THE HAUSDORFF METRIC AND CONVERGENCE IN MEASURE
Gerald A. Beer

1. INTRODUCTION

Let m denote n-dimensional Lebesgue measure in R . If {Ck} is a sequence
of compact sets in R™, convergent in the Hausdorff metric to a compact set C, the
sequence {m(C A Ck)} may fail to converge to zero. For example, the unit disc in
the plane is the Hausdorff limit of a sequence of finite sets. Equivalently, the se-
quence of characteristic functions {xck} may fail to converge in measure to the

characteristic function of C. We characterize the sequences {Ck} for which
lim, _, ,, m(C A C,) = 0.

2. PRELIMINARIES

Let Bg(x) denote the closed £-ball about a point x in R™.
Definition. Let C be a compact set in R™. The ¢-parallel body Bg(C) is the
compact set UXEC B¢(x). The e-annulus Ag(C) is the compact set Bg(C) \ int C.

If C and K are compact subsets of R™, the Hausdorff distance of C from K is
d(C, K) = inf {e: Bg(C) D K and B¢(K) D> C}.

If « denotes the collection of compact subsets of R™, then < A, d> is a complete

metric space. Each closed and bounded subspace of < A, d> is compact [1]. If
{Ck} is a sequence of compact sets such that limy_, ., d(Cx, C) = 0, then for each
g€ > 0, Cy is contained in Bg¢(C) for all sufficiently large integers k. Since
limg _, 04 m(Bg(C)) = m(C), the assignment C — m(C) is an upper-semicontinuous
function. In addition,

lim,_, ,m(CAC,) =0 ifandonlyif lim_, ,m(C\Cy) =0.

3. RESULTS

To establish our characterization theorem, we shall use the following theorem
of Dini. Let {fi} be a sequence of upper-semicontinuous nonnegative functions de-
fined on a compact metric space Y. Suppose for each x in Y, the sequence {f,(x)}
converges monotonically to zero. Then {f k} converges uniformly to the zero func-
tion on Y.

For ¢ =1, 2, --- and for each compact set C in R®, let my(C) denote
m(B)/¢(C)). Of course, the assignment C — my(C) determines an upper-semicon-
tinuous function on < o, d) for each £.
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THEOREM 1. Let {Cy} be a sequence of compact sets in R™, convevgent in
the Hausdovjf metric to a compact set C. Then limy_,m(C A Cy) =0 if and only if
{my} converges to m uniformly on {C,:k € Z*} as & approaches infinity.

Proof. First, suppose that limy_,.,, m(C A Cy) =0. Clearly,
B =1{Clu{Crkezt}

is a compact subset of < oL, d>. Since C is the only limit point of &, the function

m is continuous on #. Thus, the sequence {(m, - m)| &} is a sequence of upper-
semicontinuous nonnegative functions converging monotonically to zero. By Dini’s
Theorem, the convergence must be uniform on #. Certainly, the convergence is
then uniform on {Cy: ke Z%}.

Conversely, suppose that limy_, ., m(Cy A C) # 0, so that
lim infy_, o, m(Cy) < m(C).

By passing to a subsequence, we may assume that for some ¢ > 0, d(Cy, C) < 1/k
and m(Cy) < m(C) - ¢ for all k. Since B;,1(Cy) includes C, we have the inequali-
ties

m(Cy) > m(C) > m(Cy) +¢.

Hence, {m,} cannot converge uniformly to m on {Cy:k e Z"}.

Let @ denote the subfamily of  consisting of the compact convex sets in R™.
The continuity of Lebesgue measure on <%, d> is often established by means of
polyhedral approximations [2, Part XII]. The previous result offers a different
approach.

THEOREM. Let Cyx be a sequence of compact convex sets in R" convergent to
a compact convex set C. Then limy_, ., m(Cy A C) =0.

Proof. For each positive integer ¢, let
By = {A O u{A,(C):kez"}.
Since the terms of {Cy} are convex, it follows that
Lm0 d(A 1/ (C), A} o(Cy)) = 0.

Hence, #y is compact relative to the Hausdorff metric. Since Lebesgue measure is
an upper-semicontinuous function on %y, there exists an element Fy of &y of
maximal Lebesgue measure. Clearly, {Fy} has a convergent subsequence whose
limit is either the boundary of C or the boundary of Cyi for some k. This implies

that lim,_, ., m(Fy) = 0. Since m(Fj) > sup, m(B,,(Cy)) - m(Cy) for £=1,2, -,
the sequence {mﬂ} converges uniformly to m on {Ck: ke Z+}. Theorem 1 now
applies.
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