LIFTING OF OPERATORS THAT COMMUTE WITH SHIFTS
J. G. W. Carswell and C. F. Schubert

1. INTRODUCTION

Throuv zhout this paper, all Hilbert spaces are assumed to be complex, all oper-
ators are assumed to be linear and bounded, and all subspaces are assumed to be
closed.

If S is a unilateral shift on a Hilbert space &, A4 is a subspace of & that is
invariant under S*, and T is an operator on # commuting with S*, then there
exists an operator T; on &, also commuting with S*, that satisfies the condition
||T1 ” = ”T“, and the restriction T; | .# coincides with T. This particular result
has been proved in different ways by several authors [2], [4], [T]. Here we shall
consider a related lifting question that is in the nature of an adjoint problem.

If .« is a subspace of & that is invariant under S and T is an operator on
A commuting with S, does there exist an operator T; on & that also commutes

with S and is such that T | .# =T? Unlike the lifting problem for co-isometries

above, this problem has no solution unless a subsidiary condition is satisfied. For
each integer k > 1, the operator Py =1 - gkg*k js an orthogonal projection on .
If T, is an operator on J¢ commuting with S, then P, T P, = P, T;. Thus, for
all u € & and all k > 1, we have

1P Tyull = [P Ty Pruf) < Ty ] [Pycul

In particular, if T =T, Iu/l, then for all u € .#, T must satisfy the inequality

| P Tu| < |T1] [|Pxul|. Thus, if an operator T on -# has an extension to o
that commutes with S, then the value

(1.1) a = sup sup M
>1 ueor || Prul

must necessarily be finite. Note that by (1.1) « > ”T ” , while by the remarks
above, @ < || T1| for any extension T;. L. B. Page [5] conjectured that the condi-
tion (1.1) is also sufficient to ensure that T has an extension T, to all of # such
that T;S = ST;; he conjectured further that if T; is an extension of minimal norm,
then ||T;| = @, and he was able to prove this conjecture in several special cases.
For shifts of finite multiplicity, the conjecture was proved in [6] by means of a
Hardy space model. The object of this paper is to prove this conjecture in the gen-
eral form given here.

We shall prove our results by reducing the problem to the lifting theorem for
co-isometries.
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2. RESULTS

THEOREM 1. Suppose that S is a unilateval shift on a Hilbert space o, that
Al is a subspace of H invaviant undev S, and thalt T is an operator on A com-
muting with S. Then, if in addition
Py Tu
(2.1) a = sup sup M
k>1 uett || Prul

is finite, theve exists an opevator T on o such that
TS =8T,, Ti|# =T, and ||T,] =c.

In the same manner that Theorem 4 of [4] was extended to Theorem 5 on inter-
twining operators, Theorem 1 above can be extended to an apparently more general
result. For i =1, 2, let S; be a unilateral shift on the Hilbert space ‘¥ ;, and put

P; =1 - S8, for k> 1.
THEOREM 2. Suppose that for i =1, 2, the opevator S; is a unilateval shift on

the Hilbevt space i, that W is a subspace of H#\ invaviant undev S1, and that X
is an opevatov from M to s, such that S; X = XS, . Then, if in addition

(2.2) o = sup sup Ml—
k>1 uett | P1xuf

is finite, theve exists an opevator Y from oK) to o, such that S,Y =YS,
Y| =X, and ||Y] = a.

The deduction of Theorem 2 from Theorem 1 requires only a standard construc-
tion; therefore we shall prove Theorem 2 here.

Proof of Theorem 2. If o denotes the product Hilbert space o) X #,, then
S, where S(u;, uz) =(Syuy, Szup) for (u;, up) € &, is a unilateral shift on o and
A1 =AM X Hp is a subspace of o invariant under S. If we put

T(ul , 112) = (0, Xul)

for (u;, uz) € #;, then TS = ST and T satisfies (2.1) with a given by (2.2).
Hence by Theorem 1, T has an extension T; to all of & that commutes with S, and
such that ||T;| = . Since

OX Hy C oy and T(0X ) = T(0OX #3) = 0,

T; must have the form Tj(u;, u2) = (Zu;, Yu;), where Y is an operator from ¢,
to o, that is an extension of X. Now TS = ST, and so from the equations

(ZSyuy, YSjuy) = TS(u;, up) = ST(uy, uy) = (S;Zuy, S,Yuy)

we deduce that YS; =S2Y. Thus, by the remarks in the Introduction, Y satisfies
YS; =S,Y and so [|[Y| > a. But |Y|| <|T || =@, whence |Y| = a, as asserted.
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3. PRELIMINARY EXTENSIONS

Let U be the minimal unitary dilation of S, and let £ be the Hilbert space on
which U acts; then & C & and U | o =S. If .« isan S-invariant subspace of #
and T is an operator on # commuting with S, then T has a unique extension to an

(o]
operator T~ on the subspace -/~ = \/n=0 U*"_y, such that T~ commutes with U
and [|T~| = || T||. This extension T~ is given explicitly by

T u= lim U*antk,

k ~— c0

where 22 € A and limy_,,, U*k my =u e A7, For constructions of this type,
see [1], [3]. Now .~ N o is an S-invariant subspace of &, and T~ |~ N K

is an extension of T, but unfortunately T (.#~ N o) need not be in . Indeed, in
the counterexamples of [5], [6], it is precisely at this point that the obstruction to
lifting occurs. The hypothesis (2.1) will ensure that T (/™ N ) C H.

, lp
PROPOSITION 1. If sup sup -l]—kTﬂJ- =q <+, then for all w e >,
K>1 el | Prcul|

(3.2) [QT"u] < o Qu].

Proof. Let u € .«~. Choose a sequence {my }, with my € .# and such that
limy _, o U*¥my = u; then

[QUATmy | = Uk, Ty < o [Pyl = @ [U*<Prmy] = o [QUmn .

Now let k — «, and we have the inequality QT u| < o [|Qu|.

In particular, if u € #> N &, then Qu =0, and so T u € 5. Thus
TY |47 N o is an extension of T.

If & and Q denote the orthogonal complement of & in % and the orthogonal
projection of &£ onto &, respectively, then the conjugate of U* on & is the com-
pression of U to &, that is, QU ] . Thus any operator B on & commuting with
QU can, by first taking adjoints in < and then extending this adjoint as in [1], [3],
be dilated to an operator on £ that commutes with U. For the proof of Theorem 1,
it will be best to have a precise summary of this observation.

PROPOSITION 2. If B is an operator on K commuling with QU, then B has a
dilation B to £ that commutes with U. For u € &, B) is given explicitly by

(3.3) B;u = lim UKBQU*ku,

k— oo

and further ”Bl || = ”B”

4. PROOF OF THEOREM 1

With the notation of Sections 2 and 3, Q-4~ is a linear manifold in 4. Define
an operator B' on Q.#~ by B'u=QT"y, where ue Q#~ and y € 4" is such
that Qy = u. As a consequence of Proposition 1, B' is well defined, linear, and
bounded, for
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IB'ull = |Q@T~y[ < elQy] = o u].

Moreover, B' commutes with QU. We extend B' by continuity to an operator on

QM~, the closure of Q.#~. This extension will also be denoted by B'. The sub-
space Q- ~ is invariant under QU, the operator QU has a co-isometric extension
to &, namely QU itself, and B' commutes with QU; thus, by [4, Corollary 4.1], B'
has an extension B on & such that BQU = QUB and ]|B” = |B'|| < @. The final
extension is by Proposition 2. By that proposition, the operator B has a dilation to
an operator B; on & that commutes with U and satisfies the inequality

[B,]l = IB|| <, and for any u € £, B;u can be computed according to (3.3). If
u € o, then UkQU*Ku € o, and so

QB;u = lim QUKBQU**u = lim BQUKQU*u = 0.

k — o0 k — o0

Thus B; &# C . Define the operator T; on & by T; = B; ] H;then T)U=UT,
and [T, || < ||B1 || < a@. To complete the proof, we need only show that T; | . =T.
For this purpose it will be sufficient to show that T I,///" New =T~ | AT N S
This, however, is easy; for if u € #~ N A, then QU**u € Q.#~ and

vkBQU**y = UkB'QU*y = UKQTY Uy = UKQU*KT " u.

As k — oo, the first term in this equation converges to B; u = T; u and the last term
converges to T u. Thus T~ | ./~ 0N o =T; | 4 O s, as required. That

|T,|| =@ is also clear, for we have shown that ||T;| < @, while in the Introduction
we showed that we must necessarily have [T || > a.

5. A COUNTEREXAMPLE

Now it is easy to see that the extension of minimal norm is not uniquely defined
on any subspace larger than the smallest reducing subspace for S that contains .#.
It has been suggested to us that the extension of minimal norm is in fact unique on
this reducing subspace. For shifts of multiplicity one, this is trivially true [5].

We conclude this paper with an example to show that the conjecture is false for
shifts of multiplicity three or more. For this example, we take o = H2 x H2 X H?,
where HZ is Hardy’s subspace of the space of functions that are analytic in the unit

disk D = {z; |z| < 1}. Inthis setting, S is just pointwise multiplication by z, and if
u=(uy, uz, uz) € o, then

(Su) (z) = (zu;(z), zuy(z), zus(z)).
The example will consist of a subspace .# C & that is not reducing; indeed, the

smallest reducing subspace containing ./ is all of &, but ..# does contain a re-
ducing subspace. On o we give two operators T; and T, such that

Tyt =Ty | e, ||Ti| = T2 = |T1|#|, ker(T;-T2 = .«,

and both T; and T, commute with S. Thus no extension of T = T I,/// can be
unique on any subspace larger than ./#.
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The subspace # of o defined by

{(u, zuz, (1 - 2)uz); uy, up € H2}

is closed and S-invariant. Define an operator A on <¢ that commutes with S by
A(uy, uy, uz) = (0, 0, zuz +(z - 1)uy). Then ”A” < 2Y2, and with an easy compu-
tation, ker A = #. Let T; be the orthogonal projection of & onto the reducing
subspace H2 X 0 X 0; that is, let Tyu = {u;, 0, 0) for u=(uj, uz, us) € &; then
Ty M C M, T;S=8Ty,and ||[T{| =|T1]|.#]| =1. If we define T, on & by
T,=T; +4-1A, then T,|.# =T, |4, T,8=8T,, and ||T,| =1. The smallest
reducing subspace that contains .# also contains S*.#, (I - 8S*).#, and all linear
combinations of elements of these spaces. In particular, for any A, u, v € C, it
contains

O, v) = @-88%@, z(p +v), (1-2)(p+v)+8%0, zp, (1-2)p)

and all its translates. Thus the smallest reducing subspace is & itself.
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