

THE SEGMENTAL VARIATION OF HOLOMORPHIC FUNCTIONS

Walter Rudin

- E. Lindelöf and P. Montel proved the following theorems about the class H^{∞} of all bounded holomorphic functions in the open unit disc U:
- (a) If $f \in H^{\infty}$ and f has a limit, say L, along some arc in U that terminates at the point 1, then the radial limit of f exists at the point 1 and equals L.
- (b) If $f \in H^{\infty}$ and f has a radial limit at 1, then f actually has a nontangential limit at 1.

The union of these statements is often called the *sectorial-limit theorem*. For a proof we refer to [1, Theorem 6.7].

These theorems suggest two questions, obtained by replacing the property of having a limit by the stronger one of having finite total variation:

- (A) If $f \in H^{\infty}$ and f has finite total variation on some arc in U with one endpoint at 1, does it follow that f has finite total variation on the radius [0, 1)?
- (B) If $f \in H^{\infty}$ and f has finite total variation on [0, 1) must the same be true on other line segments in U that end at 1?

An affirmative answer to (A) would lead to a quick proof that every $f \in H^{\infty}$ has finite total variation on some radius. (This possibility was not ruled out in [2].) However, we shall see that both (A) and (B) have negative answers, even if H^{∞} is replaced by the disc algebra A, that is, by the class of all continuous functions on the closed unit disc \overline{U} that are holomorphic in U.

To state the result concisely, we associate with each $\,\alpha\,\,\epsilon\,\,(-\pi/2,\,\pi/2)\,$ the segment

(1)
$$I(\alpha) = \{1 - te^{i\alpha}: 0 < t < \cos \alpha\},$$

and we define $V(f, \alpha)$ to be the total variation of any $f \in H^{\infty}$ on $I(\alpha)$:

(2)
$$V(f, \alpha) = \int_0^{\cos \alpha} |f'(1 - te^{i\alpha})| dt.$$

Note that one end-point of $I(\alpha)$ is 1 and that the other lies in U. Also, $I(\alpha)$ lies above $I(\beta)$ if and only if $\alpha < \beta$.

THEOREM. To every $\beta \in (-\pi/2, \pi/2)$ correspond functions f, g, h in the disc algebra A such that

- (i) $V(f, \alpha) < \infty$ if and only if $\alpha < \beta$,
- (ii) $V(g, \alpha) < \infty$ if and only if $\alpha \le \beta$.
- (iii) $V(h, \alpha) < \infty$ if and only if $\alpha = \beta$.

Received February 14, 1973.

The author was partially supported by NSF Grant GP-24182.

Michigan Math. J. 20 (1973).

Proof. In the complement of the set of all nonpositive real numbers, let $\log z$ denote the branch of the logarithm that is 0 when z = 1. Define ϕ in $\overline{U} - \{1\}$ by

(3)
$$\pi \phi(\lambda) = i(\pi + \beta) - \log(1 - \lambda).$$

Note that every $\lambda \in U$ has the form $\lambda = 1 - te^{i\alpha}$, where $-\pi/2 < \sigma < \pi/2$ and $0 < t < 2\cos\alpha$. Since

(4)
$$\pi \phi(1 - te^{i\alpha}) = -\log t + (\pi + \beta - \alpha)i,$$

we see that ϕ is a conformal map of U onto a region Ω lying in the half-strip defined by the inequalities

$$x > -\frac{1}{\pi} \log 2$$
, $\frac{1}{2} + \frac{\beta}{\pi} < y < \frac{3}{2} + \frac{\beta}{\pi}$,

and that ϕ maps $I(\alpha)$ onto the half-line

(5)
$$\{x + iy(\alpha): c(\alpha) < x < \infty\},$$

where

(6)
$$y(\alpha) = 1 + \frac{\beta - \alpha}{\pi}, \quad c(\alpha) = -\frac{1}{\pi} \log \cos \alpha.$$

Also, $\phi(\lambda) \to \infty$ in $\overline{\Omega}$ as $\lambda \to 1$ in \overline{U} .

Next, put

(7)
$$\psi(z) = \exp\{iz \log z\},\$$

(8)
$$\mu(\mathbf{z}) = \psi(\mathbf{z})/(\log \mathbf{z})^3$$

for z in the upper half-plane, and define

(9)
$$f(\lambda) = \psi(\phi(\lambda)), \quad g(\lambda) = \mu(\phi(\lambda))$$

in $\overline{U} - \{1\}$.

If $z = x + iy = re^{i\theta}$, then

$$|\psi(z)| = \exp\{-y \log r - x\theta\}.$$

Hence $\psi(z) \to 0$ as $z \to \infty$ within $\overline{\Omega}$. If f(1) and g(1) are defined to be 0, it follows that $f \in A$ and $g \in A$.

Since $\psi'(z) = i \psi(z) (1 + \log z)$, (10) implies that

(11)
$$|\psi'(x+iy)| \sim (ex)^{-y} \log x$$

in the sense that the ratio of the two sides tends to 1 as $x\to\infty$. Our construction shows that

(12)
$$V(f, \alpha) = \int_{c(\alpha)}^{\infty} |\psi'(x + iy(\alpha))| dx,$$

where the notation is as in (5) and (6). By (11) and (12), $V(f, \alpha) < \infty$ if and only if $y(\alpha) > 1$, which happens precisely when $\beta > \alpha$.

Thus part (i) of the theorem is proved.

Part (ii) is proved in the same manner; in place of (11), we use

(13)
$$|\mu'(x+iy)| \sim (ex)^{-y} (\log x)^{-2}$$
.

Since (ii) holds, we can also find a function $\widetilde{g} \in A$ for which $V(\widetilde{g}, \alpha) < \infty$ if and only if $\beta \leq \alpha$. Then the function $h = g + \widetilde{g}$ satisfies (iii).

REFERENCES

- 1. W. H. J. Fuchs, Topics in the theory of functions of one complex variable. Van Nostrand, Princeton, N.J., 1967.
- 2. W. Rudin, The radial variation of analytic functions. Duke Math. J. 22 (1955), 235-242.

University of Wisconsin Madison, Wisconsin 53706