AN ELEMENTARY PROOF OF THE PICK-NEVANLINNA
INTERPOLATION THEOREM

Donald E. Marshall

1. INTRODUCTION

Let {zl I zn} be an n-tuple of distinct points in the open unit disk A. Let
{Wl , ***, W be an n-tuple of complex numbers. The problem is to formulate a
necessary and sufficient condition for the existence of a function f, analytic in A,
bounded in modulus by 1, and such that £(z;) = w; {1 <i<n). Such an f is said to
interpolate the sequences {z } and {wl} The problem was originally solved by G.
Pick [4] in 1916. His necessary and sufficient condition was that the n-by-n matrix

1 ey
(1) M=[-i—_ﬂz’%vl:| (1<1i,j<n)
1 J

be positive semidefinite (nonnegative). R. Nevanlinna [2], [3] also solved the prob-
lem independently of Pick in 1919; however his conditions were rather implicit. He
developed the following recursive relationship: If E is the set of analytic functions
in A whose modulus is bounded by 1, then f is in E if and only if

f(z) - £(z,) Z - Z;
1_mf(z) 1 -:le

fl(Z) =

is in E. In other words, f interpolates the n-tuples {z;} and {w;} 1 <i<n) if
and only if f, interpolates the (n - 1)-tuples

{z;} and {Wi-_wl /lzi__zl } (2<i<n).

1-wyw; - Z,Z4

Repeating the process, we then obtain f,, f3, :-+, f,,. Nevanlinna’s theorem asserts
that a necessary and sufficient condition for E to contain a function f with the prop-
erty that f(z;) =w; (1 <i<n) is that the corresponding functions f;, f,, -*-, f,, be-
long to E. In 1956, B. Sz. -Nagy and A. Kor4nyi [6] gave a proof of Pick’s condltlon,
using Hilbert-space techniques. In 1967, D. Sarason [5] gave a proof by means of
operator theory. A host of others have considered similar problems for infinite
sequences.

We shall give an elementary constructive proof that (1) is sufficient, and we
shall show that the interpolating functions can be taken from a much smaller class
than the analytic functions bounded by 1. Using these considerations, we also give a
proof that (1) is necessary. Finally, in Section 3, we draw some consequences of
these results.
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2. MAIN RESULT

An analytic function of the form

n
Z - a;
B(z) = c.];]:1 T:?il;’ where Ic[ =1 and lail <1,

is called a finile Blaschke product. It is easy to see that the finite Blaschke products
are precisely the functions analytic in A whose absolute value tends to 1 at every
point of the unit circle. Unless they are constant, they map A onto A.

Construction. Let By(z) =1 for all z in A. I |wy| = 1, let By(z) = w, for all
z in A. If Iwn| < 1, let B, (z) =C;l o (zB,_;) o A (z), where

An(z) = (z - z20)/(1 - Zn2), Cxz) = (z - wn)/(1-Wn2z),
and B, _; is a Blaschke product of degree at most n - 1, arranged so that
Bn-I(A n(zi)) = Cn(w1)/An(Z1) (1 _S i S n- 1) .

THEOREM 1. Suppose xMx* > 0 for all n-vectors x. Then the construction
above gives a finite Blaschke product By, of degree at most n such that Bp(zy) = w;
(1<i<n).

Proof. The idea of the proof is to show that the interpolation B,(z;) = w;

(1 <1i<n) is equivalent to the interpolation B, _1(An(z;) = Cnl(w;)/An(zs)
(1<i<n-1). The result will then follow by induction.

Let x = (0, ---, 0, 1); then xMx* = (1 - |w,|2)/(1 - |z,|?). Hence |w,| < 1. If
|wn| =1, then My, =0. Because M is hermitian, |M;;|2 < M;; M;;. Hence
0=M;n=(1-w;wy)/(1-2iZ,), so that w; =w, (1 <i<n). Thus B,, interpolates
the sequences {z;} and {w;} (1 <i<n).

If |wp| <1, and if we can find such a B,,_;, then B is a Blaschke product of
degree at most n interpolating the sequences {zi} and {wi} (1 <i<n). We need
only show M > 0 implies B, _; eXists.

The proof is by induction. The function By always exists. Suppose that for
each positive semidefinite (n - 1)-by-(n - 1) matrix of the form

[(1 - v;95)/(1 - uiGy)],

the construction yields a finite Blaschke product B, _; of degree at most n - 1 such
that B, _j(u;) =v; (1 <i<n - 1). Then it suffices to show that M > 0 implies the
matrix

_ Cyfwy) Cywy)

An(z;) Ap(z;) o
N = (1<i,j<n-1)
1- An(zi)Anizj)

is positive semidefinite. We see that
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o 1 (1 - Cplwy) Cplwy) 1)
Yo AL (zy) Anizj; 1- An(zi)Aniij
1 ((I—Ziin)(l-ijzn)(l- |wn|2) (1 - wiW) 1).

) An(z:) An(z;) \ (1 - wi@,) (1 - Wyw,) (1 - |2, 2) (1 - 2;2))

Now let D; be the n-by-n diagonal matrix with diagonal elements
(D,) _(1"Ziin) 1—lwnlz
Vit S \T-wiwn / NT- [5, ]2

(1 - 252,) (1 - Z52,) (1 - |wy|2) (1 - w; %)

(1= wy W) (1= Wyw) (1= |2, |D (- 22

Then

(D, MDY);5 =

Notice that the last column and the boitom row are all 1’s. Now let

1]

where I is the (n - 1)-by-(n - 1) identity matrix. Then

(1 - Zizn)(l - ZJ Zn) (1 - IWnlz)(l - Wiﬁj)

. — = > ~— -1 for (i, j) # (n, n),
(Il D]. MDl IT)IJ = (1 - Wiwn) (1 - ijn) (1 - lznl )(1 - Zizj

1 for i=j=n.

Now let D, be the n-by-n diagonal matrix with diagonal elements 1/A_(z;) for
1<i<n-1and 1 for i=n. Then

— —

= D, I, D; MDf Iy D5 .

Hence, if x =(x;, -, x,.1), y =&, ***, X4_1, 0), and P =D, I} Dy, then

xNx* = (yP) M (yP)* > 0 by assumption. (Note that since |w,| < 1, the matrix P is
invertible. Therefore, in fact, N > 0 if and only if M > 0; moreover,

rank N =rank M - 1.)

Pick proved the converse fairly easily, using Cauchy’s integral formula, after
transforming the problem into the consideration of functions mapping the unit disk
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into the right half-plane. His proof can also be found in L. Ahlfors [1, pp. 3-4]. We
offer another proof.

THEOREM 2. If f is analytic in A, |f(z)| <1, and £(z;) = w; (1 <i <n), then
xMx* > 0 for all n-vectors x.

Proof. The idea, again, is that interpolating the n-tuples {z;} and {w;}
(1 <i<n) is equivalent to interpolating the (n - 1)-tuples {A,(z;)} and
{Cn(Wi)/An(Zi)} (1 <iLn- 1).

1f lwnl = 1, the maximum-modulus principle implies f(z) = w, for all z in A;
hence

Therefore xMx* > 0 trivially.
If |wn| <1, let

A (z) = (z - 2n)/(1 - Z,2) and Cyu(z) = (z - w,)/(1 - W,2),

and let g(z) = (Cp o f o A;1(z))/z. Schwarz’s lemma implies [g(z)| < 1. Note that
g(Ap(2z1)) = Cplwi)/Ap(z;) (1 <i<n-1).

The proof now follows by induction. Assume that for each analytic function g
on A, bounded by 1 and with g(u;) =v; (1 <i<n - 1), the (n - 1)-by-(n - 1) matrix

1-viV;j
1-u;G
is positive semidefinite. Our function g satisfies these requirements with
u; = A (z;) and v; = C,(w;)/An(z;). Thus the matrix N, as in the proof of Theorem

1, is positive semidefinite. As we noted in the proof of Theorem 1, this implies that
M is positive semidefinite. :

3. FURTHER RESULTS

COROLLARY 1. Suppose M is positive semidefinite. Then det(M) =0 if and
only if the intevpolating function is unique. In this case the intevpolating function is
a Blaschke product whose degree is the rvank of M.

This follows from the facts that rank N = rank M - 1, the interpolating function
is unique if anl =1, and as in the proof of Theorem 2, if f is a Blaschke product
then deg g =deg f - 1.

COROLLARY 2. Let F be the set of analytic functions in & whose modulus is
bounded by 1, such that £(z;) = w; (1 <i<n). Fix zg in A. Then the solutions to
the problems

(1) max E)%.f(zo) and  (2) max |f(zp)],

wheve the maximum is taken with respect to all functions £ in the class F, are
Blaschke products whose degree is the vank of M. In the fivst problem, the solution

iS unique.
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Proof. We can find the most general member of F from the construction, by
letting Bg be an arbitrary analytic function on A bounded in modulus by 1. The
possible values at zg of these functions fills a closed disk D (a point is considered
a closed disk). This was known to both Pick and Nevanlinna; see also Ahlfors [1, pp.
4-5]. It can be seen from our considerations by induction. Assume the possible
values of B, _1(AL(zg)), as Bg varies, fill a closed disk. Now

B,(zo) = C.l(AL(z0)B,_1(AL(z0),

A (zg) is constant, and C;ll maps circles into circles; therefore the possible values
of B,(zg) fill a closed disk. Let

1- Wiﬁj

1—zizj] (0<i, j<n),

M'(wg) = I:

and let M be as before. If F is not empty, M is positive semidefinite. Thus
M'(wg) is positive semidefinite if and only if det (M'(wg)) > 0. Since det (M'(wq)) is
a continuous function of wg, the solutions to both problems must occur when

det (M'(wg)) = 0, that is, when wg is on the boundary of D. Now apply Corollary 1.
The solution to the second problem is unique if and only if D is not centered at the
origin.
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