THE HAUSDORFF METRIC AND CONVERGENCE IN MEASURE

Gerald A. Beer

1. INTRODUCTION

Let m denote n-dimensional Lebesgue measure in R^n . If $\left\{C_k\right\}$ is a sequence of compact sets in R^n , convergent in the Hausdorff metric to a compact set C, the sequence $\left\{m(C \bigtriangleup C_k)\right\}$ may fail to converge to zero. For example, the unit disc in the plane is the Hausdorff limit of a sequence of finite sets. Equivalently, the sequence of characteristic functions $\left\{\chi_{C_k}\right\}$ may fail to converge in measure to the characteristic function of C. We characterize the sequences $\left\{C_k\right\}$ for which $\lim_{k\to\infty} m(C\bigtriangleup C_k) = 0$.

2. PRELIMINARIES

Let $B_{\varepsilon}(x)$ denote the closed ε -ball about a point x in \mathbb{R}^n .

Definition. Let C be a compact set in R^n . The ϵ -parallel body $B_{\epsilon}(C)$ is the compact set $\bigcup_{x \in C} B_{\epsilon}(x)$. The ϵ -annulus $A_{\epsilon}(C)$ is the compact set $B_{\epsilon}(C) \setminus C$. If C and K are compact subsets of R^n , the Hausdorff distance of C from K is

$$d(C, K) = \inf \{ \epsilon \colon B_{\epsilon}(C) \supset K \text{ and } B_{\epsilon}(K) \supset C \}.$$

If \mathscr{A} denotes the collection of compact subsets of R^n , then $\langle \mathscr{A}, d \rangle$ is a complete metric space. Each closed and bounded subspace of $\langle \mathscr{A}, d \rangle$ is compact [1]. If $\{C_k\}$ is a sequence of compact sets such that $\lim_{k\to\infty} d(C_k, C) = 0$, then for each $\epsilon > 0$, C_k is contained in $B_{\epsilon}(C)$ for all sufficiently large integers k. Since $\lim_{\epsilon\to 0+} m(B_{\epsilon}(C)) = m(C)$, the assignment $C\to m(C)$ is an upper-semicontinuous function. In addition,

$$\lim_{k\to\infty} m(C \triangle C_k) = 0$$
 if and only if $\lim_{k\to\infty} m(C \setminus C_k) = 0$.

3. RESULTS

To establish our characterization theorem, we shall use the following theorem of Dini. Let $\{f_k\}$ be a sequence of upper-semicontinuous nonnegative functions defined on a compact metric space Y. Suppose for each x in Y, the sequence $\{f_k(x)\}$ converges monotonically to zero. Then $\{f_k\}$ converges uniformly to the zero function on Y.

For $\ell=1,\,2,\,\cdots$ and for each compact set C in R^n , let $m_\ell(C)$ denote $m(B_1/\ell(C))$. Of course, the assignment $C\to m_\ell(C)$ determines an upper-semicontinuous function on $\langle \mathcal{A},\,d\,\rangle$ for each ℓ .

Received December 7, 1973.

Michigan Math. J. 21 (1974).

THEOREM 1. Let $\{C_k\}$ be a sequence of compact sets in R^n , convergent in the Hausdorff metric to a compact set C. Then $\lim_{k\to\infty} m(C \triangle C_k) = 0$ if and only if $\{m_\ell\}$ converges to m uniformly on $\{C_k: k\in Z^+\}$ as ℓ approaches infinity.

Proof. First, suppose that $\lim_{k\to\infty} m(C \triangle C_k) = 0$. Clearly,

$$\mathscr{B} = \{C\} \cup \{C_k : k \in Z^+\}$$

is a compact subset of $\langle \mathcal{A}, d \rangle$. Since C is the only limit point of \mathcal{B} , the function m is continuous on \mathcal{B} . Thus, the sequence $\{(m_{\ell} - m) \mid \mathcal{B}\}$ is a sequence of uppersemicontinuous nonnegative functions converging monotonically to zero. By Dini's Theorem, the convergence must be uniform on \mathcal{B} . Certainly, the convergence is then uniform on $\{C_k \colon k \in Z^+\}$.

Conversely, suppose that $\lim_{k \to \infty} \, m(C_k \mathrel{\triangle} C) \neq \, 0,$ so that

$$\lim \, \inf_{k \, \to \, \infty} \, m(C_k) \, < \, m(C)$$
 .

By passing to a subsequence, we may assume that for some $\epsilon>0,\ d(C_k\,,\,C)<1/k$ and $m(C_k)< m(C)$ - ϵ for all k. Since $B_{1/k}(C_k)$ includes C, we have the inequalities

$$m_{\,k}(C_{\,k})\,\geq\,m(C)\,>\,m(C_{\,k})+\epsilon\;.$$

Hence, $\{m_{\ell}\}$ cannot converge uniformly to m on $\{C_k: k \in Z^+\}$.

Let $\mathscr C$ denote the subfamily of $\mathscr A$ consisting of the compact convex sets in R^n . The continuity of Lebesgue measure on $\langle \mathscr E, d \rangle$ is often established by means of polyhedral approximations [2, Part XII]. The previous result offers a different approach.

THEOREM. Let C_k be a sequence of compact convex sets in R^n convergent to a compact convex set C. Then $\lim_{k\to\infty} m(C_k \triangle C) = 0$.

Proof. For each positive integer ℓ , let

$$\mathcal{B}_{\ell} = \left\{ A_{1/\ell}(C) \right\} \cup \left\{ A_{1/\ell}(C_k) : k \in Z^+ \right\}.$$

Since the terms of $\{C_k\}$ are convex, it follows that

$$\lim_{k\to\infty} d(A_{1/\ell}(C), A_{1/\ell}(C_k)) = 0.$$

Hence, \mathscr{B}_{ℓ} is compact relative to the Hausdorff metric. Since Lebesgue measure is an upper-semicontinuous function on \mathscr{B}_{ℓ} , there exists an element F_{ℓ} of \mathscr{B}_{ℓ} of maximal Lebesgue measure. Clearly, $\left\{F_{\ell}\right\}$ has a convergent subsequence whose limit is either the boundary of C or the boundary of C_k for some k. This implies that $\lim_{\ell \to \infty} m(F_{\ell}) = 0$. Since $m(F_{\ell}) \geq \sup_k m(B_{1/\ell}(C_k)) - m(C_k)$ for $\ell = 1, 2, \cdots$, the sequence $\left\{m_{\ell}\right\}$ converges uniformly to m on $\left\{C_k : k \in Z^+\right\}$. Theorem 1 now applies.

REFERENCES

- 1. E. Michael, Topologies on spaces of subsets. Trans. Amer. Math. Soc. 71 (1951), 152-182.
- 2. F. A. Valentine, Convex sets. McGraw-Hill, New York, 1964.

California State University, Los Angeles, California 90032