FIBRATIONS OF COMPACTLY GENERATED SPACES
Harold M. Hastings

1. INTRODUCTION

N. E. Steenrod showed that the category CG of compactly generated Hausdorff
spaces is a convenient category for algebraic topology [8]. In particular, he showed
that cofibrations and colimits have various good properties. See Theorems 3.2, 4.2,
and 4.3, below. We shall show that in CG, fibrations (maps having the covering-
homotopy property in CG) and limits have similar good properties.

Consequently, CG, together with the usual classes of cofibrations, fibrations,
and homotopy equivalences, is a closed model category (D. G. Quillen, [5, Defini-
tions 1.1.1, 1.5.1]). (Note that cofibrations in CG are automatically closed; see [T,
p. 57], for example.) A. Strgm has shown that all spaces, together with the usual
classes of cofibrations, fibrations, and homotopy equivalences is also a closed model
category [9].

Our main tool is the following covering-homotopy-extension property for fibra-
tions in CG (see Section 2). Given a cofibration A — X, a fibration Y — B, and a
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we can find a filler f. Under additional hypotheses, G. Allaud and E. Fadell gave an
earlier proof of this result for regular fibrations in the category of all spaces [1,
Theorem 2.4]. The theorem also holds in the category of simplicial sets; see J. P.
May [4, Corollary 7.17], for example.
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From now on, unless otherwise stated, all spaces and maps are in CG, and we
make all constructions there. In Section 3, we prove a “Polish” Theorem for fibra-
tions and the function-space functor Map in CG [8, Section 5]. Towers and towers
of fibrations will be discussed in Sections 4 and 5.

In a subsequent paper (extending [3]), these results will be used to discuss the
relation between M. Rothenberg and N. E. Steenrod’s characterization of the clas-
sifying space of a topological group [6, Definition 1.1] and A. K. Bousfield and D. M.
Kan’s realization of a cosimplicial space [2].

Sections 2, 3, and 5 are contained in the author’s dissertation [3]. This disser-
tation was written under the direction of Professors N. E. Steenrod and J. C. Moore,
to whom the author is grateful for their help and guidance.
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2. A COVERING-HOMOTOPY-EXTENSION THEOREM

THEOREM 2.1. Let i: A — X be a cofibration, let p: Y — B be a fibration, and
suppose that the diagram (of solid arvrows)

XX0UAXI f > Y
//”

(2.1) i B Jp
XxI = h > B

commutes. Then theve exists a map H: X X1 — Y such that Hj =f and pH = h.

Proof. Since i is a cofibration, it follows by [8, Theorem 7.1] that
X X0y A XI is a strong deformation retract of X XI. Let ri X XI =X X0 UA XI
be the retraction, and let I'': X XI XI' — X X 1 be the homotopy from jr to lxxig
relative to X X 0 U A X 1.

There also exists a halo function u: X X I — [0, 1] with u1(0) =X x0U A X1I
[8, Theorem 7.1]. Following a suggestion of Dold and Steenrod (private communica-
tion), we shall first replace I' with another homotopy I'': X X I X I' —» X X I such
that I'(x, t, t') = (x, t) for t' > u(x, t).

Let Z be the quotient of X X I X I' obtained by collapsing (X X 0 U A XI) X I' to
(XX 0UAXI)XO0. Factor T through Z to obtaina map I': Z - X X 1.

Also, let
W=1{(xtt)) o<t <ulx, t)} € XxIxXI'.

Define a mapping g: X XIXI' = W by g(x, t, t') = (x, t, u(x, t)t'). Then g induces a
homeomorphism g': Z — W. Define the required homotopy I'' by

g l(x, t, t')  for t' <ulx, t),

'ix, t, t') =
(%, t) for t' > u(x, t).
Now consider the diagram
r i

XX]————>» XX0UAX] ——>Y
XXIxXO0 i p

4 . \L Y

XXIXT' L > xxI h > B

Since p is a fibration, there exists a map H': X X I X I' — Y that extends fr and
satisfies the condition pH' = hI''. Define H: X X I — Y by the equation
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H(x, t) = H'(x, t, u(x, t)).

Since TI''(x, t, u(x, t)) = (x, t), the mapping H is the required filler in diagram
(2.1). =

Remark 2.2. There is an analogous theorem for simplicial sets. See May [4,
Corollary 7.17], for example.
3. A POLISH THEOREM FOR FIBRATIONS
Let i: A — X be a cofibration, and let p: Y — B be a fibration. In Figure 1 be-

low, P is the pullback, and the mapping q: Map (X, Y) — P is induced by Map (1x, p)
and Map (i, 1y).

Map (X, Y)
Ma'p(i’ lY)
q
f
P >Map(A, Y)
Map(lxy p)
g Map(IA’ P)
Y Map (i, 1 Y
Map (X, B) pG, 1p) > Map(A, B)
Figure 1.

THEOREM 3.1. The mapping q is a fibvation.
This is roughly dual to the following result of Steenrod [8, Theorem 6.3].
THEOREM 3.2. Lel A - X and B —Y be cofibvations. Then the induced map

AXYUXXB — XXY

is also a cofibration.

Proof of Theorvem 3.1. We shall show that the map q in the solid-arrow
diagram
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W x0 h Map(X Y)
(3.1) H_.-
WxIZ H > P

has the covering-homotopy property.

An application of the exponential law [8, Theorem 5.6] to the mappings h, fH,
and gH yields mappings

h: WXXX0—Y,
Hi: WXAXI—Y,
Hy: WXXXI—B,

respectively. Since h' and H) agree on their intersection W X A X 0 (by diagram
(3.1)) and their domains are closed in their union, h' and H] induce a mapping

h": WX X X0U WXAXI — Y.

Further, since Map(1l,, p)fH = Map (i, 1g) gH, the mapping H, extends pHj. Hence
there is a commutative solid-arrow diagram

WXXX0UWXAKXI ;

Y
e H,
> B

Theorem 2.1 yields the filler H'. An application of the exponential law to the com-
posite of H' with the isomorphism W XIX X — W X X X1 yields the required map
H in diagram (3.1). ®

WXXXI

COROLLARY 3.3. Suppose that a basepoint * is chosen in B, that F is the
fibre of p, and that a basepoint * is chosen in ¥ C Y. Then, with vespect to the
basepoint (Map (A, *), Map (X, *)) in P, the fibre of q is Map((X, A), (F, *)).

Note that Theorem 3.1 only requires the covering-homotopy-extension property
(Theorem 2.1), and a function-space construction adjoint to the product (exponential
law). For example, Theorem 3.1 holds in the category of simplicial sets.
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4. TOWERS

We shall now dualize some results of Steenrod [8, Section 10] on filtered spaces.

Definition 4.1. A filteved space is a diagram
Xg—X; =X, — - > X = colim{X;};

this is usually denoted simply by X.

Unlike in [8], the maps X; — X;;; need not be inclusions. See Remark 4.7, be-
low. A space X is said to be filtered by cofibrations if all the maps X; — X;,; are
cofibrations. Then (see [8]) the maps X; — X are also cofibrations.

Let X and Y be filtered spaces. Define (X X Y), by the coequalizer (identifi-
cation space) diagram

f
(4.1) O xxy; 3 IO xxY - (XxY),,
itj=n-1 € itj=n

where f and g are induced by the maps X; — X;;; and Yj — Yj+1 , respectively. If
these maps are inclusions, then

(XX Y), U X><Y
itj=n

as usual.
There are induced maps (X X Y),, — (X XY)_,; that yield the following.
THEOREM 4.2 (compare [8, Theorem 10.3]). X X Y is a filteved space.
Proof. To show that X X Y = colim {(X X Y),, }, observe that

XXY = colim{X;} x colim {Y;} = colim{X; X¥;} = colim{X, x Y, ).
Since {(X X Y),} is cofinal in {X, X Y, }, that is, since there exist suitable natural
mappings

Xn XYy — (X % Y)Zn — Xon X Y¥Y2n,

the conclusion follows. W

THEOREM 4.3 [8, Theorem 10.5]. If X and Y ave filteved by cofibrations,
then sois X X Y.

Definition 4.4. A cofilleved space (fower) is a diagram
IimY = Y- -»Y - .. 5yl ¥0,

this is usually denoted simply by Y. If in addition each map vitl vl s a fibra-
tion, Y is said to be cofilteved by fibvations. In this case the maps Y — YJ are also
fibrations.

Definition 4.5. Suppose that X is a filtered space and Y is a cofiltered space.
Define Map (X, Y)" by the equalizer diagram
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. .
(4.2) Map(X, V)* —» II Mapx,, ¥) = II Map(x,, ¥9).
itj=n-1 € itj=n

Here f is induced by the maps X; — X;., and g by the maps Yj+1 — Yj. Compare
diagram (4.1).

There exist natural mappings Map (X, Y)"*! — Map (X, ).

THEOREM 4.6 (compare Theorem 4.2). Map(X, Y) is a cofilteved space.

Proof. As in the proof of Theorem 4.2, observe that {Map (X, Y)n} is cofinal
in {Map(X_, Y?}, whose limit is Map (X, Y). We omit the details. ®

~ Remark 4.7. Even if the maps X; — X;,; are inclusions and the maps
YJ — Yitl are projections, the maps Map (X, Y)ntl — Map (X, Y)" need not be pro-
jections. To see this, let X, = {0, 1}, X; =[0, 1] for i > 1, and Y’ = {0, 1} for
all j.

5. FIBRATION TOWERS

THEOREM 5.1 (compare Theorem 4.3). Let X be filteved by cofibrations, and
let Y be cofilteved by fibrations. Then Map (X, Y) is cofilteved by fibrations.

Proof. Given any solid-arrow diagram

W X 0 h > Map (X, Y)»*!
7
(5.1) H _-7
/// H n
W XI > Map (X, Y)",

we shall construct the filler H.

First represent Map (X, Y)" as the space of diagrams in Figure 2.

N~ n
XO 'Y

Figure 2.
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By the exponential law [8, Theorem 5.4], h and H correspond to the respective
diagrams in Figure 3.

h, Hy
W X 0 % X, > yotl WX Ix X, >y
Y h'1 Y l H] J«
W X 0 XX, > Y?  WXIXX, > yn-!

| |

€
X
o)
X
>
Y
<
3
X
b—{
X
gl
=]
Y
<
o

5y v0 y v-1 _
Figure 3.
By diagram (5.1), the two diagrams
hJ‘- .
W X 0 X X; > yn-itl
H) _
WXIXX; > Yyn-)
and
WX0XX; > W X 0 X X;
h;
J
H. _
WXIXX; 1 > yn-jtl
commute. They yield solid-arrow diagrams
h, UH;_, )
WXO0XX;UWXIXX: J J > yn-itl
J J _>r
(5.2) f; -7

W X I X X; > yn-j
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(X_; = ). The covering-homotopy-extension theorem (2.1) yields the fillers f;.
Since diagram (5.2) and the diagrams

WX IXX; ! > yn-itl

WX IX X, > yn-j

b

commute, an application of the exponential laW to {f;} yields the required map
H: W X I — Map (X, Y)*"! in diagram (5.1).

Remark 5.2. We shall call a tower Y of simplicial sets cofiltered by fibrations
if every map YJt! — YJ is a fibration (as in Definition 4.4) and, additionally, YO is a
Kan complex. The results of Sections 4 and 5 then hold for simplicial sets.

6. CG IS A MODEL CATEGORY

We shall show that the covering-homotopy-extension theorem (2.1) implies the
lifting property for a model category (Quillen, [5, Definition I.1.1]). The remaining
axioms for a closed model category [5, Definitions I.1.1 and I1.5.1] may easily be
verified for CG, together with the usual classes of cofibrations, fibrations, and
(homotopy) equivalences.

THEOREM 6.1. For every solid-arvow diagvam

A > Y
o
r'e
//
e
(6.1) i f_- p
7
//
//
X > B

where i is a cofibration, p is a fibvation, and either i ov p is a homotopy equiva-
lence, the filler t exists.

Pyoof. Suppose that i is a homotopy equivalence. Then (see for example [8,
Section 1.4]) the space A is a strong deformation retract of X. Let r: X — A be
the retraction, and let H: X XI — X be a homotopy relative to A from ri to 1y.
We obtain the commutative solid-arrow diagram

Y
> B

r U proj

XX0UAXI

> A

Y

Y

>
X
—
Y
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By Theorem 2.1, the filler exists. Let f(x) = F(x, 1); then f is the required map in
diagram (6.1).

If instead p is a homotopy equivalence, the filler f may be constructed in a
similar way. W

Remark 6.2. More generally, in any category where homotopy is defined with a
cylinder functor, the lifting property of model categories (diagram 6.1) and the
covering-homotopy-extension property (diagram 6.2) are equivalent. We omit the
details.
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