REMARKS ON THE INVARIANT-SUBSPACE PROBLEM
Carl Pearcy, J. R. Ringrose, and Norberto Salinas

1. The invariant-subspace problem for operators on Hilbert space is the ques-
tion whether every bounded, linear operator on a separable, infinite-dimensional,
complex Hilbert space < maps some (closed) subspace different from (0) and <
into itself. In this note we prove three theorems, all of which are concerned with
equivalent reformulations of this problem. The main tools employed are the
Lomonosov technique and the theory of subdiagonalization of compact operators.

In what follows, Z(s¢) will denote the algebra of all bounded, linear operators
on o¢. Moreover, all subalgebras of Z () under consideration will be assumed to
contain the identity operator 1 . The lattice of invariant subspaces of a subalge-
bra & of Z(o¢) will be denoted by Lat (.« ), and the algebra # will be called
transitive if Lat (. ) = {(0), #}. The lattice of invariant subspaces of a single
operator T will be denoted by Lat (T).

THEOREM 1.1. Let & be a subalgebra of (o). Then the following state-
ments are equivalent:

(1) o is transitive.

(2) For every nonzevo, quasinilpotent, compact opevator K on A, theve exist
an opevator A = Ak in « and a nonzero veclor x = xXg in H such that AKx = x.

(3) For every nonzevo, nilpotent opevator N on o of rank one, therve exist an
operator A = Ay in A and a nonzevo vector x = XN tn K such that ANx = x.

Proof. That (1) implies (2) follows from the basic Lomonosov theorem (see [1]
and [2]): if A is a transitive subalgebva of ¥ (A ) and K is a nonzevo compact
operator on A, then theve exist an opervator A = Ayx in A and a nonzevo vector
X = Xk Such that AKx = x. That (2) implies (3) is obvious; therefore we complete
the proof by showing that (3) implies (1). Arguing contrapositively, we suppose that
A is a subspace different from (0) and < that is invariant under . Let X0
and yy be any two nonzero vectors in <& such that yg belongs to .# and xg is
orthogonal to .#, and let N be the (unique) nilpotent operator of rank one that maps
Xg to yg. Then the range of N is contained in ./, and it follows that for each A in
«f the range of AN is contained in .#. Thus NAN =0 and (AN)2 =0 for every A
in «, from which it follows that there cannot exist an operator Ay in  and a
nonzero xy in < satisfying the equation ANxp = Xy . This contradicts (3), and
thus completes the proof.

We remark that one may argue independently of the Lomonosov theorem to show
that conditions (1) and (3) above are equivalent. The reader may supply the details
of this argument himself.

COROLLARY 1.2. Let A be an operator in (). Then A has a nontrivial
invariant subspace if and only if theve exists a nonzero compact operator XK such
that p(A)K is quasinilpotent for every polynomial p.
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2. A difficulty in trying to apply Theorem 1.1 to solve the invariant-subspace
problem is that the equivalence of conditions (1) and (3) is near the surface; thus (3)
is not likely to be useful. Furthermore, the verification of (2) is complicated by the
necessity of determining the validity of a certain statement for every quasinilpotent
compact operator, and it is not always obvious whether an operator is compact. It
seems worthwhile to find a condition intermediate to (2) and (3) that is equivalent to
(1), and in this section we establish a framework in which there is such a condition.

A family T of subspaces of <# that is linearly ordered by inclusion is a chain
of subspaces. If T" is a chain of subspaces and .# € T', we denote by -« _ the clo-

sure of the union U{,/V e It N % A}, A chain T will be called a simple chain if
it satisfies the following conditions:
(i) (0) € " and X € T,

(ii) if I'g is any subfamily of I then the subspaces ﬂ{.,// A € I‘O} and
cl':U {.///: Al € I"o}] are in T,

(iii) for each .« in T, the subspace .# () ./ _ is at most one-dimensional.

Finally, an operator T will be said to have f(vivial reducing kevnel if
kernel T N kernel T* = (0).

Our program announced above begins with the following result.

THEOREM 2.1. Let A be a subalgebra of (), and suppose that Lat( )
contains a simple chain. Then

(2") there exists a nonzevo, quasinilpotent Hilbert-Schmidt operator K on
with trivial veducing kevnel such that for every A in « the opevator AK is quasi-
nilpotent.

The proof of Theorem 2.1 depends upon the following facts (see, for example,
[3, Theorems 4.3.10, 4.4.6, 4.4.10]), which we state for completeness.

PROPOSITION 2.2. Let K be a compact opevator on #, and let T be a simple
chain in Lat(K). Then K is quasinilpotent if and only if K. M C -« _ for every i
in T.

PROPOSITION 2.3. Let I be a simple chain of subspaces of , and let J be
a self-adjoint Hilbevt-Schmidt opevator on K such that, for each -« in T, the

compression of J to M @ A _ 1S the zevo opevatov. Then theve exists a quasinil-
potent Hilbevi-Schmidt operator K on o such that T C Lat (K) and such that J is

the imaginary parvt of K (that is, J = 21—i(K - K*)) .

Proof of Theorem 2.1. Let T be a simple chain in Lat(.#). Since <¢ is
separable, there exist at most countably many subspaces # in I'" such that
At (5) Ar_ is one-dimensional. Let {e, }n.; be an orthonormal basis for - with

the property that if .# € I" and .« @ . _ is one-dimensional, then .« @ A(_ con-
tains one of the vectors ej. Let S be the shift operator on J defined by the equa-

tions Se, = %enﬂ (1<n<w), and set J =8+ S8* Then J is a Hilbert-Schmidt

operator, and an easy calculation shows that J has trivial kernel. Furthermore, it
is clear from the construction that for every .# in I, either .# = .4 _, or

A (=) .4/_ is one-dimensional and the compression of J to ./ (&) _ is zero. (In
other words, the diagonal entries of the matrix for J with respect to the basis {en}
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are all zero.) According to Proposition 2.3, there exists a quasinilpotent Hilbert-
Schmidt operator K on <# such that T' C Lat(K) and such that J = Eli-(K - K*).

Since J has trivial kernel, it follows that K has trivial reducing kernel. Moreover,
by Proposition 2.2, K.« C .#_ for each -« in T, and since I C Lat (),

AK. .« C ./ _ for each A in . Applying Proposition 2.2 once again, we see that
AK is quasinilpotent for each A in «; this completes the proof.

We can now employ condition (2') to state an equivalent formulation of the in-
variant-subspace problem for the class of quasinilpotent operators, for the class of
operators with compact imaginary part, and for some other interesting classes of
operators. Instead of treating each of these classes separately, however, we shall
formulate one theorem that applies to all the classes simultaneously, and that is the
purpose of the following discussion.

We consider classes & () of operators on & with the property that if U is
any unitary operator in Z(.# ), then the transformation T — UTU* leaves %(¢)
fixed. If €(.¢) is such a class, and if & is any other Hilbert space of dimension
8o, we denote by @(x') the class of all operators T in Z(X) such that T is uni-
tarily equivalent to some operator in €(o¢ ). If #(o¢) is such a unitarily invariant
class, then 4(o¢) will be called an inheriting class of operators provided the fol-
lowing conditions are satisfied.

(a) If T belongs to 4 (o) and .« is an infinite-dimensional subspace in
Lat(T), then T | .« € J(.).

(b) If T € S(#) and .#1 is an infinite-dimensional subspace such that
A € Lat(T), then T*| . w+ e [ S L)) *.

The following proposition, whose proof is routine and is therefore omitted, sets
forth some interesting inheriting classes of operators on 2.

PROPOSITION 2.4. Each of the following subsets of Z() is an inheviting
class of operators:

L 2(x),
1. {T: T is quasinilpotent },
1. {T: T has compact imaginary part},

Iv. {T: the approximate point spectrum 7w(T) of T is contained in a fixed
closed set that does not separate the plane},

V. {T: the left Calkin spectrum o ¢ (T) of T is contained in a fixed closed set
that does not separate the plane },

VL. {T: #(T) has empty intevior and doesn't sepavate the plane }, ov, equivalently,
{T: 0 0e(T) has emply inteviov and doesn’t sepavale the plane}.

The following theorem can be applied to each of these examples of inheriting
classes;‘thus it provides an equivalent formulation of the invariant-subspace prob-
lem for each of the classes.

THEOREM 2.5. Let J(.x¢) be any inheviting class of operatovs. Then every
opevator in J(x’) has a nontvivial invariant subspace if and only if the following
condition is satisfied:

(2") For every T in J(x), there exists a Hilbert-Schmidt operator K with
trivial rveducing kevnel such that for every polynomial p, the operator p(T)Ky is
quasinilpotent,
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Proof. Suppose first that (2") is valid. Then it follows immediately from
Corollary 1.2 that every operator in #(s¢) has a nontrivial invariant subspace.
Conversely, suppose that this last condition is satisfied, and consider an arbitrary
operator T in #(). If ./ is a nontrivial invariant subspace for T and '

dim ./ > 1, then T | A itself has a nontrivial invariant subspace, by virtue of the
hypothesis and the definition of an inheriting class. Moreover, if 4+ is not one-
dimensional, then T* | .+ also has a nontrivial invariant subspace. From these
facts it readily follows that Lat(T) contains a simple chain. Since Lat(T) coincides
with the lattice of invariant subspaces of the algebra consisting of all polynomials
p(T), the fact that (2") is satisfied follows immediately from Theorem 2.1.

We choose one corollary from many to exemplify the contrapositive of Theorem
2.5.

COROLLARY 2.6. Suppose that T is a quasinilpotent opevatov on K, and sup-
pose that for every quasinilpotent Hilbevt-Schmidt opevator K on H withoul reduc-

ing kevnel theve exists a polynomial Py such that py(T)K is not quasinilpotent
Then some quasinilpotent opevator on s has no nontrivial invariant subspace.
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