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1. INTRODUCTION

For p > 0, let #, denote the class of bounded linear operators T on a Hilbert
space < whose powers admit a representation

Tnh:pPUnh (heyf;n:1, 2, ...),

where U is a unitary operator (called a unitary p-dilation) on some Hilbert space
4 containing 4 as a subspace, and where P is the projection from & to . In-
trinsic characterizations of operators of class %, were given by B. Sz.-Nagy and
C. Foiag [6]. Later, J. A. R. Holbrook [3] and J. P. Williams [7] introduced the con-
cept of the operator radius w(p) of an operator T, relative to %p. The operator
radius is defined by the formula

w(p) = wlp; T) = inf{y: v>0, y'1T e %,}.

It is known that w(1) coincides with the norm [|T| while w(2) is simply the numer-
ical radius

w(2) = sup {|(Th, b)|: |n| =1}.

Holbrook [3], [4] investigated basic properties of w(p). Among other things, he
showed that w(p) is a nonincreasing function of p, that

w(l) < p-wlp) < (2p' - p)-wlp') (p<p",

and that w(») = lim w(p) coincides with the spectral radius of T.
p—

Further, Holbrook [4] proved the convexity of w(p) on (0, 1), and he asked
whether w(p) is convex on the whole interval (0, ©). Our main purpose in this paper
is to prove that log w(p) is convex on (0, «).

In Section 2, using function-theoretic methods, we shall show that log w(p) and
log {(e£ + 1) w(ef + 1)} are convex on (0, ») and (-, »), respectively. Incidentally,
we point out the reciprocity law

p-wip) =@2-p)-w2-p (0<p<2),

which has hitherto been overlooked. As a consequence of convexity, we show that
p-w(p) is decreasing on (0, 1) and increasing on (1, «).
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An explicit algebraic form of w(p) has until now been known only when T2 =0
or T is a normaloid, that is, w(1) = w(e). In Section 3, we shall calculate w(p) for
the cases T¢ =T and T2 =1. '

2. LOGARITHMIC CONVEXITY

Let w(p) denote the operator radius for a fixed operator T. The criterion of
Sz.-Nagy and Foias [6] says that w(p) < 1 if and only if the operator-valued function

F(z) =1+2-plzT(-2T)"1  (lz] <)

has positive real part.
THEOREM 1. The function log w(p) is convex on (0, ).

Proof. Consider the operator-valued function
G(z) = -2zT(1 - zT) L.
Here the condition w(p) < @ is equivalent to the inequality
(%) NG(z) < pl (2] <al).

An application of a modified form of Hadamard’s three-circle theorem [5, p. 250] to
the operator-valued analytic function G(z) shows that if p;, p, >0, 1 >X > 0, and
NG(z) < p;1 (|z| <w(py)-1;i=1,2), then

1HG(z) < (py +(1-N)pdI (2] =wlp) P wloz)"1H).

By the maximum-modulus principle, the last inequality holds on the disc
|z| <w(p;)*wlp,) -1t} . Now (*) yields the relation

wiipy + (1 - 2)pz) < wlp)wlp)! 2,

and this completes the proof.
COROLLARY 2. The operator vadius w(p) is a convex function on (0, «).

Another useful variant (see [1]) of the criterion of Sz.-Nagy and Foias says that
the inequality w(p) < o is equivalent to the condition

(**) IT{o- DT - pazi} ! <1 (2| >1).

Since ]p - 1| = |(2 - p) - 1|, the following useful reciprocity law follows im-
mediately from (**),
THEOREM 3. p-w(p) = (2 - p)-w(2 - p) (0<p<K2), and

lim 2-lp-w(p) = w(2).
p—0

THEOREM 4. The function log {(e* + 1) -w(e* + 1)} is convex on (-, ),
while log {(1 - eX) -w(1 - eX) } is convex on (-, 0).

Proof. Let 1 <p; <p, and 0 <X < 1. Define p and a by the equations
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p-1=(p -1 (p,- NI
and

p-a = (p;-wlp)(py-wlp ).
Since T(T - zI)"! is an operator-valued analytic function on
|z] > palpz - 171 -w(p2),
one sees from (**) that
IT(T-2D < pj-1 (2] = pjlo; - D71 -wlp;);i=1,2).
Thus, it follows from Hadamard’s three-circle theorem [5, p. 250] that
IT(T - 2D < (py - (- P =p-1 (|z|=palp-17).

Since T(T - zI)-! converges to 0 as z — «, the maximum-modulus principle shows
that the inequality above holds for |z| > pa(p - 1)-1 ., Now (**) yields the relation

log {p-w(p)} < loglpa) = x-log{p;-wlp))} +(1-2)-log{p,-wlpx)},

which proves the first half of the theorem. The second half follows from the first
by Theorem 3.

COROLLARY 5. The function p-w(p) is increasing on (1, ©) and decveasing on
(0, 1).

Proof. Let f(x) = log{(eX+1)-w(eX+1)}. As we remarked in Section 1,
f(x) > log w(1) = £(-),

and therefore f(x) must be increasing, because of its convexity. Thus p-w(p) is in-
creasing on (1, ©). The remaining part now follows from Theorem 3.

On (0, 1), Holbrook’s majorization
p-wip) < (2p'-p)-wp) ((O<p<Lp' <)
is best possible, while on (1, «), Corollary 5 is best possible:

p-wip) < p-wip) (1<p<Lp).

3. THE OPERATOR RADIUS FOR SPECIAL T

An explicit algebraic form of w(p) is seldom known. However, Theorem 3 im-
plies that if T is a normaloid, that is, if w(1) = w(e), then

w(p) = max {p~1(2 - p), 1} w(1);

this was first proved by E. Durszt [2].
If T2=0, then T(T - zI)-! = -z-1T, and from (**) it follows that
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wp) = p~t |T|| = p~lw(1);

this was first proved by Holbrook [3].
THEOREM 6. (a) If T is idempotent (that is, if T =T) and T # 0, then

wip) = pt {w(1) +|p-1|}.

(b) If T is involutive, that is, if T? =1, then

wip) = p~! {w(2) + Vw(2)% +plp - 2)} .
Proof. (a) Since T2 = T implies that T(T - zI)-! = (1 - z)-! T, the assertion
follows immediately from (**),

(b) For each vector h # 0, the linear span .4 of h and Th is invariant under
T, and the restriction T} of T to .#, is again involutive. This observation shows
that

w(p) = sx}llp w(p; T},) .

Since w(2; Ty,) > 1 and the function
f(t) = p~1 {t + Vt2 +plp - 2)}

is increasing on (1, =), it suffices to prove the assertion for each Ty, . Thus we can
restrict our discussion to the case dim # < 2. Further, as we remarked at the be-
ginning of this section, if T =1 or T = -1, then

w(p) = max(p-1(2 - p), 1) = p-1 {w(2) + Vw(2)2 +plp - 2)} .
Thus it remains to treat the case where T # +I and dim & = 2. With respect to
some orthonormal basis, T has here the matrix form

T =

Therefore {(p - )T - pzI}*-1T*T {(p - 1)T - pzI} ! has the matrix form

i 1 p1z ]
|(p - 1) - pz|? [(p - 1) - pz|?- {(p - 1) +pz}
pilz p?|z|2|n|2 1
Ll -1 -pz]2-{o-1) +pz}  |(p-12-p222]2 |(p-1) +pz]®

It follows from (**) that for |z] = w(p) the maximum value of the eigenvalues of
these matrices is 1. With w = w(p), this leads to the equations

{(p-1)2 - p2w2}? -2(p-1)2-2p2w2 - p21n|zwz+1=0
and
p2wit-w2{2(p- 12+ |n|2+2} +(p-2)2=0.
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For p = 2, this takes the form
4w(2)?% = |7?|2 +4.
Substitution now yields the equation
p2 - wip)* - 2w(p)? - {2w(2)2 +plp-2)} +(p-2)2 = 0.

By Corollary 5, p-w(p) is decreasing on (0, 1) and increasing on (1, «), and there-
fore the last two equations imply that

p-wip) = w2+ Vw22 +p(p-2) .
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