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INTRODUCTION

This paper is a continuation of [4], and we assume that readers are familiar
with that paper. We shall prove, among other things, that there exist uncountably
many mutually inequivalent quasi-translations of the 3-sphere. From this it follows
that there exist uncountably many open, orvientable 3-manifolds whose fundamental
group is infinite cyclic and whose universal covering space is 3-space E3 .

In addition to the statement above, which can be proved rather simply, we
study some related topics. Not only do they have independent interest, but they are
helpful for understanding the background of the proofs of the statement above and the
whole structure of the study developed in [4] and this paper.

The statement above was announced in [4]. There we also announced that the
composition of two open arc-and-ball pairs (see below) is not commutative. How-
ever, we have found a gap in the proof.

In Section I we study an open avc-and-ball pair (a, B), where a is an arc in a
3-ball B such that only the endpoint p(a) of a is on the boundary 9B of B and a is
locally tame in B except at p(a). (This is what in [4] we called an arc-and-ball
pair.) We introduce the penetration index P(a, B) for (a, B) and prove that

P((al, B]_) # (az, Bz)) = P(al , BI) . P(a.z, Bz) .

In Section II we study a closed arc-and-ball pair [a, B], where a is anarc in a
3-ball B such that only the initial point q(a) and the endpoint p(a) are on 9B, and
such that a is locally tame in B except possibly at p(a). One of the significant dif-
ferences between the two concepts (a, B) and [a, B] is that the infinite composition

#;f_oo [a,, B,] can be defined, but #.o o (a,, B,) can not. We shall apply this in-

finite composition in Section III.

In [4], we associate with each (a, B) a quasi-translation h(a, B) of the 3-sphere.
In Section III, we consider open arc-and-ball pairs that are constructed from Wilder
arcs and their associated quasi-translations. We study the mutual inequivalence of
some of these quasi-translations through the concept of positively characteristic
translation curves, and we close the discussion with the classification of Wilder arcs
by R. H. Fox and O. G. Harrold [3].
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I. THE PENETRATION INDEX OF AN OPEN ARC-AND-BALL PAIR

1. Let (a, B) be an open arc-and-ball pair, and let p(a) be the endpoint of a
that lies on 9B. Then an odd natural number n is called the penetration index of
(a, B), denoted by P(a, B), if it satisfies the following two conditions:

(1) For each standard neighborhood U of p(a) in B, there exists a standard
neighborhood V of p(a) in B such that V C Int U and

c(Bdry V Na) < n,

where c(X) denotes the cardinality of the set X. (For the definition of a standard
neighborhood, see [4].)

(2) There exists a standard neighborhood U of p(a) in B such that
c(Bdry VNa) >n

for every standard neighborhood V contained in U. If no such number n exists, we
put P(a, B) = .

If (a, B) satisfies condition (1), then P(a, B) <n. If (a, B) satisfies condition
(2), then P(a, B) > n.

The penetration index for an arc in a 3-sphere was first introduced by W. R.
Alford and B. J. Ball [1].

Let (a, B) be an open arc-and-ball pair, and suppose that B is tamely imbedded
in S3. Let P(a, S3) be the penetration index of a at p(a) in S3. Then
P(a, S3) < P(a, B).

2. Let (a;, Bj) and (a,, B,) be open arc-and-ball pairs. In (B,)°, take a
small tame 3-ball B' such that a, N B' = q(a,) and a, U B' is locally tame at
d(a,), where g(a,) is the initial point of a, . Let g be an orientation-preserving
homeomorphism of B; onto B' such that g(p(a;)) = q(a;), where p(a;) is the end-
point of a; . Consider the decomposition d: B, — d(B,), where the only nondegener-
ate element of d is the arc a, . Then d(B;) is a 3-ball and (d(a;), d(B,)) is an open
arc-and-ball pair, which is defined as

(a;, By) # (a,, By)
in [4].

Let V) and V, be standard neighborhoods of p(a;) and p(a,) in (a;, B;) and
(a , By), respectively, such that Bdry V, separates B' and p(a,) in B, . The pur-
pose of this section is to construct a subset V of B, as follows: The number of
points of a, N Bdry V, is an odd natural number 2n + 1. The intersection a, NV,
consists of n +1 arcs ¢;, ***, ¢y, and ¢, oriented subarcs arranged in the natural
order on a, . Hence, the endpoint of ¢ is p(a,). Let T;, ---, T, be mutually dis-
joint 3-balls such that, for each i (1 <i <n),

(1) ¢ CT; € V5,
P O o (o)
(ii) e C T; C V;,,
(iii) T; N 8V, consists of two disjoint disks D; and D{,
(iv) D; U D; C (Bdry V,)°,
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(v) ¢; N D; is the initial point of ¢;, and ¢; N D; is the endpoint of c¢;, and
(vi) the pair [c;, T;] represents a trivial knot.

In other words, let T; be a thickening of ¢; in V,. (See Figure 1.)
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Figure 1.

Now g(V)) = V' is a standard neighborhood of g(a;) =a' in g(B;) = B'. Let D
be a disk, and let I be the closed interval [0, 1]. Consider a homeomorphism go of
D X1 into V' such that

(i) go(D X 1) =Bdry V' in B',
(i) g,(3D X 1) C 3B', and

(iii) go(D X I) is so close to go(D X 1) that the arc a' pierces go(D X t) at each
point of a' N go(D X t) for 0 <t < 1.

Let E; =D X [2i - 1/2n, i/n] for i =1, -**, n, and E; = go(E;). Further, let
Ef=Cl(V' - gy(DX1) in B'.

n
First consider Hg = Cl (Vz - Uizl Ti), a 3-ball with n holes. Connect Hg

and E; by a narrow tube F along a,. Then F; is a natural thickening of the sub-
arc of a, from q(a,) to the initial point of the arc c. Let H; = Hy U Fo U E; this
is a 3-ball with n holes. (See Figure 2.)

Next, connect H, and E} by a solid torus F;, as in Figure 2. The solid torus
F, is a homeomorphic image of the product of an annulus A and the interval I, and
we shall denote the homeomorphism by g;. We suppose that
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Figure 2.

(i) g;(AX0) = F, NH, = Cl(Bdry T, - D, UD,) and
(ii) g,(AX 1) = F| N E| = gy(@D x [1/2n, 1/n]).
Roughly speaking, F; is almost a thin thickening of a cylinder along the part of Fo
that is a thickening of the subarc of a, from q(a,) to the point c, N D, . Let
H, =H1UF1UE‘1;
this is a 3-ball with n'- 1 holes.

We continue this process so that H; and Ei are connected by an appropriate
solid torus F; along the part of F;_; corresponding to the subarc of a, from q(a;)
to the point c¢,_j4; N D, _;,, (see Figure 2). Let

n-i+
H;,, =H,UF, UE;;

this is a 3-ball with n - i holes. At the nth step, we have the 3-ball

(V,, V) =H,UF, UE_.

The following proposition is clear from the construction of the set (Vy, Vv, ).

PROPOSITION 1. (1) The set d(V,, V,) is a standard neighborhood of d(a,) in
d(B,).

(2) We have the relation
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c{dg(a;) N Bdry d(Vy, V3)) = c(a; N Bdry V) - claz N Bdry V).

(3) The set of all (V1, V2) forms a basis for neighbovhoods of d(a,) in d(B)),
where V| and Vp vun over all standard neighborhoods of p(a1) in By and p(az) in
B, respectively, such that Bdry V, separates B' and p(az) in B.

1t follows from Proposition 1 that
(*) P((a,, B}) # (ap, By)) < P(a;, By) - Plaz, By),
which includes the case P(a;, B;) == or P(a,, B;) = .

3. Now let U; be a standard neighborhood of p(a;) in B such that for every
standard neighborhood V; contained in U;, we have the inequality

c(Bdry Vi N aj) > c(Bdry U Naj),

and let U, be a standard neighborhood of p(a;) in B, such that for every standard
neighborhood V, contained in U,, we have the inequality

c(Bdry V, Nap) > c(Bdry Uz Nay).

We assume that Bdry U, separates B' and p(a,) in B, . Let U = (U;, Uy).
PROPOSITION 2. For every standarvd neighborhood V of d(a,) in d(B,) that is
contained in d(U),
c(Bdry V N dg(a1)) > c(Bdry d(U) n dglay)) .
Proof. By the cutting-and-pasting method, we can deform d-1(V) into a 3-cell
W in d-1(U) such that
(i) d(W) is a standard neighborhood of d(a,) in d(Bj),
(ii) Bdry W N g(dB) consists of a finite number of mutually disjoint simple
closed curves, none of which bounds a disk on
g@B)) N d-}U) - qlay),
and
(iii) e(Bdry W N gla;)) < c(Bdry d-1(V) n gla,)).

Now consider the set Bdry W N g(8B;), which consists of a finite number of
simple closed curves {c;}. If c¢; is one of the innermost of these curves on
Bdry W, then c; bounds a 2-cell D; on Bdry W such that D; C g(U;). Hence

c(Bdry g(U;) n ga;)) < c(D; N glay)).
Now let c¢; be one of the outermost curves on Bdry W. Then c; bounds a 2-cell
D; on Bdry W, which contains a ci, one ?f the innermost curves on Bdry W. Pos-
sibly, ¢; = ¢j. Replace Dj by a 2-cell Dj that is parallel to g(Bdry Ul)- We sup-
pose that DJi c d-1(U). Then

c(Bdry U; na;) = c¢(D; ngla))) < cd;n glay) < cldjngla)).
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We make this replacement for all of the outermost curves on Bdry W. Then Bdry W
is modified into a 2-cell D contained in d-!(U). The 2-cell D bounds a 3-cell W'
that is contained in d-!(U), and d(W') is a standard neighborhood of d(a,) in d(B,).
Clearly,

c(Bdry W' n g(a;)) < e(Bdry W N glap)) .
Further, ¢(Bdry W' Ng(a;)) is equal to the product of ¢(Bdry U; N aj) and the num-
ber of outermost curves on Bdry W.

Now consider the construction of U = (U, U,). This can be thought of as a de-
formation of U onto U. Then the inverse is a deformation of U onto U,. This
inverse deforms W' into U,. Let W" be the image of W'. Because
g(B1) N Bdry W' consists of a finite number of 2-cells, W" is a standard neighbor-
hood of p(a;) in By, and W"C U, . Hence

c(Bdry W" N a,) > c(Bdry U, Na,).

On the other hand, c¢(Bdry W" N a,) is equal to the number of outermost curves on
Bdry W. Hence,

c(Bdry U Naj) - c(Bdry Uz N az) < ¢(Bdry W' N g(a1)) < e(Bdry W N g(ay))

< ¢(Bdry V N dgla,;)),

and the proof is complete.

It follows from Proposition 2 that
(%) P((al, Bl) i (az, Bz)) > P(al, Bl) : P(aZ, BZ)B

this includes the case where P(a;, B;) = » or P(a,, By) = .
By (*) and (*¥*), we have the following theorem.
THEOREM 1. P((al , Bl) # (3.2, Bz)) = P(al, Bl) : P(az, Bz).

Remark. In [4], we have proved that

(ay, By) # (az, Bz) = (e, B)
if and only if
(a1, By) = (a2, B2) = (e, B),
where (e, B) is the trivial pair (see Theorem 1 in [4]). Applying Theorem 1, we
have the following alternate proof of this statement: Assume that
(a,, By) #(a, By) = (e, B).
Then
P(a;, By) * P(az, By) = 1,
by Theorem 1. Hence
P(a;, B)) = P(az, B =1,

which means that both (a;, B;) and (a,, B,) are open arc-and-ball pairs con-
structed from Wilder arcs. Now we can easily see that
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(al’ Bl) = (a'25 BZ) = (e: B):

by applying the classification theorem on Wilder arcs by Fox and Harrold [3]. The
converse is trivial.

II. CLOSED ARC-AND-BALL PAIRS

4. Let a be an arc in a 3-ball B such that only the initial point q(a) and the
endpoint p(a) of the arc a are on ¢B and a is locally tame in B except possibly at
the endpoint p(a). We call such an arc-and-ball pair [a, B] a closed arc-and-ball
pair.

The definition of the equivalence of two closed arc-and-ball pairs is similar to
that of open arc-and-ball pairs (see [4]).

Let [a;, B1] and [az, B2] be two closed arc-and-ball pairs. Then the composi-
tion of [a;, Bi] and [az, B2], which will be denoted by [a;, Bi] # [az2, B2], is de-
fined as follows: Suppose that

B; = {(x, v, 2] 0<x<1, -1<y<1, -1<z< 1},
BZ = {(X, y, Z)I ISXSZ, 'ISY_<_1, -]‘SZ_<_1}'

Further, suppose that q(a;) = (0, 0, 0), p(aj) = q(az) = (1, 0, 0), and p(a) = (2, 0, 0).
Consider the decomposition

d: By UB2 — d(B; u Bp),

where the only nondegenerate element of d is the arc a>. Then d(B; U B) is a 3-
ball and [d(a;), d(B; U B5)] is a closed arc-and-ball pair. We define

[a;, By] #[a;, B,] = [d(a)), (B, U By)].

Note that this generalizes the composition (product) of two knots.

It can easily be seen that the family of all equivalence classes of [a, B] with
operation # forms a semigroup with the identity [e, B], where e represents a
trivial knot in B. Further, if [a;, B;] # [a,, B,] = [e, B], then

[a,, B,] = [a,, B,] = [e, B].

The definition of the penetvation index P[a, B] of a closed arc-and-ball pair
[a, B] is similar to that of an open arc-and-ball pair.

With each closed arc-and-ball pair [a, B] we associate an open arc-and-ball
pair ¢[a, B] as follows: Let b be a subarc of a whose initial point is in the in-
terior of a and whose endpoint is p(a). Let ¢[a, B] = (b, B). This induces a many-
to-one correspondence of equivalence classes. However, it is easy to see that
P[a, B] = P(¢[a, B]), because the penetration index depends only on the position of
the arc a near p(a) in B. Hence we have the formula

(k) P([a,, Bl #[a,, B,]) = P[ay, B;] - P[a,, B,].

5. For every integer n, let [a,, B,] be a closed arc-and-ball pair. Then the
infinite product #;~__ [a,, By] is defined as follows: Let
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= {(x, v, 2)| x> +y%2 +22 <1},

Cn

]

1 1 .
ﬂ{(x,y, z)| I—HSXSI—m} if n> 2,

C, = {(A y, z)| <x<—%}
Co = {(x v, 2)] - % XS_ZI},
C_1=Cﬂ{(x y,z)l-—s < - %} and

1 10 .
C.,=Cn {(X, A Z)I —l+m_<_x£-1+;} ifn>2.

Further, let
L={xy,2|y=0,2=0}U/(o),

as in [4). Now, for each integer n, let g, be an orientation-preserving homeomor-
phism of B, onto C, such that

gn(q(an)) = Cn—l N Cn n L, gn(p(a'n)) = Cn N Cn+l N L.
Then

e = U e@)u100u(q,o,0

is an arc. Let
= {x v, 2| -2<x<1, -2<y <2, -2<z<2},
a={x17y2)]-2<x<-1,y=0, z=0}.

Consider the decomposition d: B — d(B), where the only nondegenerate element of d
is the arc «. Since every subarc of the arc « is locally peripherally unknotted at
its initial point, d(B) is a 3-ball and [d(a), d(B)] is a closed arc-and-ball pair (see
[2]). We define

oc

# [an, Bal = [d(a), (B)].

n=-oo
Then we have the following generalization of (*¥*%*),
o0
o0
X P( # [an,Bn]) = II Pla,, By].
n=-oco n=-co
Proof. Note that the proof is divided into two cases: (1) P[an, Bn] =1 for al-

most all n, and (2) P[a,, B_ ] > 3 for infinitely many n. For each of these cases,
the proof is easy.
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Remark. We point out that the infinite product of open arc-and-ball pairs does
not seem to be well-defined.

III. UNCOUNTABLY MANY QUASI-TRANSLATIONS

6. Let N be the set of all natural numbers. Let {kn| n e N} be a family of
mutually inequivalent prime knots in s3 , and suppose that a closed arc-and-ball pair
[a,,, B,] represents k, for each n € N. Let {xy } be the set of all correspondences
of N into the set of two points {0, 1} . The set ){XA} has the cardinality of the
continuum.

For each x, and each integer n, let

a ,B ] if x,(n)=1,
n n A

[a,, B,] =
[e, B] otherwise.
Then let
[>e]
[y, Byl = # [ag, Byl.
n=-=co
Now we let
o [ay, By] if neN,
lan, Bpl =

[e, B] otherwise.

Then we let

(ay, By) = ¢( # [ag, Br';]).

n=-co

Hence (3.7t , B)\) is an open arc-and-ball pair constructed from a Wilder arc that
contains infinitely many copies of k, if and only if x;\(n) = 1. It was proved by Fox
and Harrold [3] that (a), B)) is topologically equivalent to (a;, B “) if and only if

X\ =Xy

7. With each open arc-and-ball pair (a)\, B}\) we now associate the quasi-
translation h(a, , B)) of S3 defined in Section 6 of [4].

THEOREM 2. Two quasi-tvanslation h(ay , By) and h(a , B) ave topologi-
cally equivalent if and only if X\ =X .

COROLLARY. Theve exist uncountably many mutually inequivalent quasi-
translations of S3.

Proof. First we note that in the construction of h(ay, By) we also construct a
closed arc-and-ball pair [g(a), Ag] such that ¢[g(a), Ag] = (a), B)). Without loss of
generality, we assume that

o]

[g(a), Aol = # [ap, Byl

n=-oco

and for simplicity, we let [ay, By]=[g(a), Ao].
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Next we note that the positively characteristic translation curve c, = d(J) for
h(ay , By) is defined in the proof of Theorem 3 in [4]. With the curve ¢, we asso-
ciate an open arc-and-ball pair (c),, BCA) (see [4, Section 8]), and now it is clear

that (c,,, B, A) is topologically equivalent to

¢,( # [a, B;ﬂ),

where [a},, B}] = [a), Byl for every integer n. Note that the curve c) is uniquely
determined by [ay, By, but not by (ay, By). As we noted in the last section of [4],
or more generally by (¥%), the open arc-and-ball pair (c, ,, BCA) is constructed

from a Wilder arc that contains the knot k,, infinitely many times if and only if
%) (n) = 1.

Now suppose that x, # Xy - Then there exists a natural number n such that
x)(n) # xu(n). We assume that x,(n) =0 and x“(n) = 1. Suppose on the contrary
that h(a) , B)) is topologically equivalent to h(a ; B‘u). Let f be an orientation-
preserving autohomeomorphism of S3 that gives rise to the equivalence of
h(ay , B,) and h(a“ , B u). As we noted before, to the quasi-translation h(ay , B))

there corresponds a positively characteristic translation curve c) . Its image f(c))
is a positively characteristic translation curve of h(a, , B “). Hence, by Theorem 4

in [4], there exist two open arc-and-ball pairs (a}, B}) and (a%, B%) such that
(fen)s» By(c, ) = (af, BY) # (2, By) # (a3, BY) .
Since P(c) ., BCA) = P(f(cy) 4, Bf(CA)) = 1, we see by Theorem 1 that
P(a¥t, BY) = P(a¥, BY) = 1.
Hence (a%, BY) and (a%, BY) are constructed from Wilder arcs. Therefore,
(f(cy) s, By(c, ) is constructed from a Wilder arc that contains the knot k, infinitely

many times. But (f(c)),, Bf(ch)) is topologically equivalent to (c,, BCA), which is

constructed from a Wilder arc that does not contain k,. This contradicts the clas-
sification theorem for Wilder arcs by Fox and Harrold [3]. Hence h(a,, B)) is not
topologically equivalent to h(a;, By).

If x) =xp, then (ay, By) = (a,u , B“) and h(ay, By) = h(au, BH)' Thus the
proof is complete.
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