HOMOTOPY EQUIVALENCE AND DIFFERENTIABLE PSEUDO-FREE CIRCLE ACTIONS ON HOMOTOPY SPHERES

Deane Montgomery and C. T. Yang

1. INTRODUCTION

This paper is concerned with differentiable pseudo-free circle actions on homotopy spheres, and the main result shows that each such action on a homotopy (2n+1)-sphere $(n \ge 1)$ may be mapped equivariantly, by a map of degree 1, onto a linear one on the (2n+1)-sphere with exactly one exceptional orbit. For the case n=1, this is an easy consequence of a theorem of R. Jacoby [2], and for the case n=3, it is contained in an earlier paper of Montgomery and Yang, though by a different proof [3]. The result will be used in a forthcoming paper to classify pseudo-free circle actions on spheres.

Except where it is contrarily stated, our study below is assumed to be in the differentiable category.

Let Σ^{2n+1} $(n \geq 1)$ be a homotopy (2n+1)-sphere on which there is a differentiable effective action of the circle group G such that all orbits are 1-dimensional. As usual, an orbit Gb in Σ^{2n+1} is called *exceptional* if the isotropy group G_b at b is not trivial. If there is at least one exceptional orbit and each exceptional orbit is isolated, the action is called *pseudo-free*. Suppose that a differentiable pseudo-free action of the circle group G on a homotopy (2n+1)-sphere $(n \geq 1)$ is given, and let Gb_1 , ..., Gb_k be the exceptional orbits in Σ^{2n+1} . Then for each $i=1,\ldots,k$, the isotropy group G_{b_i} at b_i is a finite cyclic group Zq_i of order q_i for some integer $q_i > 1$, and the integers q_1 , ..., q_k are relatively prime to one another. In the following, we let

$$q = q_1 \cdots q_k$$

which is an integer greater than 1.

Let G consist of complex numbers of absolute value 1, and let S^{2n+1} be the unit sphere in the unitary (n+1)-space \mathbb{C}^{n+1} . Then there exists a linear pseudo-free action of G on S^{2n+1} , given by the equation

$$g(z_0, z_1, \dots, z_n) = (g^q z_0, g z_1, \dots, g z_n)$$
.

Since q>1, there exists exactly one exceptional orbit in S^{2n+1} , namely $\left|z_0\right|=1$. The main theorem of this paper asserts the existence of an equivariant map of Σ^{2n+1} into S^{2n+1} of degree ± 1 . (For the determination of the sign, see Theorem 2.) Notice that such a map induces a homotopy equivalence of the orbit space Σ^{2n+1}/G into the orbit space S^{2n+1}/G .

Michigan Math. J. 20 (1973).

145 »

Received December 21, 1972.

C. T. Yang was supported in part by the National Science Foundation.

Whenever G acts on a space X, we let π be the projection of X onto the orbit space X/G, and for each A \subseteq X, we let

$$A^* = \pi(A);$$

in particular, we let

$$\Sigma^* = \pi(\Sigma^{2n+1}), \quad S^* = \pi(S^{2n+1}).$$

Let D_i be a slice at b_i that is a closed (2n)-disk of center b_i and on which $\mathbb{Z}q_i$ acts orthogonally. Then we can identify D_i with the closed unit disk in the unitary n-space \mathbb{C}^n , so that for some integers $r_{i,1}$, \cdots , $r_{i,n}$ the action of $\mathbb{Z}q_i$ on D_i is given by

$$g(z_1, \dots, z_n) = (g^{r_{i,1}}z_1, \dots, g^{r_{i,n}}z_n).$$

We note that each $r_{i,j}$ may be replaced by any integer congruent to $r_{i,j}$ or $-r_{i,j}$ modulo q_i . Since Gb_i is an isolated exceptional orbit,

$$r_i = r_{i,1} \cdots r_{i,n}$$

is an integer with $(q_i, r_i) = 1$. Therefore

$$\partial D_i^* = \partial D_i / \mathbb{Z} q_i = L^{2n-1}(q_i; r_{i,1}, \dots, r_{i,n})$$

is a (2n - 1)-dimensional lens space and D_i^* is a cone of vertex b_i^* over ∂D_i^* .

In the remainder of the paper, we shall let D_i be oriented as follows. Let \mathbb{C}^ℓ be oriented so that its orientation is represented by the real coordinate system $(z_1 + \bar{z}_1, -\sqrt{-1}(z_1 - \bar{z}_1), \cdots, z_\ell + \bar{z}_\ell, -\sqrt{-1}(z_\ell - \bar{z}_\ell))$, and let

$$D^{2\ell} = \{(\mathbf{z}_1, \dots, \mathbf{z}_{\ell}) \in \mathbb{C}^{\ell} | |\mathbf{z}_1|^2 + \dots + |\mathbf{z}_{\ell}|^2 \leq 1\},$$

$$S^{2\ell-1} = \partial D^{2\ell}$$

be oriented accordingly. Then $G = \partial D^2$ is oriented. Therefore we may let D_i be so oriented that if $G \times D_i$ has the product orientation, then the local imbedding $f: G \times D_i \to \Sigma^{2n+1}$ given by f(g, x) = gx is orientation-preserving. Now we require the identification of D_i with D^{2n} to be such that the orientation on D_i coincides with that on D^{2n} . Then the integer r_i , up to a congruence modulo q_i , is uniquely determined.

An important fact used in the construction of a desired equivariant map of Σ^{2n+1} into S^{2n+1} is the relation between q_1 , ..., q_k and r_1 , ..., r_k given below.

THEOREM 1. Either

(I)
$$r_i \equiv q/q_i \mod q_i$$
 for all $i = 1, \dots, k$,

or

(II)
$$r_i \equiv -q/q_i \mod q_i$$
 for all $i = 1, \dots, k$.

With Theorem 1, we obtain the following precise formulation of our main result.

THEOREM 2. Suppose that we have an action of G on Σ^{2n+1} and an action of G on S^{2n+1} as described above. Then there exists an equivariant map of Σ^{2n+1} into S^{2n+1} that is of degree 1 or -1 according as (I) or (II) holds.

2. PROOF OF THEOREM 1

Assume first that n is odd, say

$$n = 2m + 1,$$

where m is a positive integer. Then $\Sigma^{2n+1} = \Sigma^{4m+3}$ is a homotopy (4m+3)-sphere. For the case m = 1, our assertion is an easy consequence of Jacoby's theorem [2]. Hence we shall assume m > 1.

Let G act on S^{2m+1} so that

$$g(z_0, z_1, \dots, z_m) = (g^{q_i}z_0, gz_1, \dots, gz_m).$$

Then there is exactly one exceptional orbit in S^{2m+1} , namely Gb with $b=(1,\ 0,\ \cdots,\ 0)$. Let D be a slice that is a closed (2m)-disk of center b and on which $\mathbb{Z}q_i$ acts orthogonally. As we have seen above, we may identify D with D^{2m} so that

$$\partial D^* = D/\mathbb{Z}q_i = L^{2m-1}(q_i; 1, \dots, 1)$$

is a (2m - 1)-dimensional lens space. Then $D^{\boldsymbol *}$ is a cone of vertex $b^{\boldsymbol *}$ over $\partial D^{\boldsymbol *}$ and

$$A^* = (S^{2m+1})^* - int D^*$$

is a compact (2m)-manifold of boundary ∂D^* .

Let $\mathbb{Z}q_i$ act on S^{4m+1} so that

$$g(z_1, \dots, z_{2m}, z_{2m+1}) = (gz_1, \dots, gz_{2m}, g^{r_i}z_{2m+1}).$$

Then

$$S^{4m+1}/\mathbb{Z}q_i = L^{4m+1}(q_i; 1, \dots, 1, r_i)$$

is a (4m + 1)-dimensional lens space, and there exists a homotopy equivalence

$$\phi: S^{4m+1}/\mathbb{Z}q_i \to \partial D_i^*$$

induced by a $\mathbb{Z}q_i$ -equivariant map of S^{4m+1} into ∂D_i (or equivalently, mapping the preferred generator of $\pi_1(S^{4m+1}/\mathbb{Z}q_i)$ into that of $\pi_1(\partial D_i)$). Since ∂D may be naturally identified with the subset of S^{4m+1} defined by $z_{m+1} = \cdots = z_{2m+1} = 0$, and since

$$\dim \partial D_i^* = 4m + 1 = 2\dim \partial D^* + 3,$$

 $\phi \mid \partial D^*$ is homotopic to an imbedding

$$\psi: \partial D^* \rightarrow \partial D_i^*$$

that is covered by a $\mathbb{Z}q_{\,i}\text{-equivariant imbedding of }\partial D$ into $\partial D_{\,i}\,.$ Therefore

$$\psi$$
: $\pi_1(\partial D^*) \rightarrow \pi_1(\partial D_i^*)$

is an isomorphism preserving the preferred generator, and

$$\psi$$
: H_j(∂D^*) \rightarrow H_j(∂D_i^*)

is an isomorphism for j < 2m - 1 and is a surjective homomorphism for j = 2m - 1.

Next we assert that ψ can be extended to an imbedding

$$\bar{\psi}$$
: $(S^{2m+1})^* \rightarrow \Sigma^*$

such that

- (i) $\bar{\psi}$ maps D^* into D_i^* and $\bar{\psi}$: $D^* \to D_i^*$ is the natural extension of ψ ,
- (ii) $\bar{\psi}(A^*) \subset \Sigma^*$ (int $D_i^* \cup \{b_1^*, \dots, b_k^*\}$),
- (iii) $ar{\psi}$ is covered by an equivariant imbedding

$$\tilde{\psi}$$
: $S^{2m+1} \to \Sigma^{4m+3}$.

We note that since the imbedding $\bar{\psi}$ to be constructed later is differentiable everywhere except at b*, the equivariant imbedding $\tilde{\psi}$ is expected to be differentiable everywhere except at points of Gb.

Let ψ ': $\partial D \to \partial D_i$ be a $\mathbb{Z}_{q,i}$ -equivariant imbedding covering ψ . Then ψ ' can be uniquely extended to a G-equivariant imbedding

$$\widetilde{\psi}_1$$
: GD \rightarrow GD_i

that maps each radius of D proportionally onto a radius of D $_{i}$. Clearly, $\tilde{\psi}_{1}$ induces an imbedding

$$\bar{\psi}_1: D^* \rightarrow D_i^*$$

that is an extension of ψ . As we noted above, $\widetilde{\psi}_1$ is differentiable at each point of GD - Gb, but in general it is not differentiable at each point of Gb.

If we can extend ψ to an imbedding

$$\bar{\psi}_2$$
: $A^* \to \Sigma^*$ - (int $D_i^* \cup \{b_1^*, \dots, b_k^*\}$)

so that $\bar{\psi}_2(A^*)$ intersects ∂D_i^* transversally at $\psi(\partial D^*)$ and

$$\bar{\psi}_2$$
: $H_i(A^*) \rightarrow H_i(\Sigma^* - (int D_i^* \cup \{b_1^*, \dots, b_k^*\}))$

is an isomorphism for $j \leq 2m-2$, then we can use $\bar{\psi}_1$ and $\bar{\psi}_2$ to obtain a desired $\bar{\psi}$. In fact, there is an imbedding $\bar{\psi}$: $(S^{2m+1})^* \to \Sigma^*$ such that

$$\bar{\psi} \mid D^* = \bar{\psi}_1, \quad \bar{\psi} \mid A^* = \bar{\psi}_2.$$

For this $\bar{\psi}$, there may exist a corner on $\bar{\psi}((S^{2m+1})^*)$ along $\psi(\partial D^*)$; but we can round the corner by modifying $\bar{\psi}_2$. Since

$$\bar{\psi}_2$$
: $H_i(A^*) \rightarrow H_i(\Sigma^* - (int D_i^* \cup \{b_1^*, \dots, b_k^*\}))$

is an isomorphism for j \leq 2m - 2, $\bar{\psi}_2$ is covered by an equivariant imbedding

$$ilde{\psi}_2$$
: S $^{2m+1}$ - int GD \to Σ^{4m+3} - (int GD $_{\mathbf{i}}$ \cup Gb $_{\mathbf{l}}$ \cup \cdots \cup Gb $_{\mathbf{k}}$),

and $\tilde{\psi}_2$ can be constructed so that by combining $\tilde{\psi}_1$ and $\tilde{\psi}_2$ we obtain an equivariant imbedding $\tilde{\psi}$: $S^{2m+1} \to \Sigma^{4m+3}$ covering $\bar{\psi}$. Hence we have only to construct $\bar{\psi}_2$ in order to complete the construction of $\bar{\psi}$.

For $\ell = 1$, ..., m, let σ_{ℓ} be the intersection of $A^* - \partial D^*$ with the image of

$$\{(z_0, \dots, z_m) \in S^{2m+1} | z_{\ell} \neq 0, z_{\ell+1} = \dots = z_m = 0\},$$

and let

$$L_{\ell} = \tilde{\sigma}_{\ell} \cap \partial D^*$$
.

It can be seen that for $\ell=1, \cdots$, m the intersection σ_{ℓ} is an open (2 ℓ)-cell, L_{ℓ} is the (2 ℓ -1)-dimensional lens space $L^{2\ell-1}(q_i; 1, \cdots, 1)$, and

$$\tilde{\sigma}_{\ell} = \sigma_1 \cup \cdots \cup \sigma_{\ell} \cup \mathbf{L}_{\ell}$$
.

Moreover,

$$L_m = \partial D^*, \quad \bar{\sigma}_m = A^*.$$

From the construction of ψ , it is easy to see that $\psi \mid L_1$ can be extended to an imbedding

$$\lambda_1: \bar{\sigma}_1 \rightarrow \Sigma^*$$
 - (int $D_i^* \cup \{b_1^*, \dots, b_k^*\}$)

such that $\lambda_1(\bar{\sigma}_1)$ intersects ∂D_i^* transversally at L_1 and $(\lambda_1(\bar{\sigma}_1), \lambda_1(L_1))$ represents a generator of

$$H_2(\Sigma^* \text{ - (int } D_i^* \cup \{b_1^*, \ \cdots, \ b_k^*\}), \ \partial D_i^*) \,.$$

Since

$$\pi_{j}(\Sigma^{*} - (\text{int } D_{i}^{*} \cup \{b_{1}^{*}, \dots, b_{k}^{*}\})) = 0$$
 (j = 3, \dots, 2m - 1),

we can construct imbeddings

$$\lambda_{\ell}: \bar{\sigma}_{\ell} \to \Sigma^* - (\text{int } D_i^* \cup \{b_1^*, \dots, b_k^*\})$$
 $(\ell = 2, \dots, m)$

such that for each \(\ell, \)

$$\lambda_{\ell} \mid \mathbf{L}_{\ell} = \psi \mid \mathbf{L}_{\ell}, \quad \lambda_{\ell} \mid \bar{\sigma}_{\ell-1} = \lambda_{\ell-1},$$

and $\lambda_\ell(\bar\sigma_\ell)$ intersects ∂D_i^* transversally at L_ℓ . From the construction of λ_l , we know that

$$\lambda_m \colon H_2(A^*) \to H_2(\Sigma^* - (int D_i^* \cup \{b_1^*, \dots, b_k^*\}))$$

is an isomorphism. Therefore we infer from the ring structure of $H^*(A^*)$ and of $H^*(\Sigma^*$ - (int $D_i^* \cup \{b_1^*,\ \cdots,\ b_k^*\}))$ that

$$\lambda_m: H_i(A^*) \to H_i(\Sigma^* - (int D_i^* - \{b_1^*, \dots, b_k^*\}))$$

is an isomorphism for $j \leq 2m$ - 2. Hence λ_m $% \bar{\psi}_{2} = 1$ is a desired $\bar{\psi}_{2} = 1$

Let N be a closed tubular neighborhood of $\bar{\psi}(A^*)$ (= $\bar{\psi}_2(A^*)$) in Σ^* - (int $D_i^* \cup \{b_i^*, \cdots, b_k^*\}$) such that $N \cap \partial D_i^*$ is a closed tubular neighborhood of $\bar{\psi}(\partial D^*)$ in ∂D_i^* . Then

$$X^* = D_i^* \cup N,$$

with the corner on ∂X^* along $\partial (N \cap D_i^*)$ rounded, is a compact (4m+2)-manifold in Σ^* containing a single singularity b_i^* and having $\bar{\psi}((S^{2m+1})^*)$ as a deformation retract. Therefore

$$X = \pi^{-1}(X^*)$$

is an invariant compact (4m + 3)-manifold in Σ^{4m+3} having

$$\widetilde{\psi}(S^{2m+1}) = \pi^{-1}(\overline{\psi}((S^{2m+1})^*))$$

as a deformation retract, and hence it is diffeomorphic to $\,S^{2\,m+1}\times D^{2\,m+2}\,.$

Let

$$Y^* = \Sigma^* - int X^*, \quad Y = \pi^{-1}(Y^*).$$

Then Y is diffeomorphic to $D^{2m+2} \times S^{2m+1}$ and

$$X \cup Y = \Sigma^{4m+3}$$
.

As we said earlier, ∂D_i is regarded as the oriented (4m+1)-sphere S^{4m+1} such that the action of $\mathbf{Z}q_i$ on ∂D_i is given by

$$g(z_1, \dots, z_{2m+1}) = (g^{r_{i,1}} z_1, \dots, g^{r_{i,2m+1}} z_{2m+1}).$$

Similarly, ∂D is regarded as the oriented (2m - 1)-sphere S^{2m-l} such that the action of ${\bf Z}q_i$ on S^{2m-l} is given by

$$g(z_1, \dots, z_m) = (gz_1, \dots, gz_m).$$

Therefore, if $\mathbb{Z}q_i$ acts on the oriented (2m + 1)-sphere S^{2m+1} so that

$$g(z_1, \dots, z_m, z_{m+1}) = (gz_1, \dots, gz_m, g^{r_i}z_{m+1})$$

with $r_i = r_{i,1} \cdots r_{i,2m+1}$, then there exists a $\mathbb{Z}q_i$ -equivariant map

$$\xi: S^{2m+1} \to \partial D_i$$

such that $\xi(S^{2m+1})^* \subset \partial D_i^*$ - N and the linking number of the integral singular cycles $\xi(S^{2m+1})$ and $\widetilde{\psi}(\partial D)$ in ∂D_i is 1. Let D_i' be a slice at b_i that is a closed (4m+2)-disk with $D_i \subset \text{int } D_i'$ and on which $\mathbb{Z}q_i$ acts orthogonally. Then $D_i'^*$ - int D_i^* is a cylinder over ∂D_i^* and

$$\dim (D_i^{'*} - \text{int } D_i^{*}) = 2 \dim S^{2m+1}/\mathbb{Z}q_i \ge 6$$
.

Using Whitney's technique, we can construct an imbedding

$$\eta^*: S^{2m+1}/\mathbb{Z}q_i \rightarrow D_i^{'*} - int D_i^*$$

such that $\eta^*(S^{2m+1}/\mathbb{Z}q_i) \subset (D_i^{**} - D_i^*)$ - N, and such that η^* and the induced map

$$\xi^*: S^{2m+1}/\mathbb{Z}q_i \to \partial D_i^*$$

are homotopic as maps of $S^{2m+1}/\mathbb{Z}q_i$ into $(D_i^{!*}$ - int $D_i^{*})$ - N. Then we have a $\mathbb{Z}q_i$ - equivariant imbedding

$$\eta: S^{2m+1} \to Y$$

covering η^* . Since the linking number of the integral singular cycles $\xi(S^{2m+1})$ and $\widetilde{\psi}(\partial D)$ in ∂D_i is 1 and $\xi(S^{2m+1})$ and $\eta(S^{2m+1})$ are homologous in Y, it follows that the linking number of $\eta(S^{2m+1})$ and $\widetilde{\psi}(S^{2m+1})$ in Σ^{4m+3} is 1 so that the sphere

$$S = \eta(S^{2m+1})$$

is an oriented $\mathbb{Z}q_i$ -invariant (2m+1)-sphere in Y with the property that the inclusion map of S into Y induces an isomorphism of $H_*(S)$ onto $H_*(Y)$. Hence S is a deformation retract of Y.

Let S_1 be an oriented G-invariant (2m+1)-sphere in Y that may be identified with S^{2m+1} , and such that the action of G on S_1 is given by

$$g(z_1, \dots, z_{m+1}) = (gz_1, \dots, gz_{m+1}).$$

Then the linking number of S_1 with $\tilde{\mathcal{V}}(S^{2m+1})$ can be determined as follows. Let α_1 be the generator of $H^2(\Sigma^*)$ such that, if E_i is an oriented closed 2-cell in Σ^{4m+3} with $\partial E_i = Gb_i$ and $[E_i^*]$ is the element of $H_2(\Sigma^*)$ containing the 2-cycle E_i^* , then

$$\langle \alpha_1, [E_i^*] \rangle = q/q_i$$
.

Then it can be seen that for $\ell=2, \dots, 2m+1$ there exists a generator of $H^{2\ell}(\Sigma^*)$ such that

$$\alpha_{\ell-1} \cup \alpha_1 = q\alpha_{\ell}$$
.

Let $[\Sigma^*]$ be the generator of $H_{4m+2}(\Sigma^*)$ such that the image of $q[\Sigma^*]$ in $H_{4m+2}(\Sigma^*, \Sigma^*$ - int D_i^*) is represented by $(D_i^*, \partial D_i^*)$. Then

$$\langle \alpha_{2m+1}, [\Sigma^*] \rangle = 1 \text{ or } -1.$$

Now we make the following assertion.

LEMMA 1. The linking number of S_1 with $\widetilde{\psi}(S^{2m+1})$ in Σ^{4m+3} is

$$(q/q_i) \langle \alpha_{2m+1}, [\Sigma^*] \rangle$$
.

It can be seen that

$$\langle \alpha_{\rm m}, [S_1^*] \rangle = q, \quad \langle \alpha_{\rm m}, [\widetilde{\psi}(S^{2m+1})^*] \rangle = q/q_i.$$

Let E be an oriented, closed (2m+2)-cell immersed in Σ^{4m+3} such that $\partial E = S_1$. Then E* represents an element $[E^*]$ of $H_{2m+2}(\Sigma^*)$, and

$$\langle \alpha_{m+1}, [E^*] \rangle = q$$
.

Since $\alpha_{m+1} \cup \alpha_m = q\alpha_{2m+1}$, it follows that

$$[\mathbf{E}^*] \cdot [\widetilde{\psi}(\mathbf{S}^{2m+1})^*] = (\mathbf{q}/\mathbf{q_i}) \left\langle \alpha_{2m+1}, [\Sigma^*] \right\rangle;$$

this means that the intersection number of E and $\mathcal{U}(\mathbf{S}^{2m+1})$ is

$$(q/q_i) \langle \alpha_{2m+1}, [\Sigma^*] \rangle$$
.

Hence our assertion follows.

LEMMA 2. There is a $\mathbb{Z}q_i$ -equivariant map of S_1 into S of degree $(q/q_i) \langle \alpha_{2m+1}, [\Sigma^*] \rangle$.

Since $\mathbb{Z}q_i$ acts freely on Y and since S is a $\mathbb{Z}q_i$ -invariant deformation retract of Y, it follows that the inclusion map of $S/\mathbb{Z}q_i$ into $Y/\mathbb{Z}q_i$ is a homotopy equivalence (see [4; p. 97]). Let

$$f: Y/\mathbb{Z}q_i \to S/\mathbb{Z}q_i$$

be the inverse homotopy equivalence. Then f is covered by a Zqi-equivariant map

$$\tilde{f}: Y \rightarrow S$$

that is also a homotopy equivalence. Since the linking number of S with $\widetilde{\psi}(S^{2m+1})$ is 1 and that of S_1 with $\widetilde{\psi}(S^{2m+1})$ is $(q/q_i) \left<\alpha_{2m+1}, \left[\Sigma^*\right]\right>$, it follows that

$$\tilde{f} \mid S_1: S_1 \rightarrow S$$

is a $\mathbb{Z}q_i$ -equivariant map of degree $(q/q_i)\left<\alpha_{2m+1},\left[\Sigma^*\right]\right>$. This proves Lemma 2.

We know that

$$S/\mathbb{Z}q_i = L^{2m+1}(q_i; 1, \dots, 1, r_i), \quad S_1/\mathbb{Z}q_i = L^{2m+1}(q_i; 1, \dots, 1, 1).$$

Hence Lemma 2 implies that

$$r_i \equiv (q/q_i) \langle \alpha_{2m+1}, [\Sigma^*] \rangle \mod q_i$$

(see, for example, [1; p. 95]). This completes the proof of Theorem 1 for the case where n is odd.

Suppose next that n is even, say n = 2m, where m is a positive integer. Let

$$\Sigma^{4m+3} = \Sigma^{4m+1} * S^{1};$$

that is, let Σ^{4m+3} be the join of $\Sigma^{4m+1} (= \Sigma^{2n+1})$ and S^1 . Then Σ^{4m+3} is obtained from $\Sigma^{4m+1} \times D^2$ by identifying (x, y) with (x', y) for any $x, x' \in \Sigma^{4m+1}$ and $y \in \partial D^2$. Moreover, Σ^{4m+3} is a topological (4m+3)-sphere in which $\Sigma^{4m+1} \times$ int D^2 possesses a natural differentiable structure and the set

$$C = \Sigma^{4m+3} - (\Sigma^{4m+1} \times \text{int } D^2)$$

is a circle. Let G act on $\Sigma^{4m+1} \times D^2$ so that for each $g \in G$ and all $(x, y) \in \Sigma^{4m+1} \times D^2$,

$$g(x, y) = (gx, gy)$$
.

Then the action induces a pseudo-free action of G on Σ^{4m+3} with exceptional orbits Gb_1 , \cdots , Gb_k , and the action is differentiable on $\Sigma^{4m+1} \times$ int D^2 . Therefore Σ^{4m+3}/G is a topological closed (4m+2)-manifold with singularities b_1^* , \cdots , b_k^* , and there exists a natural differentiable structure on

$$\Sigma^{4m+3}/G - \{b_1^*, \dots, b_k^*, C^*\}$$
.

Let us imbed Σ^{4m+1} into Σ^{4m+3} by identifying each $x \in \Sigma^{4m+1}$ with $(x,0) \in \Sigma^{4m+1} \times int \ D^2 \subset \Sigma^{4m+3}$, and study the pseudo-free circle action on Σ^{4m+3} instead. It can be seen that at each b_i , there is a slice D_i' in Σ^{4m+3} that may be identified with D^{4m+2} in such a way that $D_i = D_i' \cap \Sigma^{4m+1}$ is given by

$$z_{2m+1} = 0$$

and the action of $\mathbf{Z}q_i$ on $D_i^{'}$ is given by

$$g(z_1, \dots, z_{2m}, z_{2m+1}) = (g^{r_{i,1}} z_1, \dots, g^{r_{i,2m}} z_{2m}, g z_{2m+1}).$$

Without much difficulty one can see that our previous proof applies to this somewhat more general pseudo-free action of G on Σ^{4m+3} . It may be helpful to note that here Σ^{4m+3}/G is locally Euclidean at C*; but in general there is no natural differentiable structure in any neighborhood of C*. Even so, our previous proof is not affected by this situation, because the single orbit C in Σ^{4m+3} does not interfere with our argument anywhere in the proof. Hence

$$r_i = r_{i,1} \cdots r_{i,2m} \equiv (q/q_i) \langle \alpha_{2m+1}, [\Sigma^{4m+3}/G] \rangle \mod q_i$$

or equivalently,

$$r_i \equiv (q/q_i) \langle \alpha_{2m}, [\Sigma^*] \rangle \mod q_i$$

as was to be proved. This completes the proof of Theorem 1.

3. PROOF OF THEOREM 2

Suppose that we have a differentiable, pseudo-free action of the circle group G on a homotopy (2n+1)-sphere Σ^{2n+1} and a linear pseudo-free action of G on S^{2n+1} as described in the Introduction. We recall that there are k exceptional orbits Gb_1 , \cdots , Gb_k in Σ^{2n+1} and that for $i=1, \cdots, k$, $G_{b_i}=\mathbb{Z}q_i$ and there is a slice D_i at b_i which is to be identified with D^{2n} so that the action of $\mathbb{Z}q_i$ on D_i is given by

$$g(z_1, \dots, z_n) = (g^{r_{i,1}}z_1, \dots, g^{r_{i,n}}z_n).$$

Also, there is a single exceptional orbit Gb in S^{2n+1} with $G_b = \mathbb{Z}q$, where $q = q_1 \cdots q_k$, and there is a slice D at b, which is to be identified with D^{2n} so that the action of $\mathbb{Z}q$ on D is given by

$$g(z_1, \dots, z_n) = (gz_1, \dots, gz_n).$$

As seen in the theorem, if we orient $\,D_1\,,\,\cdots,\,D_k\,$ properly, then there is a relation between

$$r_i = r_{i,1} \cdots r_{i,n}$$
 (i = 1, ..., k)

and q_1 , ..., q_k . It can be assumed that the relation is

(1)
$$r_i \equiv q/q_i \mod q_i \quad (i = 1, \dots, k),$$

because we can reduce the other case to this case simply by reversing the orientation of Σ^{2n+1} .

In the case n=1, the action of G on Σ^{2n+1} is linear [2], so that it is not hard to construct an equivariant map of Σ^{2n+1} into S^{2n+1} of degree 1. Hence we shall assume that n > 1.

Let the slices D_1 , ..., D_k be constructed so that D_1^* , ..., D_k^* are mutually disjoint. We first assert that there exists a map

$$f': \bigcup_{i=1}^k D_i^* \to D^*$$

such that $f'(\bigcup_{i=1}^k \partial D_i^*) \subset \partial D^*$, $f':(\bigcup_{i=1}^k D_i^*,\bigcup_{i=1}^k \partial D_i^*) \to (D^*,\partial D^*)$ is of degree 1, and f' is covered by an equivariant map

$$\tilde{f}': \bigcup_{i=1}^k GD_i \to GD.$$

Since $q_1,\ \cdots,\ q_k$ are relatively prime to one another, there exist integers $s_1,\ \cdots,\ s_k$ such that

(2)
$$\sum_{i=1}^{k} s_i(q/q_i) = 1.$$

Therefore, for $i = 1, \dots, k$, the integer $1 - s_i(q/q_i)$ is divisible by q_i , so that for some integer t_i ,

(3)
$$s_i(q/q_i) + t_i q_i = 1$$
.

Since

$$\partial D_i^* = L^{2n-1}(q_i; r_{i,1}, \dots, r_{i,n})$$

and

$$\partial D/\mathbb{Z}q_{i} = L^{2n-1}(q_{i}; 1, \dots, 1),$$

it follows from (1) and (3) that there exists a map

$$\phi_{i}: \partial D_{i}^{*} \rightarrow \partial D/\mathbb{Z}q_{i}$$

of degree s_i that is covered by a $\mathbb{Z}q_i$ -equivariant map

$$\widetilde{\phi}_{\mathbf{i}} : \partial \mathbf{D}_{\mathbf{i}} \to \partial \mathbf{D}$$
.

Let

$$\widetilde{\phi}_{\mathbf{i}}' \colon \mathbf{D}_{\mathbf{i}} \to \mathbf{D}$$

be a $\mathbb{Z}q_i$ -equivariant extension of $\widetilde{\phi}_i$ that maps each radius of D_i into a radius of D. Then $\widetilde{\phi}_i'$ induces an extension of ϕ_i :

$$\phi_i': D_i^* \to D/\mathbb{Z}q_i$$
.

Let

$$\psi_i$$
: D/ $\mathbb{Z}q_i \rightarrow D^* = D/\mathbb{Z}q$

be the projection. Then

$$f'_i = \psi_i \phi'_i : D_i^* \rightarrow D^*$$

is a map such that $f_i'(\partial D_i^*) \subset \partial D^*$, f_i' : $(D_i^*, \partial D_i^*) \to (D^*, \partial D^*)$ is of degree $s_i(q/q_i)$, and f_i' is covered by an equivariant map

$$\tilde{f}'_{i}: GD_{i} \rightarrow GD$$

with $\tilde{f}'_i \mid D_i = \tilde{\phi}'_i$. Let

$$f': \bigcup_{i=1}^k D_i^* \to D^*, \quad \widetilde{f}': \bigcup_{i=1}^k GD_i \to GD$$

be such that for $i = 1, \dots, k$,

$$f' \mid D_i^* = f_i', \quad \widetilde{f}' \mid GD_i = \widetilde{f}_i'.$$

Then our assertion follows. Notice that it follows from (2) that

$$f': \left(\bigcup_{i=1}^k D_i^*, \bigcup_{i=1}^k \partial D_i^*\right) \to (D^*, \partial D^*)$$

is of degree 1.

Let

$$X = \Sigma^* - \bigcup_{i=1}^k \text{ int } D_i^*, \quad Y = S^* - \text{ int } D^*.$$

Let K be a triangulation of X, and for $r = 0, 1, \dots, 2n - 1$, let X_r be the union of ∂X and all the simplexes of K of dimension at most r. We claim that there exists a map

$$f_{2n-1}: X_{2n-1} \rightarrow Y$$

with $f_{2n-1} \mid \partial X = f' \mid \partial X$. Making use of the 1-connectedness of Y, we can first extend $f' \mid \partial X$ to a map $f_1: X_1 \to Y$ and then extend f_1 to a map $f_2: X_2 \to Y$. Since Y is a 1-connected space with $\pi_2(Y) \cong \mathbb{Z}$, and since $H^3(X, \partial X; \mathbb{Z}) = 0$, it follows that the obstruction cohomology class $\gamma^3(f_2)$ (see, for example, [1; p. 180]) is equal to 0. By Eilenberg's extension theorem, there exists a map $f_3: X_3 \to Y$ with

 $f_3 \mid X_1 = f_2 \mid X_1 = f_1$. For any r = 4, ..., 2n - 1, if we already have a map f_{r-1} : $X_{r-1} \to Y$, it follows from the relation $\pi_{r-1}(Y) = 0$ that the obstruction cocycle $c^r(f_{r-1}) \in Z^r(X, \partial X; \pi_{r-1}(Y))$ is equal to 0. Therefore f_{r-1} can be extended to a map f_r : $X_r \to Y$. By induction, we have a map f_{2n-1} , as desired.

Next we claim that f_{2n-1} can be extended to a map

$$f'': X \rightarrow S^*$$
.

Whenever σ is a (2n)-simplex of K, the restriction $f_{2n-1} \mid \partial \sigma$ can be lifted, in other words, there exists a map $\widetilde{f}_{\sigma} \colon \partial \sigma \to S^{2n+1}$ with $\pi \widetilde{f}_{\sigma} = f_{2n-1} \mid \partial \sigma$. Clearly, \widetilde{f}_{σ} can be extended to a map $\widetilde{f}_{\sigma}^{"} \colon \sigma \to S^{2n+1}$. Then $f_{\sigma}^{"} = \pi \widetilde{f}_{\sigma}^{"} \colon \sigma \to S^{*}$ is an extension of $f_{2n-1} \mid \partial \sigma$. Hence we obtain a desired extension f of f_{2n-1} , by letting f $\sigma = f_{\sigma}^{"}$ for every (2n)-simplex σ .

Now we let

$$f: \Sigma^* \to S^*$$

be the map such that

$$f \mid \bigcup_{i=1}^{k} D_i^* = f', \quad f \mid X = f''.$$

We assert that f is a homotopy equivalence.

Since $f': H_1(\partial X) \to H_1(\partial Y)$ is an isomorphism, we may use the homology sequences of $(X, \partial X)$ and $(Y, \partial Y)$ to show that

$$f_3: H_2(X_3) \rightarrow H_2(Y)$$

is an isomorphism. Then

$$f: H_2(\Sigma^*) \rightarrow H_2(S^*)$$

is an isomorphism. Because of this and the ring structure of the cohomology rings $H^*(\Sigma^*)$ and $H^*(S^*)$, one can show that

$$f: H^*(S^*) \to H^*(\Sigma^*)$$

is a ring isomorphism. Hence

$$f: \Sigma^* \to S^*$$

is a homotopy equivalence [5].

Let α_1 be the generator of $H^2(\Sigma^*)$ such that for each $i=1,\cdots,k$, if E_i is an oriented closed 2-cell in Σ^{2n+1} with $\partial E_i = Gb_i$, then $\left<\alpha_1, \left[E_i^*\right]\right> = q/q_i$. Let β_1 be the analogous generator of $H^2(S^*)$. It is not hard to show that $f(\beta_1) = \alpha_1$, so that

$$f(\beta_1^n) = \alpha_1^n.$$

By our assumption, $r_i \equiv q/q_i \mod q_i$ (i = 1, ..., k), or equivalently,

$$\langle \alpha_1^n, [\Sigma^*] \rangle = q^{n-1}.$$

Similarly,

$$\langle \beta_1^n, [S^*] \rangle = q^{n-1}.$$

Hence

$$f([\Sigma^*]) = [S^*].$$

In order to complete the proof of Theorem 2, we need to show that $f: \Sigma^* \to S^*$ is covered by an equivariant map $\tilde{f}: \Sigma^{2n+1} \to S^{2n+1}$ of degree 1. We know that $f': \bigcup_{i=1}^k D_i^* \to D^*$ is covered by an equivariant map $\tilde{f}': \bigcup_{i=1}^k GD_i \to GD$. If we can construct an equivariant map

$$\tilde{f}'': \pi^{-1}(X) \to S^{2n+1}$$

covering f'' and such that $\tilde{f}'' \mid \pi^{-1}(\partial X) = \tilde{f}' \mid \pi^{-1}(\partial X)$, then $\tilde{f}: \Sigma^{2n+1} \to S^{2n+1}$ defined by

$$\widetilde{f} \mid \bigcup_{i=1}^{k} GD_{i} = \widetilde{f}', \quad \widetilde{f} \mid \pi^{-1}(X) = \widetilde{f}''$$

is an equivariant map covering f. Moreover, it follows from the relation $f([\Sigma^*]) = [S^*]$ that \tilde{f} is of degree 1. Hence we have only to construct a desired \tilde{f} ".

Let

$$f_r = f'' \mid X_r$$
 $(r = 0, 1, \dots, 2n - 1)$.

It is obvious that f_0 is covered by an equivariant map \tilde{f}_0 : $\pi^{-1}(X_0) \to \pi^{-1}(Y)$. Let σ be a 1-simplex of K, and let

$$j_{\sigma}: \sigma \rightarrow \pi^{-1}(\sigma)$$

be a cross-section for the circle bundle π : $\pi^{-1}(\sigma) \to \sigma$. It is easy to construct a map

$$\tilde{f}_{\sigma} : j_{\sigma}(\sigma) \rightarrow \pi^{-1}(Y)$$

such that $\tilde{\mathbf{f}}_{\sigma} \mid \mathbf{j}_{\sigma}(\partial \sigma) = \tilde{\mathbf{f}}_{0} \mid \mathbf{j}_{\sigma}(\partial \sigma)$ and $\pi \, \mathbf{f}_{\sigma} \, \mathbf{j}_{\sigma} = \mathbf{f}'' \mid \sigma$. Therefore we have an equivariant map

$$\tilde{f}_1: \pi^{-1}(X_1) \to \pi^{-1}(Y)$$

such that $\tilde{f}_1 \mid \pi^{-1}(X_0) = \tilde{f}_0$, and such that for each 1-simplex σ of K, $\tilde{f}_1 \mid j_{\sigma}(\sigma) = \tilde{f}_{\sigma}$. Clearly, \tilde{f}_1 covers f_1 .

The obstruction cocycle c^2 for extending \tilde{f}_1 to an equivariant map \tilde{f}_2 : $\pi^{-1}(X_2) \to \pi^{-1}(Y)$ covering f_2 may be given as follows. Let σ be a 2-simplex of K, and let

$$j_{\sigma}: \sigma \rightarrow \pi^{-1}(\sigma)$$

be a cross-section. Let

$$\mathbf{E} = \left\{ (\mathbf{x}, \ \mathbf{y}) \in \ \sigma \times \pi^{-1}(\mathbf{y}) \mid \ \mathbf{f}(\mathbf{x}) = \pi(\mathbf{y}) \right\}.$$

Then there exists a free action of G on E given by

$$g(x, y) = (x, gy),$$

and we can identify the orbit space E/G with σ by setting G(x, y) = x. Let

$$\phi: \partial \sigma \rightarrow \mathbf{E}$$

be defined by

$$\phi(x) = (x, \tilde{f}_1 j_\sigma(x)).$$

Then ϕ followed by the projection of E into G is a map of $\partial \sigma$ into G whose degree is $c^2(\sigma)$.

The obstruction cocycle c^2 is actually a coboundary. In fact, if S^2 is a 2-sphere in X representing a generator of $H_2(X)$, then $\pi^{-1}(S^2)$ is a 3-sphere on which G acts freely, and $f'' \mid S^2$ is covered by an equivariant map of $\pi^{-1}(S^2)$ into S^{2n+1} . Therefore the value of c^2 at S^2 is equal to 0, and hence c^2 is a coboundary.

As in Eilenberg's extension theorem, we can modify \tilde{f}_1 so that $c^2 = 0$. Therefore \tilde{f}_1 can be extended to an equivariant map \tilde{f}_2 : $\pi^{-1}(X) \to \pi^{-1}(Y)$ covering f_2 .

For any $r=3, \cdots, 2n-1$, if we already have an equivariant map $\widetilde{f}_{r-1}\colon \pi^{-1}(X_{r-1})\to \pi^{-1}(Y)$ covering f_{r-1} , we can extend \widetilde{f}_{r-1} to an equivariant map $\widetilde{f}_r\colon \pi^{-1}(X_r)\to \pi^{-1}(Y)$ covering f_r , just as we extended \widetilde{f}_0 to \widetilde{f}_1 . Hence we have an equivariant map

$$\tilde{f}_{2n-1}: \pi^{-1}(X_{2n-1}) \to \pi^{-1}(Y)$$

covering f_{2n-1}.

From the construction of f", it is clear that \tilde{f}_{2n-1} can be extended to an equivariant map \tilde{f} ": $\pi^{-1}(X) \to S^{2n+1}$ covering f". Hence the proof is complete.

Remark. Since $f': \bigcup_{i=1}^k D_i^* \to D^*$ is of degree 1 at b^* and since $f([\Sigma^*]) = [S^*]$, it follows that $f'': X \to S^*$ is of degree 0 at b^* . Therefore we may assume that

$$f''(X) \subseteq Y$$
.

REFERENCES

- 1. S.-T. Hu, *Homotopy theory*. Pure and Applied Mathematics, vol. 8. Academic Press, New York and London, 1959.
- 2. R. Jacoby, One-parameter transformation groups of the three-sphere. Proc. Amer. Math. Soc. 7 (1956), 131-142.
- 3. D. Montgomery and C. T. Yang, *Differentiable pseudo-free circle actions on homotopy seven spheres*. Proceedings of the Conference on Transformation Groups (University of Massachusetts, Amherst, 1971), Part I, pp. 41-101. Springer-Verlag, New York, 1972.

- 4. G. de Rham, S. Maumary, and M. A. Kervaire, *Torsion et type simple d'homo-topie*. Lecture Notes in Mathematics, No. 48. Springer-Verlag, Berlin-New York, 1967.
- 5. J. H. C. Whitehead, Combinatorial homotopy. I. Bull. Amer. Math. Soc. 55 (1949), 213-245.

Institute for Advanced Study Princeton, New Jersey 08540

Pennsylvania State University University Park, Pennsylvania 16802

and

University of Pennsylvania Philadelphia, Pennsylvania 19104