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1. INTRODUCTION

Throughout the paper, we follow the notation and terminology of [1]. All mani-
folds a1 ¢ assumed to be closed, connected, and orientable, unless specifically stated
otherwise, anc they are taken in any of the categories Top, Diff, and PL. Fiberings
shall be locally trivial and orientable. By a Hopf-type fibering of spheres, we mean
a fibering h: S™ — S9 with fibre S™"9, where (m, q) = (3, 2), (7, 4), or (15, 8). An
MS-fibering f: M™ — NP (n > p) of manifolds is an open continuous map with the
property that there exist closed, nonseparating sets A and B in M and N, respec-
tively, satisfying the following conditions.

(i) £(A) =B and f| A: A — B is a homeomorphism.

(ii) f(M - A)C N - B, and f| (M- A): M- A— N - B is a locally trivial fibra-
tion whose fibre is a manifold. The set A is referred to as the singular set of the
MS-fibering f.

In [1], it is conjectured that if an MS-fibering f: M® — NP (n > p) of manifolds
has finite singular set A, then A consists of exactly two points provided

(1) £ admits a spine fibering,
(2) NP is the standard sphere SP, and
(3) M™ is simply connected.
In this paper we prove that this cenjecture is true in the following stronger form.

THEOREM A. If f: M" — NP (n > p) is an MS-fibering of manifolds with finite,
nonempty singulayr set A and if f admits a spine, then #(A) = 2. Movreover, f is
Top- ov PL-equivalent to the suspension of a Hopf-type fibeving of spheves accovd-
ing as f is in Top ov PL (modulo the Poincaré conjecture in dimensions 3, 4).

Also, by means of the results in [1] one can easily prove the following assertion.

THEOREM B. Let f: M™ — NP (n > p) be an MS-fibering of manifolds with
singular set A. If M™ is ([n/2] - 1)-connected and #(A) = 2, then £ admits a spine
(the square bracket denotes the greatest-integer function).

Combining these two theorems, we see that an MS-fibering f: M® — NP (n > p)
with singular set A is Top-equivalent to the suspension of a Hopf-type fibering if
and only if M™ is ([n/2] - 1)-connected and #(A) = 2. One of the authors has dis-
covered a large class of MS-fiberings f: M" — SP in Diff, with A-finite, nonempty
and M" ([n/2] - 1)-connected [2]. It follows from our results that the suspension of
a Hopf-type fibering is the only one among them admitting a spine.
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2. A SKETCH OF THE PROOF OF THEOREM A

It is easy to show that if a finite set of points A is removed from a given mani-
fold M and the resulting set has a manifold as deformation retract, then #(A) < 2.
It will be shown that the case #(A) = 1 cannot occur when A is the singular set of an
MS-fibering. This is not to say, however, that the case #(A) = 1 cannot occur more
generally. For example, if FP" denotes either real, complex, quaternionic, or
Cayley projective space, then FPn-1 C FP™ - * is a deformation retract of
FP" - *  Indeed, this property characterizes projective spaces to a large extent,
and it is the topic of a separate paper of the authors.

Assuming that #(A) = 2, it remains to show that the MS-fibering is actually
Top- or PL-equivalent to the suspension of a Hopf-type fibering of spheres. As
usual, (n, p) = (4, 3), (8, 5), and (16, 9) are the only possible pairs of dimensions, as
the local results in |3| show. Thus we have only to prove that M™ = S® and NP = SP,
assuming #(A) = 2. This is done in Section 4.

3. COLLAPSING POINT COMPLEMENTS INTO SUBMANIFOLDS

We need the following proposition for our proof of Theorem A.

PROPOSITION 3.1. Let MP be a manifold (not necessarily orientable) in
Top, Diff, o PL, and let x € M. If M - x has the homotopy type of a Poincare
complex Y of formal dimension s, then

B*(Y, Z,) = Z, [a]/(a®tl)y  and  H*M, Z,) = Z;[a]/(alt?),

where deg a = p - s.

Proof. Throughout the proof, we use Z,-coefficients. We first prove state-
ments (1) to (4) mentioned below and use them for proving the proposition.

(1) H(M) ~ HI(Y) for 0<j<p- 1.
(2) HI(Y) ~ Hi*k(P-s)(Y) whenever j >0, k>0, and j +k(p-s) < p.

(3) s = L(p-s) for some integer £ > 0. Moreover,

Hk(p -8 )(Y)

I

Z, for 0<k < (,

HI(Y) = 0 otherwise.
(4) HXP-S)IM) = Z, for 0 <k < € +1,

H)(M) = 0 otherwise.
Actually, (1) is an immediate consequence of the isomorphisms.

HI(M) ~ Hy_ (M) ~ Hy (M, x) ~ H(M - x) ~ B(Y);

the first isomorphism is due to Poincaré duality, and the third to Lefschetz duality.
The second is valid whenever j <p - 1.

From the isomorphisms HS(M - x) ~ H5(Y) ~ Z> and HYM - x) = 0 for
i>p-1itfollows that s <p - 1. For each j > 0, we have the isomorphisms
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HI(Y) ~ HSH(Y) ~ HS-I(M) ~ Hit(P-s)) .

The first and the last of these are consequences of Poincaré duality and the univer-
sal-coefficient theorem. The second isomorphism is due to (1). Also, from (1) we
see that

wite-skm) ~ gitlP-s)(y)

whenever j + (p - s) < p. Thus H(Y) ~ Hit(P-8)(y) if j + (p - s) < p. Induction on
k yields (2).

Corresponding to each integer j satisfying the condition 0 < j < s, there exists
an integer k > 0 such that p>j +k(p - s) >s. From (2) we get the isomorphism
H(Y) ~ gitk(p-s NY). In case j +k(p - s) > s, this implies that HI(Y) = 0. Since
HO(Y) # 0, it follows that there exists an integer ¢ > 0 such that £(p - s) =s. This
immediately gives (3).

(4) is an immediate consequence of (3) and (1).

Let oy generate HX(P-S)}(M). We shall prove by induction on k that o, = af
for 0 <k < £-+1. This is clear for k = 0. Let &; generate I (P-s)(y) for
0<j< ¢ Assume 1<k <(¢+1 andthat we have proved o, ; = ozlf'l , in other
words, -1 # 0. Then alf 1 # 0 and hence @¥-! =@, _;. By Poincaré duality for
Y®, we see that a§~! U@y 1, =a@j. Itfollows that &X-1 Udy 1,y = @p. This in
turn implies that ak lU a 0 kt1 = %g- However, Poincaré duality for M yields the
relation a; U @y = a£+1. Hence alf Ua, 141 =%, This implies ozlf # 0 and
hence of = a,.

Proposition 3.1 now follows immediately.

S
0+1°

COROLLARY 3.3. Suppose M and Y occurving in Proposition 3.1 are ovien-
table manifolds and s > 1. Then p - s > 1.

COROLLARY 3.2. With the assumptions of Proposition 3.1, 5

Proof. This will follow if we show that a closed manifold V satisfying the con-
dition H¥(V, Z,) ~ Z[a]/(a?k"]) with deg @ =1 and k > 1 is necessarily non-
orientable. If w; denotes the first Stiefel-Whitney class of V, then w; is also the
first Wu class of V, and we have the equations

wi U a2kl = gqla2k-l = (sqla) Ua?k2+a U sql a2k-2
= @2 U adk-2 = g2k 2 0,

Hence w; # 0. This means V is nonorientable.

Now suppose A is a finite set of points in a manifold M® such that M - A has a
manifold Y® as a deformation retract. Then clearly s < n - 1, and the integral co-
homology sequence

- — HO(M) — HO(A) — HI(M, A) — -

]| U

Z H,_ (M - A)
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implies rank H(A) = #(A) < 2, because

0 if s<n-1,
H, (M-A) ~ H, (Y® =
Z if s=n-1.

Suppose that an MS-fibering f: M® — NP as in the hypothesis of Theorem A is given.
Then we must have the spine diagram

r
Mn-A M; Xr

I )

NP - f(A) — Ny yS

with deformation retractions r); and ry and spine fibering 7: X* — Y®. It follows
from the argument above that #(A) < 2. It remains to show that #(A) =1 is an im-
possibility.

LEMMA 3.4. If #(A) = 1, then the spine fibeving 7: X* — YS of f: M® — NP
(n > p) has codimension one (namely, r =n - 1 and s =p - 1).

Proof. Local results in [3] reduce the problem to three cases, namely
(n, p) = (4, 3), (8, 5), or (16, 9), and in each case the fibre is a homotopy (n - 1)-
sphere.

Case (4, 3). We have only to prove that s =2. If s =0, then r =1 and
r/n = 1/4, and this is not of the form ¢/(¢ + 1) for any integer (. Likewise, s =1
implies s/p = 1/3, which is also not of the form ¢/(¢ + 1). Corollary 3.2 gives the
desired result.

Case (8, 5). In this case we have to show that s =4. For s =1, 2, 3 it is clear
that s/p =s/5 # £/(¢ + 1) for any integer . If s =0, we see that
r/n=3/8 # ¢/(¢ +1). Again, Corollary 3.2 gives the desired conclusion.

Case (16, 9). The proof is similar to the proofs in the other two cases, and we
omit it.
Now, X™-! and M™ are both orientable. From Corollary 3.3 it follows that

Xn-1 cannot be a deformation retract of M™ - A, when #(A) = 1. This completes the
proof of the first part of Theorem A.

4. COMPLETION OF PROOF OF THEOREM A

PROPOSITION 4.1. Let s be any integer (s > 2). Let N1 be a manifold,
A C N a set consisting of two points. If N - A has the homotopy type of an s-
manifold Y° , then N and Y ave homotopy spheres of dimension s + 1 and s,

respectively.

Proof. We prove that the top-dimensional homology class of Y is spherical.
Then it will follow from Lemma 4.2 below that Y is a homotopy s-sphere.

Let D; and D, be two disjoint, locally flatly imbedded discs around the two
points of A in N+l  Tet B; and B, denote the interiors of D, and D,, respec-
tively. Then VS*l =N - B, U B, is a connected manifold with 3V =S} - S5 (two

disjoint copies of S°). Further, V has the homotopy type of YS. By excision,
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H;(V, aV) ~ H;(N, D, U D,). Also, H;(N, D, U D,) ~ H,;(N) for i > 2. Hence
H;(V, V) ~ H;(N) for i> 2.

From the diagram (with Z,-coefficients)

H'(N) ~ Z

1

HO(A) ~ Z2_®DZ
H,(Y) p D7y

e/ \t

Hg(V) =~ Hg(N - A) ~ HI(N, A) ~ Zp

ool

H (V, aV) ~ H (N) ~ HI(N)

Hi) =0

with exact vertical sequence we see that H!(N; Z p) = 0. Since Hg(N; Zy) =0 for
every prime p. This in turn implies that H (N; Z) = 0. Hence H(V, BV Z) = 0.
From the exact sequence (integer coeff1c1ents)

1}
0

we see that the top class y of (V, 9V) gets mapped to ay - o, where a; is the top
class of S? (j =1, 2). Hence @) gets mapped to a generator of Hg(V) ~ H(Y) ~ Z
It follows that Y is a homotopy sphere.

From the condition s +1 > 3 we see that 7;(N - A) ~ 7;(N). But
1y (N - A) ~ 7;(Y) =0. Thus 7;(N) = 0. Also, for 2 <j < s, we have the isomor-

phisms HI(N) ~ HI(N, A) ~ Hgt1-j(N - A) = 0. It follows that N is also a homotopy
sphere.

LEMMA 4.2. Let Y® be a manifold of dimension s > 1 with sphevical top-
dimensional homology class. Then Y is a homotopy s-sphere.

Proof. We only need to prove the lemma for s > 2. Let f: S° — Y® represent
the top class. Let Y® be the 51mp1y connected covering space of Y. Since
m,(8°) = 0, there exists a lift f: S° — ¥ of f. It follows that H s(Y) # 0. Hence Y
is compact, and therefore it is a finite covering of Y. If p: Y — Y denotes the
covering projection, then deg p = 0(7;(Y)) (the order of the fundamental group of Y).

Since 1 =deg f=deg p - deg , we see that 0(7,(Y)) = 1. Hence Y itself is simply
connected.
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It is well known that if Y® is simply connected with a map SS i, YS of degree 1,
then f is a homotopy equivalence. Thus Y® is a homotopy sphere.

This completes the proof of Theorem A. As for Theorem B, we observe that if
M" is ([n/2] - 1)-connected, one can easily show that NP is a homotopy sphere.
Then Theorem 3.1 of [2] gives the desired result.

5. REMARKS ON NONORIENTABLE MS-FIBERINGS

To our knowledge, MS-fiberings with nonorientable manifolds have so far not
been studied. When we take the MS-fibering S! — S%4 — 83 obtained as the suspen-
sion of the Hopf fibering S — 83 — SZ, we may be tempted to believe that antipodal
identification will give us an MS-fibering S! — RP% — PR3 with one singular point
and having a spine. But this is not true; for if it is an MS-fibering and if there is a
spine, the spine sequence S! — X3 — Y2 must satisf¥ the conditions X3 ~ PR3 and
Y2 ~ RP2. Then, by a well-known result of Serre, S* — X3 — Y2 will be an orien-
table fibering. From the Gysin sequence

— Hp(Y?) — H3(X?) — H3(Y?) — Hi(Y?)

we get a contradiction, because H3(X3) ~ Z and H,(Y%) = H3(Y?) = 0.

Similar arguments show that the MS-fibering S3 — S8 — S> obtained as the
suspension of the Hopf fibering S3 — S7 — S% will not yield an MS-fibering with a
spine under the Z,-action on S8 and S°. We are unable to make a similar state-
ment in the case of the MS-fibering S7 — 816 — 89, since S7 is not a group and we
do not know whether Serre’s result can be applied in this case.
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