HOMOTOPY EQUIVALENCE AND DIFFERENTIABLE
PSEUDO-FREE CIRCLE ACTIONS
ON HOMOTOPY SPHERES

Deane Montgomery and C. T. Yang

1. INTRODUCTION

This paper is concerned with differentiable pseudo-free circle actions on
homotopy spheres, and the main result shows that each such action on a homotopy
(2n + 1)-sphere (n > 1) may be mapped equivariantly, by a map of degree 1, onto a
linear one on the (2n + 1)-sphere with exactly one exceptional orbit. For the case
n = 1, this is an easy consequence of a theorem of R. Jacoby [2], and for the case
n = 3, it is contained in an earlier paper of Montgomery and Yang, though by a dif-
ferent proof [3]. The result will be used in a forthcoming paper to classify pseudo-
free circle actions on spheres.

Except where it is contrarily stated, our study below is assumed to be in the
differentiable category.

Let =22+l (n > 1) be a homotopy (2n + 1)-sphere on which there is a differenti-
able effective action of the circle group G such that all orbits are 1-dimensional.
As usual, an orbit Gb in »20tl g called exceptional if the isotropy group Gy, at b
is not trivial. If there is at least one exceptional orbit and each exceptional orbit is
isolated, the action is called pseudo-free. Suppose that a differentiable pseudo-free
action of the circle group G on a homotopy (2n + 1)-sphere (n > 1) is given, and let
Gb;, ---, Gby be the exceptional orbits in =2ntl  Then for each i =1, -+, k, the
isotropy group Gbi at b, is a finite cyclic group Zq; of order q; for some integer

q; ~> 1, and the integers q;, :*, q, are relatively prime to one another. In the fol-
lowing, we let
q — ql s qk’

which is an integer greater than 1.

Let G consist of complex numbers of absolute value 1, and let S2nt! be the unit
sphere in the unitary (n + 1)-space €C™*!. Then there exists a linear pseudo-free
action of G on S2ntl  given by the equation

g(Z07 Z]_, T Zn) = (ng()’ gzl’ Tty gzn) .

Since q > 1, there exists exactly one exceptional orbit in S2n+l, namely |zq| = 1.
The main theorem of this paper asserts the existence of an equivariant map of

z2ntl ynto §2ntl of degree +1. (For the determination of the sign, see Theorem 2.)
Notice that such a map induces a homotopy equivalence of the orbit space Tén+l/G
into the orbit space S2n+l/G,

Received December 21, 1972,
C. T. Yang was supported in part by the National Science Foundation.

Michigan Math. J. 20 (1973).

145 !



146 DEANE MONTGOMERY and C. T. YANG

Whenever G acts on a space X, we let 7 be the projection of X onto the orbit
space X/G, and for each A C X, we let

* = 1(A);
in particular, we let

Let D; be a slice at b; that is a closed (2n)-disk of center b; and on which Zq;
acts orthogonally. Then we can identify D; with the closed unit disk in the unitary
n-space C™, so that for some integers rj 1, **, 'y, the action of Zq; on D; is
given by

g(z]_,‘"';z)_(g Zl’ .“7g

We note that each r; j may be replaced by any integer congruent to rj j or -rj j
modulo q; . Slnce Gb is an isolated exceptional orbit,

Ty = rj] " Tin

is an integer with (q;, r;) = 1. Therefore

an

aD;k = aDi/Zqi (qu ri,1» °°%» I‘:'L,n)

is a (2n - 1)-dimensional lens space and D} is a cone of vertex b¥ over aD¥.

In the remainder of the paper, we shall let D, be oriented as follows. Let ct
be oriented so that its orientation is represented by the real coordinate system
(z,+2;, -V-Uz,-Z)), -+, 29 +29, -V-1(zg - Zp)), and let

= {(y, =, 29 € €4 |22+ + |22 <11,

g2L-1 _ sp2t

be oriented accordingly. Then G = 9D?2 is oriented. Therefore we may let D, be so
oriented that if G X D; has the product orientation, then the local imbedding

f: G X D; — Z2ntl given by f(g, x) = gx is orientation-preserving. Now we require
the identification of D; with D21 to be such that the orientation on D; coincides with
that on D22, Then the integer r;, up to a congruence modulo q;, is uniquely deter-
mined.

An important fact used in the construction of a desired equivariant map of
z2n+l into S2n+l s the relation between q;, -+, q; and r;, -*, ry given below.

THEOREM 1. Either

M) ry = Q/qi mod q; forall i=1, -, k,
or
(H) r; = -q/qi mod q; f07’ all i = ]_, K.

With Theorem 1, we obtain the following precise formulation of our main result.

THEOREM 2. Suppose that we have an action of G c¢xa 20+l aud an action of G
on S2ntl gs described above. Then there exists an equivariant map of Z%"+1 into
S2ntl that is of degree 1 ov -1 accovding as (I) or (II) holds.
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2. PROOF OF THEOREM 1
Assume first that n is odd, say
n=2m+1,

where m is a positive integer. Then £2ntl = »4m+3 j5 3 homotopy (4m + 3)-
sphere. For the case m = 1, our assertion is an easy consequence of Jacoby’s theo-
rem [2]. Hence we shall assume m > 1.

Let G act on S2™t! go that

q.
g(ZOr zla Ty Zm) = (g IZO: gzl: T gzm)'

Then there is exactly one exceptional orbit in SZm+l phamely Gb with

b=(1,0, ---, 0). Let D be a slice that is a closed (2m)-disk of center b and on
which Zq; acts orthogonally. As we have seen above, we may identify D with D2m
so that

oD* = D/Zq; = L™ q;; 1, -+, 1)

is a (2m - 1)-dimensional lens space. Then D* is a cone of vertex b* over aD*
and

A* = (82™Hhyx _jpt p*

is a compact (2m)-manifold of boundary 2D*.
Let Zq; act on S*™*! 5o that

s
g(zl’ "y Zoms Zam+l) = (821, 7 8Z2my 8 1sz+1)-

Then
S4m“/Zqi =14l (g1, -, 1, )

1

is a (4m + 1)-dimensional lens space, and there exists a homotopy equivalence

¢: s* ™t /74, — oD¥
induced by a Zq;-equivariant map of g4mtl jpig oD; (or equivalently, mapping the
preferred generator of m,(S4™M*1/Zq,) into that of 7(0D;)). Since 8D may be

naturally identified with the subset of S4™m+*l defined by z,,.; = *** = 22,41 = 0, and
since

dim DY = 4m +1 = 2dim aD* + 3,
¢ | 8D* is homotopic to an imbedding
Y: aD* — aDf
that is covered by a Zq;-equivariant imbedding of 9D into 0D;. Therefore
w: m,(6D*) — 7,(aD¥)

is an isomorphism preserving the preferred generator, and
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y: H;(aD*) — H;(aD¥)

is an isomorphism for j <2m - 1 and is a surjective homomorphism for j = 2m - 1.

Next we assert that ¥ can be extended to an imbedding

such that
(i) ¥ maps D* into D¥ and {¥: D* — Df is the natural extension of ¥,
(i) ¢(A™) c 2* - (int Df U {b}, -, bi}),

(iii) ¥ is covered by an equivariant imbedding

J: g2mtl -, p4mit3

We note that since the imbedding i to be constructed later is differentiable every-
where except at b*, the equivariant imbedding ¢ is expected to be differentiable
everywhere except at points of Gb.

Let y': 0D — 0D; be a Zq i-equivariant imbedding covering y. Then ¥' can be
uniquely extended to a G-equivariant imbedding

¥ : GD — GD;

that maps each radius of D proportionally onto a radius of D;. Clearly, {; induces
an imbedding

¥1: D* - D}

that is an extension of . As we noted above, ¥, is differentiable at each point of
GD - Gb, but in general it is not differentiable at each point of Gb.

If we can extend y to an imbedding
Yo A¥ — Z* - (int DF U {b%, -, b}
so that ¥,(A*) intersects aD¥ transversally at yw(aD*) and
Yo Hi(A*) — H;(z* - (int D} U {b}, -, bf})

is an isomorphism for j < 2m - 2, then we can use ¥; and ¥, to obtain a desired
w. In fact, there is an imbedding ¥: (S2™*1)* = =* such that

tplD*=yL1, ’L‘A*=’I12-

For this y, there may exist a corner on Y((S2™*1)¥*) along ¥(3D*); but we can
round the corner by modifying ¢ ,. Since

Wy HJ.(A*) — Hy(Z* - (int D¥ U {b%, ¢, b¥}))
is an isomorphism for j < 2m - 2, ’I’Z is covered by an equivariant imbedding

P, 82 _int GD — =4™*3 _ (int GD; U Gb, U --- U Gb),
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and > can be constructed so that by combining v 1 and v 2 we obtain an equivari-

ant imbedding {: gémtl _, »4m+3 ooyering Y. Hence we have only to construct
Y, in order to complete the construction of .

For ¢ =1, ---, m, let o ¢ be the intersection of A* - 3D* with the image of

{(zgy, =+, 2,) € s2mtll po 20,29, = =2,,=0},
and let
Ly = 3,0 3D*,

It can be seen that for £ =1, ---, m the intersection ¢y is an open (2£)-cell, Ly is
the (24 - 1)-dimensional lens space L2Z-1(q,; 1, -+, 1), and

6£=01U---U02UL£.
Moreover,
L_=23D* o__ =A%,

m m

From the construction of ¥, it is easy to see that ¥ I L; can be extended to an
imbedding

A.l: 6’1 - 2*‘ (int D*;_U {b*, °tcy bi})

such that A;(5 ;) intersects aD; transversally at L; and (A,(5 ), A{(L)) repre-
sents a generator of

H,(=* - (int D} U {b}, -, b¥}), aDF).
Since
TTJ(Z* = (ll'lt DT U {bTa R blt})) =0 (] = 3: T 2m - 1)9

we can construct imbeddings
Ng: G4 = 2*- (int DF U {b%, -, pEhH)  (£=2, -, m)
such that for each £,
NglLp =wlLy,  2g|Gg =20
and A (G y) intersects 9D} transversally at Ly. From the construction of 1) , we
know that
Ay Hy(A®) — H,(2* - (int DY U {b%, -, b¥}))

is an isomorphism. Therefore we infer from the ring structure of H*(A*) and of
H*(Z* - (int D¥ U {b%, ---, b}})) that

A Hi(A®) — Hy(Z* - (int Df - {b], -+, b{})

is an isomorphism for j < 2m - 2. Hence A, is a desired Uo.

Let N be a closed tubular neighborhood of Y(A*) (= {»(A%) in
z* - (int Df U {b¥, ---, bf}) such that N N aD¥ is a closed tubular neighborhood of
Y(dD*) in 09D¥. Then
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x* = D¥UN,

with the corner on 8X* along 3(N N Di*) rounded, is a compact (4m + 2)-manifold in

T* containing a single singularity b¥ and having ((S*™"1)*) as a deformation re-
tract. Therefore

X = 17 H{x¥)
is an invariant compact (4m + 3)-manifold in »4m+t3 having
E‘U"(SZm+1) - W-I(QL((SZHH- l)*))

as a deformation retract, and hence it is diffeomorphic to 82™*! x p2m+2
Let
Y*=2*-intX*, Y =71(¥¥.

Then Y is diffeomorphic to D2™*2 x g2m+l 5p9
XUy = p4mt3

As we said earlier, 8D; is regarded as the oriented (4m + 1)-sphere S4m+l
such that the action of Zq; on 9D; is given by

Ir. r.
g(zl, -o‘, sz-l-l) = (g l,lzl’ --.’ g 1,2m+lzzm+l).

Similarly, 3D is regarded as the oriented (2m - 1)-sphere S2™-! such that the
action of Zq; on $?m-l ig given by

g(Z]_ ’ .'.’ Zm) = (gzl ’ .'., gzm)'

Therefore, if Zq; acts on the oriented (2m + 1)-sphere S2™*! so that

g(zl y TN Zm’ Zm+]_) = (gzl y T gzmy grizm+1)
with r, =r; | -~ i 2m+1> then there exists a Zq;-equivariant map
. @2m+l _,
£ sem oD,

such that £(82™t1)* 9DT - N and the linking number of the integral singular
cycles £(S2™*l) and J(8D) in aD; is 1. Let D; be a slice at b; that is a closed
(4m + 2)-disk with D; C int D; and on which Zq; acts orthogonally. Then

Di'* - int Df‘ is a cylinder over aDi* and

dim (D}* - int D}) = 2dim s*™*!/Zq, > 6.
Using Whitney’s technique, we can construct an imbedding

such that p*(S?™*t1/ Zq;) C (D}* - DY) - N, and such that * and the induced map
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g*: SZm+I/Zqi - BD;k

are homotopic as maps of 82™*!/Zq; into (D;* - int D¥) - N. Then we have a Zq;-
equivariant imbedding

covering n*. Since the linking number of the integral singular cycles £(S%2™*1) and
Y(8D) in aD; is 1 and £(S2m*l) and 5(S2™*tl) are homologous in Y, it follows that
the linking number of n(S2™*!) and P(S2™*l) in 24™*3 j5 1 so that the sphere

S = n(SZerl)

is an oriented Zq;-invariant (2m + 1)-sphere in Y with the property that the inclu-
sion map of S into Y induces an isomorphism of H,(S) onto H,(Y). Hence S isa
deformation retract of Y.

Let S; be an oriented G-invariant (2m + 1)-sphere in Y that may be identified
with S2m+1l and such that the action of G on S; is given by

g(zl » T Zm-i-l) = (ng y gz'rn+l)-

Then the linking number of S; with \U(Szm“) can be determined as follows. Let
a1 be the generator of H 2(£*) such that, if E; is an oriented closed 2-cell in

4m+3 with 9E; = Gb; and [E}] is the element of H,(Z*) containing the 2-cycle
EJ, then

<al; [E;k]> = q/qi'

Then it can be seen that for £ =2, ---, 2m + 1 there exists a generator of HZQ(E*)
such that

g1 U @) =qayg.

Let [=*] be the generator of Hyms2(=*) such that the image of q[Z*] in
Hy,.,2(Z% Z* - int D¥) is represented by (Df, 9Df). Then

1

(azmi1, [2¥]) =1 or -1.
Now we make the following assertion.
LEMMA 1. The linking number of S, with P(8>™%1) in £4™+3 45

(a/ay) {@2me1> [2¥]).
It can be seen that
(om, [5T1) =a,  (om, [FE*™D*) = o/

Let E be an oriented, closed (2m + 2)-cell immersed in Z*™3 gsuch that 3E = 8, .
Then E* represents an element [E*] of Hj,,,»(Z%), and

<am+1’ [E*]> =q-

Since o411 U @, =qQmy1, it follows that
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[E*]-[(s>™ )] = (a/q) { @pyy s [Z¥1) 5

this means that the intersection number of E and $(Szm+1) is

k
(Q/fh) <azm+l ’ [Z ]> .
Hence our assertion follows.

LEMMA 2. Theye is a Zq;-equivariant map of Sy info S of degvee
(a/a3) @z pme1> [Z¥1)-

Since Zq; acts freely on Y and since S is a Zq;-invariant deformation retract
of Y, it follows that the inclusion map of S/Zq; into Y/Zq; is a homotopy equival-
ence (see [4; p. 97]). Let

f: Y/Zq; — S/Zq;
be the inverse homotopy equivalence. Then f is covered by a Zq;-equivariant map
T:Y = s

that is also a homotopy equivalence. Since the linking number of S with z/?(Szm“)

is 1 and that of S; with $(S2™*1) is (q/q;) {@ams1, [E*]), it follows that
’fl Sl: S]_ — S

is a Zq;-equivariant map of degree (a/q;) ( O m+ls [E*]) . This proves Lemma 2.
We know that

8/Zq; = L2 (g5 1, -, 1, 1),  S1/Zq; = LP™ (g5 1, 0, 1, 1),
Hence Lemma 2 implies that

ri = (a/a1) { @2m+1, [Z*]) mod g;
(see, for example, [1; p. 95]). This completes the proof of Theorem 1 for the case
where n is odd.
Suppose next that n is even, say n = 2m, where m is a positive integer. Let

Z4m+3 - E4m+l *Sl .

>

that is, let 24™t3 pe the join of =4™+(= £20*1) 5nq s!. Then =4™*3 is obtained
from z4mtl x D2 py identifying (x, y) with (x', y) for any x, x' € 2¥™+! ang

y € aD%. Moreover, =4™*3 js a topological (4m.+ 3)-sphere in which

s4mtl » jnt D2 possesses a natural differentiable structure and the set

is a circle. Let G act on =#™*1 x D2 so that for each g € G and all
(X, y) € Z4m+l X DZ,

g(x, y) = (g%, gy).
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Then the action induces a pseudo-free action of G on »4m+3 with exceptional orbits
Gby, -+, Gbk, and the action is differentiable on z4m+tl » jnt D2, Therefore

$4m+3 /G ig a topological closed (4m + 2)-manifold with singularities b}, «+-, by,
and there exists a natural differentiable structure on

=43 G - {p¥, -, b, C*}.

Let us imbed =#™*! jnto 4™*3 by jdentifying each x € =41 with
(x, 0) € =4+l ipt D2 € =4™*3 | 4nd study the pseudo-free circle action on z4m+3
instead. It can be seen that at each b;, there is a slice D; in z4m+3 that may be

identified with D*™*2 in such a way that D; = D; N Z#™*1 ig given by
Z2m+l = 0

and the action of Zq; on D; is given by

s T
g(zl » 7y Zam> ZZm+1) = (g 1’lzl y 7y 8 1’ZInZZrn’ gZZm+l) :

Without much difficulty one can see that our previous proof applies to this somewhat
more general pseudo-free action of G on £4™t3 | It may be helpful to note that
here E4m+3/G is locally Euclidean at C*; but in general there is no natural differ-
entiable structure in any neighborhood of C*. Even so, our previous proof is not af-
fected by this situation, because the single orbit C in »4m+*3 does not interfere with
our argument anywhere in the proof. Hence

= 4 3
ri = ri,l ces ri’zm = (q/qi) <O{2m+l, [Z mt /G]> mod qi’
or equivalently,
r; = (a/q;) <a2m, [E*]> mod q;,

as was to be proved. This completes the proof of Theorem 1.

3. PROOF OF THEOREM 2

Suppose that we have a differentiable, pseudo-free action of the circle group G
on a homotopy (2n + 1)-sphere £27*! and a linear pseudo-free action of G on $2n+1
as described in the Introduction. We recall that there are k exceptional orbits
Gb;, -r, Gby in z2ntl gnd that for i = 1, -, k, Gbi = Zq; and there is a slice D;

at b; which is to be identified with D2™ so that the action of Zq; on D; is given by

g(ZI y "ty Zn) = (gri’121, ...’ gri,nzn) .
Also, there is a single exceptional orbit Gb in sentl with Gy, = Zq, where

q =4q; ‘- qk, and there is a slice D at b, which is to be identified with D22 so that
the action of Zq on D is given by

ez, =, z.) = (gz), ", gz,) .

As seen in the theorem, if we orient D;, -+, D, properly, then there is a relation
between
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r; =ryp Ty, (=1, 0, k)
and q;, ***, q, - It can be assumed that the relation is
(1) r; = q/qi modgq; (i=1, -, k),

because we can reduce the other case to this case simply by reversing the orienta-
tion of n2ntl,

In the case n = 1, the action of G on =2™"! jig linear [2] so that it is not hard
to cornstruct an equivariant map of 222+l into §22*! of degree 1. Hence we shall
assume that n > 1.

Let the slices D;, ***, Dx be constructed so that DT, ey Di'; are mutually dis-
joint. We first assert that there exists a map

k
e U p¥ — D*

i=1

k k k
such that f'(Ui:1 aD’i“) C aD*, f" ( Ui, o U, aD’{) — (D*, 3D*) is of
degree 1, and {' is covered by an equivariant map

k
1. U ep, - ap.
i=1
Since q;, °**, q) are relatively prime to one another, there exist integers
S|, **, Sk such that
k

i=1

Therefore, for i =1, -+, k, the integer 1 - si(q/qi) is divisible by q;, so that for
some integer ¢t;,
(3) si(a/q;) +t;q; = 1.
Since

oD} = L™ Mgy g, v, 1)
and

0D/Zq; = L"Mq;; 1, -, 1),
it follows from (1) and (3) that there exists a map

*
¢;: 9D; — 9D/Zq;

of degree s; that is covered by a Zq;-equivariant map

ai: aDl — dD.
Let
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$:D; = D

be a Zq;- equ1var1ant extension of ¢; that maps each radius of D; into a radius of
D. Then ¢ induces an extension of ¢;:

¢;: Df — D/Zq; .
Let
¥;: D/Zq; — D*=D/Zq

be the projection. Then
T r, %k — *
f; = ;¢ Dy D

is a map such that f; (aD*) c oD%, f;: (D}, oD}) — (D* aD%) is of degree s;(q/q;),
and f is covered by an equlvarlant map

f: GD; — GD
1
with £ | D, = ¢;. Let
k k
i Uo*-p*, *:Uop, —ap
i=1 i=1

be such that for i=1, ---, Kk,
f'|p¥=1f, T|GD, =1.
1 1 1 1

Then our assertion follows. Notice that it follows from (2) that
k
f':( Ubpo U oD; ) (D*, aD®
i=1

is of degree 1.

Let
k
x=z*- Uintp¥, v =s*-intD*.
i=1
Let K be a triangulation of X, and for r =0, 1, -+, 2n - 1, let X, be the union of

9X and all the simplexes of K of dimension at most r. We claim that there exists a
map

fon-1"Xop-1 Y

with £, l 90X =1{'| 8X. Making use of the 1-connectedness of Y, we can first ex-
tend f'|8X toa map f;: X; — Y and then extend £, to a map f,: X, » Y. Since Y
is a 1-connected space with 7,(Y) = Z, and since H3(X, aX; Z) = 0, it follows that
the obstruction cohomology class 'y3(f2) (see, for example, [1; p. 180]) is equal to
0. By Eilenberg’s extension theorem, there exists a map f3: X3 — Y with
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f3| Xy =£f,|X;=£;. Forany r =4, -, 2n - 1, if we already have a map
fr_1: Xe_1 — Y, it follows from the relation 7, _1(Y) = 0 that the obstruction cocycle

¢ (f..1) € Z° (X, 0X; 7.-1(Y)) is equal to 0. Therefore f._] can be extended to a
map f.: X,. — Y. By induction, we have a map f,,,_;, as desired.

Next we claim that f,,,_; can be extended to a map
f": X — 8%,

Whenever ¢ is a (2n)-simplex of K, the restriction f,_) | d0 can be lifted, in
other words, there exists a map Ty: 90 — S%™*! with mly; =fan-1|090. Clearly, I;
can be extended to a map Ty: ¢ — S22 1. Then f; =I,: 0 — S* is an extension of
fon-1 | do. Hence we obtain a desired extension f" of f2,-1, by letting f" | o =15
for every (2n)-simplex o.

Now we let
f: 2% — g*
be the map such that

flUbpr=1, f]x=1"

We assert that f is a homotopy equivalence.

Since f': H{(3X) — H1(9Y) is an isomorphism, we may use the homology se-
quences of (X, X) and (Y, 8Y) to show that

f3: Hy(X3) — Hp(Y)
is an isomorphism. Then
f: Ha(Z¥%) — Hp(8%)

is an isomorphism. Because of this and the ring structure of the cohomology rings
H*(=*) and H*(S¥), one can show that

f: H*(S*) — H*(Z*)
is a ring isomorphism. Hence
f: =% — g*
is a homotopy equivalence [5].

Let a; be the generator of HZ(E*) such that for each 1 =1, >, k, if E; isan
oriented closed 2-cell in £l with 9E; = Gby, then (a1, [E¥]) =q/q;. Let 8,
be the analogous generator of H2%(S*). It is not hard to show that f(8 1) = @y, so that

£(B})) = af.
By our assumption, r; = q/q; mod q; (i = 1, -**, k), or equivalently,

(o}, [2%]) = g™ .
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Similarly,
<ﬁn’ [S*]> = qn—l .
Hence
£( [E*]) = [S*].
In order to complete the proof of Theorem 2, we need to show that f: =¥ - s*
is covered by an equivariant map f: pentl _, g2ntl of degree 1. We know that
k ~ k
f': Ui:l D;" — D* is covered by an equivariant map f": Ui:I GD; — GD. If we can
construct an equivariant map

'i-'n: W-I(X) —_ SZn+1

covering f" and such that f" ] 71(6exX) =T | 7" 19X), then T: 227! — 827*1 gefined
by

HlUop =%, Fri® =T

is an equivariant map covering f. Moreover, it follows from the relation
f([£*]) =[S*] that T is of degree 1. Hence we have only to construct a desired f".

Let
f, =f"|X, (r=0,1, ,2n-1).
It is obvious that fo is covered by an equivariant map fg: w'l(XO) — 7-1(Y). Let ¢

be a 1-simplex of K, and let

jgi o = 7-1(o)

be a cross-section for the circle bundle 7: 7~ 1(o) — ¢. It is easy to construct a
map
Tyt iglo) = 771(Y)

such that T | j;(80) =T, |is(8c) and 7f; j, =£"|o. Therefore we have an equi-
variant map

a7 U(x) — 77(Y)
such that T; | 771(X() =%;, and such that for each 1-simplex ¢ of K, T |js(0) =15 .
Clearly, f; covers f;.

. The obstruction cocycle ¢? for extending }'1 to an equivariant map
fo: 77 1(X,) — 71(Y) covering f, may be given as follows. Let ¢ be a 2-simplex of
K, and let

jg:o — 7o)
be a cross-section. Let

E={(x9¢€o0xa iy tx=ny}.

Then there exists a free action of G on E given by
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g(x, y) = (x, gy),
and we can identify the orbit space E/G with ¢ by setting G(x, y) = x. Let
¢: 00 — E
be defined by
o(x) = (%, T, ().
Then ¢ followed by the projection of E into G is a map of 90 into G whose degree

is ¢2(0).

The obstruction cocycle c¢2 is actually a coboundary. In fact, if S2 is a 2-
sphere in X representing a generator of Hy(X), then « l(SZ) is a 3-sphere on which
G acts freely, and f" S2 is covered by an equivariant map of 7-1(S2) into géntl

Therefore the value of ¢ at 82 is equal to 0, and hence c? is a coboundary.

As in Eilenberg’s extension theorem, we can modify T; so that c? = 0. There-
fore f; can be extended to an equivariant map f,: 71(X) - 7~ 1(Y) covering f; .

For any r = 3, , 2n - 1, if we already have an equzvarlant map
o rlx._)—a 1(Y) covering f._;, we can extend fr 1 to an equivariant map
T 7 1(X,) — 771(Y) covering f., just as we extended T, to f; . Hence we have an
equivariant map

Ton-1: W"I(XZn_l) - 17 (y)

covering f,, ;.

From the construction of £", it is clear that f,,_; can be extended to an equi-
variant map 1" a1 (X) — géntl covering f". Hence the proof is complete.

k
Remavrk. Since f': U1 | Dff — D* is of degree 1 at b* and since f([Z*]) = [S¥],
it follows that f": X — S* is of degree 0 at b*. Therefore we may assume that

f'"(X) € Y.
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