MULTIPLIERS, SPECTRAL THEORY, AND THE
INTERPOLATION OF CLOSED OPERATORS

Misha Zafran

Let (B0 Bl) be an interpolation pair of Banach spaces, and let Bg, or
[B?, Bl],, denote the analytic interpolation space of A.P. Calderén [1]. Ina sense
to be made precise below, we consider the problem of interpolation of a closed
operator T on BO and B1 . Our principal results concern the equality of
[@(T), 9,(T)]s and D4(T), where @;(T) is the natural domain of T in Bj, and
where '@ s(T) is the domam of T asa closed operator on Bg (see Theorem 3.3,
Corollary 4.2, and Theorem 4.9). These theorems depend partly on the spectral
properties of the closed operators involved. Thus we also obtain some results con-
cerning the way in which the spectrum of a closed operator on Bg can change with
the parameter s (0 < s < 1). Our examples depend on the theory of multipliers of
Fourier series.

1. Notation and Definitions. Corresponding to each pair of Banach spaces X
and Y, we denote by O(X, Y) the space of bounded linear operators taking X into Y,
by O(X) the algebra O(X, X), and by | T| (x,v) the norm of an operator
T € O(X, Y).

If T € G(X), or more generally, if T is a closed operator with domain and
range in X, we denote the spectrum of T in X by sp(T, X). By R(x, T) we denote
the resolvent of T, and by p(T, X) the vesolvent set of T in X. If T is bounded, and
if £ is a function analytic in a neighborhood of sp(T, X), we let £(T) be the element

57% Sc fO) R, T)dx,

where C is an envelope of sp(T, X), contained in the domain of f. If A is a commu-
tative Banach algebra, A(A) will denote the maximal-ideal space of A.

It is well known and simple to show that if T is a closed operator with domain
%(T) and with its range contained in the Banach space X, then Z(T) becomes a
Banach space under the norm

Il gy = Ixllx + T

Let (B0 Bl) bea pair of complex Banach spaces continuously embedded in a
topological linear space. We define the Banach spaces B? N B!, BO + B! and
[B?, Bl], =B, asin[1, Sections 1 to 3]. The basic properties of the analytu: inter-
polation spaces B, can be found in [1], and we shall use them freely.

Finally, we introduce some notation concerning multipliers of Fourier series.
Let G be a locally compact Abelian group (in short, an LCA group) with dual group
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I'. For 1< p<~, wedenote by Lp(G) (or Lp) the usual Ly-space with respect to
the Haar measure of G. The symbol f* will denote the Fourier transform of a func-
tion f € Ly (1 <p<2). We denote by Mp(G) the subalgebra of O(Lyp) consisting of
the operators that commute with all translations on L.,. The elements of Mp(G) are
called multipliers. 1t is well known that if 1 <p < and T € M(G), or if

T € M,(G) and T is continuous with respect to the weak* topology of L. (G), then
there exists a unique function T* € L, (T') such that T(f)* = T*f* a.e. on T, for all
integrable simple functions on G (see [8, Chapters 3 and 4]). T* will be called the
transform of T.

We denote by CMP(G) those multipliers T in Mp(G) for which T" is continuous
on I', and we write

CoML(G) = {T € CM,(G)| T* vanishes at =} .
If f e L;(G), we define the operator T¢ by the equation
Tf(g) =fi*g,

for all g € Lp(G), where the symbol * denotes convolution. Then T¢ e Cy M_(G).
We denote the closure of {T¢| f € L;(G)} in the norm of O(Lp) by my(G). A. Figa-
Talamanca and G. Gaudry [5] have shown that if G is the n-torus T™ or Euclidean
n-space R", then m(G) is a proper subspace of CoMy(G) (1 <p <<, p# 2).

This result will play an important role later in this note (see Sections 2 and 3). The
basic properties of Mp(G), CoMp(G), and my(G) can be found in [7] and [8]; we

shall use them throughout the paper.

2. In this section, we obtain some results concerning the spectra of multipliers
as closed operators. Let G be a compact LCA group. Then, if 1 < p <« and
¢ € L, (T), the operator T defined by the equation

T(g)" = ¢g°

for ge @ = {f e Lp(G)| ¢f* € L3} is a closed operator on Lp(G) with natural do-
main QZP(T) = @. Moreover, 9,(T) is a dense subspace of Ly(G) for p <, since
2 (T) contains all trigonometric polynomials and G is compact. Thus each multi-
plier T € M,(G) may be viewed as a closed operator on LG) for 1< p <, with
natural domain

DAT) = {f € L(G)| T*1" € Lp}.
It is clear that if T € MP(G), then L(G) = 2,(T). In order to find the spectra of
multipliers as closed operators, we require the following known lemmas.
LEMMA 2.1 (see [3, Section 16.6.2] or [7, Theorem 1.16]). Let G be a com-

pact LCA group, and let 1 < p, q <« with ll - l| < |l 1 . Then

q 2 p 2
CO Mp(G) _C_ mg (G)-
LEMMA 2.2. Let G be a compact LCA group, let 1 < p, q < =, with

1 1 1 1 N
Ia - El < 3] and suppose T € Co M(G). Then sp(T, Lg) = T*(T) U {o}.

This result follows immediately from Lemma 2.1 and the following two elemen-
tary facts:
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(1) The maximal-ideal space of the Banach algebra my(G) may be identified
with T".

(2) The spectrum sp(T, Ly) equals the spectrum of T as an element of mg(G).

Lemmas 2.1 and 2.2 remain valid for general LCA groups. The proofs for the
case where G = R™ are essentially given in [7] The proofs for arbitrary G require
no new ideas.

THEOREM 2.3. Let G be a compact LCA group, let 1 < q < =, let

T € Co Mq(G) and suppose that T ¢ Co MG), for each v satisfying the inequality

1

T3l Then sp(T, L.) is the complex plane, wheneveyr

Proof. Suppose, to the contrary, that there exists » € p(T, L,), for some r

with |zll— - %I < %—% and r < ». Let S denote the operator (\I - T)~! taking L.

onto

D.(G) = {fe L,| T°f € L;}.

Since So(AI - T)(f) = f for all trigonometric polynomials on G, it is simple to verify
that

(1) S=0I- T)-! commutes with all translations on G,

~ 1 -~
(2) S(f)* = —=={" for all f€ L,

Choose p with l— - —I <

= - %l Since S* has the limit 1/x at oo,
S - %I € CoM_(G), and therefore by Lemmas 2.1 and 2.2, S - %I € mp(G) and

sp(S—%I, Lp> - (s-%l)ﬁ(r)u {o}.

It follows easily that

(3) sp(S,Lp)'—‘{x—:——lT,\—(y)lyel"}U{%}.

By (3), 0 ¢ sp(S, L p), so that the function h(z) = 1/z is holomorphic in a neighbor-
hood of sp(S, Lp) Thus AL - T=h(S) € O(Lp) and therefore T € O(L ). This con-
tradicts the choice of p and proves the theorem.

The following lemma will be useful in studying the spectrum of the multiplier of
Figa-Talamanca and Gaudry referred to in Section 1.

LEMMA 2.4. Let G be a compact LCA group,let 1 <p<q<2, let
T e CoM, (G), and suppose that T is also a bounded operator from L (G) into
L (G) Then

(a) Tz € mp(G):
(b} sp(T, L) = THT) U {0}.
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Proof. We first prove (a). Let %-Fpi =1 and é+ql = 1. Then, by Theorem

5.2.1 of [8], T is also a bounded operator from Lg:(G) into L,(G). Moreover,
Lemma 2.1 implies that T € mg (G). Hence there exists a sequence of trigonomet-
ric polynomials f, on G such that

(1) T-T — 0 as n—o oo,
R P
where Tfn(g) =f *g forall ge Lq.(G).

It is clear that T o T; is the multiplier corresponding to convolution by the
n

trigonometric polynomial whose Fourier transform is T*f]. For all f € Lp.(G), we
obtain the relations

2
1720 - T o Ol < 1T i IT - T lieg g o,
S L PP R 0 P I

the last inequality following since G is compact and q' < p'. Hence, by (1),
||T2 -ToT, ” (Lo, L1) ™ 0 as n — *, and therefore T2 € mpn(G). Part (a) now
n Tp

follows immediately, by Theorem 4.1.2 of [8].

In order to show (b), we use the previously stated fact that A(my(G)) = I". Since
T2 € m (G) we see that h(T2%) = 0 for all homomorphisms h € AM (G) \ I". Thus
h(T) = 0 for all h e AM (G) \ T, and since sp(T, L ) is the spectrum of T as an
element of the Banach algebra M (G) we see that sp T, Ly = T*(I) U {01}, as de-
sired. The proof is complete.

We now discuss the important multiplier of Figa-Talamanca and Gaudry [5].
Let G be the circle group, fix p (1 <p < 2), and define r =2p(2 - p)-!1 . It is shown
in [5] that then there exists a multiplier T € Co My(G) such that

(@) T ¢ my(G),

(b) T ¢ CoMy(G) for 1 <q <p,

(¢) T*(m) = +1/22/T for ZnSmSZHH -1(n=0,1, 2, ---) and T"(m) = 0 for
m < 0,

(d) T is also a bounded operator from Ly into L.

The fundamental property of T is (a). Properties (b), (c), and (d) of T follow
by an examination of the construction given in the proofs of Lemma 1 and Theorem
B of [5], as well as the remarks following Theorem B.

Using the previous results of this section, together with the properties of T, we
obtain the following theorem.

THEOREM 2.5. Let G be the civcle group, and let Z denote the group of inte-
gevs. Fix p (1 <p<2),andlet T be the multiplier of Figa-Talamanca and Gaudyy
corresponding to p. Then

(a) sp(T, Lg) is the complex plane, for 1 < q <p,
(b) sp(T, Lg) és the countable set T*(z) U {0}, for p <q < 2.
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Proof. Part (a) is an immediate consequence of Theorem 2.3 and property (b) of
the operator T. Part (b) of the theorem follows by Lemma 2.4(b), property (d) of T,
and the fact that T € mg(G) for p <q < 2.

Remark 2.6. Theorem 2.5 is also valid if 2 < p < . In this case, we let T
correspond to p', where -]1+—]1- = 1. Then sp(T, L ) is the complex plane, for
p<q <, and sp(T, L )*T (z)U {0}, for 2 < q < p. This result may be ob-
tained by an argument s1mllar to that above, or by a duality argument.

Remark 2.7. We note, by property (c) of the multiplier T, that
T2%(m) = 1/22n/r for 20 <m <201 -1 (n=0, 1, 2, -*-), and that T2*(m) = 0 for
m < 0. Hence T2" is of uniformly bounded variation on all dyadic “intervals” of the
integers. By the classical multiplier theorem of J. Marcinkiewicz [12, Chapter 15,
Theorem 4.14], T? € CoMg(G) if 1 <q <. Thus Lemma 2.1 asserts that
T2e m q(G) for 1 <q < . Hence we could obtain Theorem 2.5 by using these ob-
servatmns without Lemma 2.4. We have given our alternate approach, since it
seems to apply in more general situations.

3. In this section, we consider the problem of the interpolation of the domains of
closed operators. The multiplier of Figa-Talamanca and Gaudry considered in the
preceding section plays a fundamental role in the principal result, Theorem 3.3.

Notation. Let (B?, Bl) be an interpolation pair of Banach spaces continuously

embedded ina topologlcal linear space. Let T; be a closed operator with domain

2;(T;) in BJ and with range contained in BJ (] =0, 1). Suppose Ty(x) = T;(x) for
all x € 9¢(Tg) N 21(T;). We define T(x) = To(xo) + T;(x7) for all x = xg + x; with
Xj € D (TJ) (j =0, 1). It is well known and easy to prove that T is the unique linear
extensmn of T; to Do(To) + 2,(T,) < BY + B!. Hereafter, we identify T; and the
restriction of T to 9 ; (TJ) (j =0, 1), and we drop the subscrlpts on the T (=0, 1).
For simplicity, write '@(T) = @O(T) + @,(T). Define

2 (T) = {x e 2(T) N B,| T(x) € B, }.
For x € @ ,(T), we define the norm ”x”@s(T) = ||X"Bs + || T(x) ”Bs

With the notation of the preceding paragraph, we can state a theorem of P.
Grisvard [6, pp. 168-169] as follows.

THEOREM 3.1. Suppose theve exists A ¢ sp(T BO) U sp(T, Bl) such that if S;
is the inverse of A1 - T on BJ then Sg =S; on B° N Bl. Then T is a closed
operator on Bg with domain @ s(T), and [Dy(T), D1(T)]s = 25(T) (0 <s < 1), with
equivalence of norms.

The condition stated in Theorem 3.1, asserting that the inverses Sy and S;
agree on BO N B!, deserves some further comment. It is shown in example 5.28 of
[11] that Sy and Sl need not coincide on B® N B! even if the operator T is bounded

on both B? and B!. However, with the same notations as in Theorem 3.1, we have
the following result.

LEMMA 3.2. If 2o(T) € 2,(T), if theve exists 1 ¢ sp(T 3 5
if S denotes the invevse of \I - T on BJ, then Sg =8, on B

Proof. Let x € BON B!, and let y = S¢(x). Then y € @o(T) - @1(T), and
(AI - T)(y) = x. Hence S;(x) = S;((AI - T)(y)) =y = Sp(x); this proves the lemma.
1 1 0

B°) u sp(T, Bl), and
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We now turn to our principal example concerning the interpolation of closed
operators. For notational convenience, we write Q}r(T) as the domain of the closed
operator T on an L.-space. Thus, if our interpolation pair is (LrO s Ll.l), we write

@rj (T) =24(T) (j =0, 1). We recall that if G is a compact LCA group and

T € M,(G), then the natural domain of the closed operator T on L, is
2.(T)={f e L.| T°f* € L.}. (See the beginning of Section 2.)

THEOREM 3.3. Let 1 <p <2, and let T denote the multiplier of Figa-
Talamanca and Gaudry on the civcle group G, corrvesponding to p (see Section 2). Let

1 1-s
1 <q <p, and choose s so that o= —q—+ Then [@q(T), 2,(T)]5 # @p(T).

s
3"
Proof. We begin by noting that

L, = 2,(T) = {f € [24(T) + 2,(T)] N L,| T(f) € L,} = 24(T).

The first equality holds because T is bounded on Ly, the second, because

L,c2 (T) which in turn is a simple consequence of the fact that L, C Lg ; the
last is a matter of definition. Hence this theorem does indeed show that the natural
extension of Theorem 3.1 fails.

Let {f,} be an approximate identity of trigonometric polynomials on the circle
group G, with ||f, "L =1 for all n, and define Tf (g) =f, *g forall ge L;. (For

example, the operator T, may be taken as the “n"ih Cesaro-sum operator”.) Let
n
S, =T oT; . Then S, is the multiplier corresponding to convolution by the trigo-
n
nometric polynomial whose Fourier transform is T” {7} . Moreover, since T"

vanishes at « on the integers, it follows that

(1) T - s, (L,,L,) =0 asn—w.

Now let g € @q(T). Then S _(g) = T¢ © T(g), and we obtain the relations
n

S = T T T T .
Isu@lr, = Iy, o T, < 17l o) 1@, < lelo

Hence

(2) S, € 0(24(T), L)  and ||Sn||(@q(T),Lq) =1

Now assume, contrary to the theorem, that [24(T), ©2(T)]s = D(T). By the
closed-graph theorem, the norms of these spaces are equivalent. Also, by the con-
vexity theorem in [1, Section 4], applied to the operator T - S,, we obtain the rela-
tions

l-s s
- S T - S
([@4(T), D,(T)]g,Lp) <t nu(@q(T),L " “'l(sﬂz(T),Lz)

EEEN |
q

(3)

1-s _ s

the last inequality following by (2). However, @,(T) = L, and ©,(T) = L, with
equivalence of norms; therefore, by (1) and (3)
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[T -s 0 asn-—oo.

n” (Lp Lp) —

But then T € mp(G), contrary to the choice of the operator T. This concludes the
proof.

The analogue of this result is also valid for 2 <p < (see Remark 2.6). The
proof is similar.

4. In view of Theorems 2.5, 3.1 and 3.3, it is natural to ask whether
[2(T), 2,(T)], # @,(T) if sp(T, B9) is the complex plane. We shall show (see
Theorem 4.9) that the answer is negative. Our example is based on the properties of
the conjugate function operator.

THEOREM 4.1. Let X be a Banach space, and let T be a closed, unbounded
opevatoy with domain P(T) C X and with vange in X. Define

@(T?) = {x € 2(T)| T(x) € 2(T)},

and suppose D(T2) is dense in X.
(a) If T%x) = x for all x € D(T2), then sp(T, X) is the complex plane.
(b) If T2x) = T(x) for all x € D(T?), then sp(T, X) is the complex plane.

Proof. We first prove (a). Suppose, to the contrary, there exists x ¢ sp(T, X).
We begin by showing that A # 1 and X # -1. If x =1, then (I - T)2(x) = 2(I - T) (x)
for all x € @(T2). Thus

R(1, T) o (I - T)%(x) = 2R(1, T) o (I - T) (%),

and therefore T(x) = - x, for all x in the dense subspace @Z(T2) of X. It follows that
T can be extended to a bounded operator on X, a contradiction. Thus A # 1. Simi-
larly, A # - 1.

Now define the closed, unbounded operator Sy =A(A% - D1lr+02-1)-1T,
Using the fact that T2(x) = x for all x € @(T2), we can easily verify that

(1) (AI-T)oS(x) =x

for all x € 2(T2).

Since R(x, T) exists, we see by (1) that S, (x) = R(x, T)(x) for all x in the dense
subspace 2(T2) of X. But then the unbounded operator S, can be extended to a
bounded operator on X. This contradiction completes the proof of (a).

The proof of (b) is similar. We now replace the operator S, by
Uy =211+ (% - x)-1 T and repeat the preceding argument. The proof of the
theorem is complete.

It is interesting to compare Theorem 4.1 with Theorem 10 in Section 9, Chapter
7, of [2]. In particular, Theorem 4.1 provides an example showing that the latter re-
sult fails without the assumption that p(T, X) is nonempty.

We now discuss some applications of Theorem 4.1. Let T be the multiplier on
the circle group G defined by the equation T(f)"(n) = sgn n £*(n), for all f € L,(G)
(we define sgn 0 = 1, and we adhere to this definition of sgn throughout this paper).
Then T is a slight modification of the usual conjugate operator C for which
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C(f)"(n) = -isgnnf*(n) for n # 0, and C(f)*(0) = 0. It is well known that T € Mp(G)
for 1 < p <, and that T is an unbounded operator on L [12, Chapter 7]. Asa
corollary to Theorem 4.1, we have the following result.

COROLLARY 4.2. Let G be the civcle group, and define the multiplier T by
T(f)*(n) = sgn n £*(n), for all integers n. Then sp(T, L) is the complex plane.

Proof. It is evident that the class of trigonometric polynomials on G is con-
tained in @(T2) = {f € L1| T(f) € @9(T)}. The result now follows easily by Theorem
4.1(a).

The analogue of Corollary 4.2 also holds for the Hilbert transform H on the
real line, even though the natural domain of H on L; is not dense in L, so that
Theorem 4.1 does not apply.

THEOREM 4.3. Lel R denote the veal line, and define T(f)"(x) = sgn x £*(x) for
all x € R and f € Ly(R). Then sp(T, L) is the complex plane.

Proof. Suppose, to the contrary, that there exists A ¢ sp(T, L;). Since
RO\, T) o (A\I- T)(f) =f for all f € @(T) =1{g e Lll sgn x g*(x) € L7 }, it is not dif-
ficult to verify that R(x, T) commutes with all translations on Lj . Thus, for all
feLy, AI-T)oRM, T)(#)" =£* and

(A - sgn x) R(A, T)N(x)£7(x) = £°(x)

for all x € R. It follows that R(A, T)*(x) = i—:ﬁ for x € R. However, by Theo-
rem 0.1.1 of [8], R(x, T)* must coincide with the Fourier-Stieltjes transform of a

regular Borel measure on R. In particular, the function X_——%gn_x =R, T)*(x)

must be continuous. This contradiction proves the theorem.

We had originally obtained Theorem 4.3 by an argument somewhat similar to
that in the proof of Theorem 4.1. The elegant proof given here was suggested to the
author by Professor J. D. Stafney.

We now proceed to give another application of Theorem 4.1. Let G be the circle
group, and let Z denote the group of integers. Let 0 < q < . Following W. Rudin
[9], we say that a set E C Z is of fype A(q) if and only if there exist an r
(0 <r <q) and a constant B > 0 such that

It Ly < Bl L (q)

whenever f is a trigonometric polynomial satisfying f*(n) = 0 for each n ¢ E. It is
shown in [9] that this definition is independent of r. Moreover, it is clear that if E
is a A(qg)-set, then E isa A(q - €)-set for all € > 0 with € < q. We state the fol-

lowing result of Rudin (see [9, Theorem 4.8]).

LEMMA 4.4. Let q be an even integev (q > 4). Then theve exisis a sel E of
type A(q) such that E is not of type Alq +¢€) for any € > 0.

We also require the following lemma.

LEMMA 4.5. Let G denote the cirvcle group, and let 2 < q <. Lel E be a sel
of type A(q). Define T(f)" = Xg{~ for £ € L,(G), wheve Xy is the charactevistic
Junction of E. Then

(a) T € Mq(G); in fact, T takes L,(G) into Lq(G);
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(b) if E is not of type A(r) fov some r > q, then T ¢ M,(G).

Proof. For (a), we refer the reader to Theorem 5.4 of [9], or to the argument
used in Section 5.7.8 of [10], combined with Theorem 5.2.1 of [8].

To show (b), we suppose that, to the contrary, T € M, (G). Choose p <2 with
1,1 1. Then T € Mp(G). Hence, if f € L, then T(f) € L, and T(f)"(n) = 0 for

— 4 ==

p r

n ¢ E. Since E is of type A(q) with q > 2, it follows that T(f) € L,, and T isa
bounded operator from Ly into Lz. By Theorem 5.2.1 of [8], T is also a bounded
operator from L, into L,. It follows easily that E is of type A(r), and this con-
tradiction completes the proof of the lemma.

COROLLARY 4.6. Let G denote the civcle group, and let q be an even integer
(0 >4). Let E be the Alq)-set of Lemma 4.4. Define T(f)" = xg 1*, for f € Ly(G).
Then, for all r > q, the spectrum sp(T, L) is the complex plane. Also, if

%+é =1, then sp(T, L) is the complex plane for 1 <r <p.

The first assertion is an immediate consequence of Theorem 4.1(b) and Lemmas
4.4 and 4.5. The second part follows easily from the equality of M.(G) and M.:(G)

whenever l+lr =1.
r r

Remark 4.1. Corollaries 4.2 and 4.6 differ from Theorems 2.3 and 2.5 in the
following respects:

(a) In Corollaries 4.2 and 4.6, the operators involved do not have transforms
vanishing at <.

(b) In the case of Corollary 4.2, the modified conjugate function operator T is
unbounded on L;, and it is bounded on L. for all r in the half-open interval
1 <r <2. In Theorems 2.3 and 2.5, the operators involved are unbounded on L.
for 1 <r <p, and they are bounded on L, for all r in the closed interval

pLrL2.

Remark 4.8. Theorem 2.5 provides an example of a closed operator T such
that sp(T, L,) is the complex plane for 1 <r <p, and sp(T, L) is a countable set
for p<r <2. )

Corollary 4.2 gives an example of a closed operator T for which sp(T, L,)
consists of two points, for 1 <r <2, but for which sp(T, L)) is the complex plane.

Corollary 4.6 asserts the existence of a closed operator T for which sp(T, L,.)
consists of two points for p < r <2, but for which sp(T, L,) is the complex plane
for 1<r <p.

We now return to the question raised at the beginning of this section.

THEOREM 4.9. Let G denote the civcle group, and define the multiplier T by
the condition T(f)*(n) = sgn n £*(n), for all integers n. Let

2,(T) = {f e Lll sgn n £°(n) € L'i}

l1-s
1

Let 1<p<r <o, gndlet 0 <s <1, with

+

= |

. Then [9,(T), L ] = Ly,

=R

with equivalence of norms.
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The theorem is essentially known. The analogue of the result for the natural
domain of the Riesz transforms on R" is stated, although not explicitly proved, by
C. Fefferman and E. M. Stein in [4]. Also, all the basic ideas for our particular re-
sult can be found in [12, Chapter 12, Theorem 3.9]. Since, however, our theorem
does not seem to appear explicitly in the literature, we sketch a proof, based on the
argument of [12, Chapter 12, Theorem 3.9].

Proof of Theovem 4.9. Let d9 denote the Hardy space as defined in [12, Chap-
ter 7], with 0 < q < .

We first show that [H!, HT]_ =HP. It is almost trivial to prove that

[H!, HT], € HP. We thus prove ?he reverse inclusion. For any integrable simple

functions g; and g,, we define the bilinear mapping ¢ by ¢ (g, 8p) = F{ F,, where

27 i I
(1) Fi(z) = L SO e;” giat  (]z] <1, =0, 1).
e -2z

The argument of Theorem 3.9, Chapter 12, of [12] shows that there exists a constant
K > 0 such that

” L(gl: gZ)”Hl <K ”gl" L, ||82|| L, ’

(2)
|| L(gl, gz)”Hr < K”glll Lo, ”gzll Lo,

Moreover, we may extend ¢ to L. L,,. so that we still have the relation
t(g,, g,) = F, F,, where F; is defined by (1), and so that (2) remains valid.

By the multilinear-interpolation theorem in [1, Section 10.1], we see that
(3) ey, g2) ”[Hl,Hr]s <K|g| Lo lea| Lop

for all g;, g, € Ly,.. Now, if P is a complex polynomial, we write P = BF2, where
B is the Blaschke product formed with the zeros of P lying in the set {z] |z| <1},
F is a bounded, holomorphic function in {z| |z| <1}, and F(0) > 0 (see [12, pp.
274-275]). Multiplying P by a number of absolute value one, we may suppose that
P(0) is real. Then there exist real-valued functions g;, g, € Ly, such that BF
corresponds to g; and F corresponds to g, as in (1). Hence, by (3),

@ [Pl ey = leler el oy < Kleyllo, lelr, < XIPl L,

the last inequality following as in the argument of [12, Chapter 12, Theorem 3.9];
here K is an absolute constant. By (4) and the fact that the complex polynomials are
dense in [H!, HT], and in HP, we see that HP C [H!, HY] . Hence HP = [H!, HT],.

Define the mapping w(f) (x) = f(-x) for x € G and measurable functions f. Define
HY = {f ¢ Lq] f*(n) =0 for n> 0} (1<q<=).

Since HY may be identified with {f € Lq| £*(n) = 0 for n <0}, and since w is an
isometric mapping of HY onto {f € Lq] f*(n) = 0 for n> 0}, it is easy to see that
[H!, HT] = HP. Hence
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[2,(T), L], = [H' @HL, B ®HI], = [#', B'], @[], B7], = BPOHP = L,

with equivalence of norms. This concludes the proof of the theorem.

Remark 4.10. Let G be an infinite, compact, connected LCA group, with
ordered dual group I' (see [10, Chapter 8]).

Let 1 <p<r <, andlet 0 <s <1 with %= L T S+—1*°§. Then, in the notation
of [10, Chapter 8], we have the relation [H!(G), H*(G)]s = HP(G). The proof of this is
similar to that of Theorem 4.9. We now define the bilinear mapping t¢ by the equa-
tion t(g;, gp) = ®(g;)@(g,) for all trigonometric polynomials on G, where & is as
in Section 8.7.1 of [10]. Arguing as in the proof of Theorem 4.9, we see that

leter, g2 (1! (G), B (G)], < Klel Lop lez| Loy

for all bounded functions g; and g,. Now, if f is any trigonometric polynomial in
HP(G) with £7(0) # 0, the proof of Theorem 8.4.4 of [10] shows that we may write

f=ag,
where |f| = |oz|2 = IBIZ, and where «@ and B are of analytic type. Hence
I st 1m0, = 10@ Dl o prean, < Kol 181, = Kt oy, -

Since this is valid for all trigonometric polynomials f of analytic type with £%(0) # 0,
it is simple to verify that

<Kl o

[l [2Y(G),HT(G)],
for all trigonometric polynomials g of analytic type. It follows that
HP(G) ¢ [HI(G), H*(G)],. The reverse inclusion is elementary.

We also note that if C is the operator defined by the equation

C@) = -i 2 a,y +i 27 ay¥
y>0 v<0

for all trigonometric polynomials f = E'yel‘ a,7 on G, then
[@1(0)} Lr(G)]s = Lp(G)!

where %,(C) is the domain of C on L;. The proof is similar to that of Theorem
4.9. Moreover, the analogue of Corollary 4.2 is valid for C, by Section 8.7.5 of [10].
This concludes the remark.

By combining Corollary 4.2 and Theorem 4.9, or by Remark 4.10, we immedi-
ately see that the answer to the question posed at the beginning of this section is
negative. Note also that Theorem 4.3, combined with the previously stated interpo-
lation theorem of Fefferman and Stein [4], shows that the Hilbert transform on R
provides a counterexample to this question. However, in a sense, this is a less
decisive) example, since the domain of the Hilbert transform on L;(R) is not dense
in Ll(R .
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