+y € J, then (e +x)(B +y) = af + f(x, y) + ay + 8%, where
a,B € F and X, y € V. Moreover, there exists w € V with w2 =f(w, w) = 1. Now
take x € V, with f(x, w) =0, and let 8 = f(x, x) # 0. Consider aw +x for o € F.
By direct computation,

(aw +x)P = (a2 +p)P-1)/2(qy £ x) .

Since (aw +x)P - (aw +x) € Z(J) = F, and since aw +x ¢ Z(J), it follows that
(a2 +p)(P-1)/2 = 1. Now take & € Zy; then, since a2+ € Zp, it follows that
B € Zy. If a=0,then clearly B8 is a square, and therefore there exists y € Zp

with y% = 8. Next take z = x/y. Then f(z, z) = 1 and f(w, z) = 0. Replacing x by z
in the above, we see that for all o, A € Z

Ow +0z)P = 0% +02)P-1)/2\y + 03z).
As before, this implies that
0% +o2)p-1)2 o g

Hence the sum of each pair of squares in Z; is again a square in Zp. But 1 isa
square; therefore all elements of Z,, are squares; this is plainly impossible, and
the corollary is proved.
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