OVERRINGS AND DIVISORIAL IDEALS OF RINGS
OF THE FORM D +M
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1. INTRODUCTION

Let V be a valuation ring of the form K + M, where K is a field and M is the
maximal ideal of V. If D is a subring of K, we denote by D, the subring D+ M of
V. Domains of this kind arise frequently in the literature, especially in connection
with the construction of examples; see, for example, [35, p. 670], [46, p. 328], [38],
[45, p. 604], [32, Chapter 4], [24, Section 5], [13, p. 252], [14, p. 500], [5, p. 305], [11,
p. 280], [18, Section 4], and [6]. We compile in Theorem 2.1 the results that appear
in [15] concerning domains of the form D + M. In Section 3 (Theorem 3.1), we de-
termine the set of overrings of D; . The theorem leads to numerous results involv-
ing special conditions on the set of overrings of domains that have been considered
in the literature; these include GQR-domains [28], QQR-domains [18], domains for
which each overring is an ideal transform [6], domains satisfying the transform
formula for ideals [21], and domains for which the set of overrings is closed under
addition [22].

In Section 4, we determine the set of divisorial ideals of D, and we investigate
the condition, introduced by W. Heinzer in [27] that each ideal of D, be divisorial.
We conclude, in Section 5, by deriving an expression for the dimension of the poly-
nomial ring D, [X,;, -, Xn] in terms of the dimension of D[X;, ---, X, ]; but the
main contribution of Section 5 is the information concerning realization of a se-
quence {ng, n;, np, ---} inthe form {dim R, dim R[X,], dim R[X, X,], ---}.
Our results in Section 5 depend strongly on a theorem of J. T. Arnold in [1]

Overall, our results show again what previous results concerning D; have in-
dicated, namely, that the structure of D, reflects properties of the valuation ring V
and properties of K as a ring extension of D. The richness of properties that can
be realized by a construction of this type is usually due to the freedom involved in
the choice of D and K.

2. A SUMMARY OF SOME KNOWN RESULTS

Because we shall need them frequently, we list in Theorem 2.1 some known re-
sults concerning domains of the form D + M. Detailed proofs for these results can
be found in [15, Appendix 2].

2.1. THEOREM. Let V be a nontrivial valuation ving with quotient field L, and
assume that V is of the form K+ M, wheve K is a field and M is the maximal

ideal of V. Let D be a domain with identity that is a proper subving of K, and let
D,=D+M
l .
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(a) Dy is a domain with identity, and M is the conductor of Dy in V. There-
Jore, Dy and V have the same complete integral closure. In particular, D; is not
completely integrally closed.

(b) The integral closure of Dy is D'+ M, wheve D' is the integral closure of
D in K.

(c) Each ideal of D) compares with M under inclusion.

(d) The set of ideals of Dy containing M is {Ay, + M}, where {A,} is the set
of ideals of D. Moveover, D\ /(Ay + M) is isomorphic to D/A,,, so that Ay + M is
maximal, prime, or (Py + M)-primary in D) if and only if Ay is, vespectively,
maximal, prime, ov Py-primary in D.

(e) If Q is P-primary in D;, where P C M, then Q and P are ideals of V,
and Q is P-primary in V. If M, as an ideal of V, is unbranched, then M is also
unbranched as an ideal of Dj .

(f) dim D; = dim D +dim V.

(g) If N is a multiplicative system in D, then (Dy)N =Dy + M. If P is prime
in D) and if P C M, then (D1)p = Vp, so that (D))p is a valuation ving.

(h) D; is a valuation ving if and only if D is a valuation ving with quotient
field K.

(i) D, is a Prifer domain if and only if D is a Prifer domain with quotient
field K.

() The valuative dimension of D, is equal to k +dim V, wheve k is the su-
premum of the set {dim W] W is a valuation ving on K containing D} .

(k) The finitely genevated ideals of D) that properly contain M ave those of the
Jorm Ay + M, wheve Ay is a nonzevo finitely genervated ideal of D. Each finitely
generated ideal A of Dy conlained in M can be obtained as follows: let W be a
nonzevo finitely genevated D-submodule of K containing D, let m € M - {0}, and
set A =Wm + Mm.

(0) If D is a Priifer domain with quotient field K, then D and D, have the same
class group.

(m) Dy is Noetherian if and only if V is Noetherian, D is a field, and the degree
of K over D is finite.

We add one result to the statement of Theorem 2.1. Its proof is essentially the
same as the proof of (k) (see [15]).

(n) If A is an ideal of D, contained in M, then either A is an ideal of V, or
AV is a principal ideal of V. If A is not an ideal of V and if AV =aV, where
a € A then A =Wa + Ma, for some D-submodule W of K such that D C W C K.

If R is a commutative ring and t is a positive integer, then R is said to have
the t-genevator property if each finitely generated ideal of R has a basis of t ele-
ments. In [20, pp. 148-149], R. Gilmer and W. Heinzer prove the following result,
which follows essentially from (k) of Theorem 2.1.

(k') If t is a positive integer, then Dy has the t-genevator property if and only
if either D has the t-genevalor property and K is the quotient field of D, or D is a
field and the dimension of K over D is at most t.

The following statement is a consequence of (k') and (¢).
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(2') Dy is a Bezout domain if and only if D is a Bezout domain with quotient
field K.

3. SOME CONDITIONS ON THE SET OF OVERRINGS

Throughout the remainder of the paper, we assume that the symbols V, L, K, M,
D, and D; are used as in Theorem 2.1. In particular, D is a nonzero proper sub-
ring of K, and D, is a proper subring of V. We begin with a result that determines
the set of overrings of D;. We use the term overring of X to mean subving of the
total quotient ving of X containing X.

3.1. THEOREM. Each D,-submodule of L compares with V undev inclusion.
If {Dy\} is the family of subvings of K containing D, and {Wqy} is the family of
overrings of V, then {Dy + M} U {Wy } is the family of overrings of Dj.

Proof. Let S be a D)-submodule of L. If S ¢V, then SV D V, so that
VCM:SV=M-SCD;"S=8. Clearly, {Dy + M} U {Wy} is contained in the set
of overrings of D, and if S is an overring of D; contained in V, then by the modu-
lar law, S=SNV=SN(K+M)=(SNK)+M, where SN K e {Dy}. This com-
pletes the proof of Theorem 3.1.

We turn to a consideration of conditions under which the set of overrings of D;
satisfies certain special conditions that have been studied in the literature. If R is
a commutative ring, then, following [29], [2], and [8], we call a nonempty family &
of subsets of R a generalized multiplicative system if {0} ¢ & and ¢ is closed
under multiplication. The genevalized quotient ving of R with vespect to &, denoted
by Ry, is defined to be the set of elements t of T (the total quotient ring of R)
such that tSy € R for some element Sy of ¥'; it is clear that R ¢ is an overring of
R containing the identity element of T. Generalized quotient rings (without the
nomenclature) were originally considered by W. Krull in [36], then later by D. Kirby
in [34] and by L. Budach in [7]. An advantage of the concept is its generality, as in-
dicated by Arnold and J. W. Brewer in [2]; in particular, it includes the concepts of
a quotient ring with respect to a regular multiplicative system, of the ideal trans-
form of M. Nagata [37], of a large quotient ring [25], and, for a domain, of an arbi-
trary intersection of localizations of the domain [29, p. 154]. In considering gener-
alized quotient rings of R, we incur no loss of generality by assuming that the ele-
ments of the generalized multiplicative systems in question are ideals of R. Our
next result determines the set of generalized quotient rings of D I-

3.2. THEOREM. Let ¥ = {1,} be a genevalized multiplicative system in D .

(1) If each 1y in & properly contains M, let 1, = Ag + M, where Ay is a non-
zevo ideal of D. Then I = {Aa} is a genevalized multiplicative system in D, and
(Dl)y = D'y" + M.

(2) If some 1y in & is contained in M, let
T={lge | IgcM} and 7' ={IgV|Ige J}.
Then 7 is a genevalized multiplicative system in Dy, and J' is a genevalized
multiplicative system in V; morveover, (D Py =D 1):7 =V .

Proof. 1In (1), it is clear that 7 is a generalized multiplicative system in D,
and it is likewise clear that D4 + M is contained in (D 1) g - We observe that
(Dl)g) C V. Thus, if t € (Dl)f/ and tl, < D,, then tA, C V and each nonzero ele-
ment of Ay is a unit of V; consequently, t € V. By Theorem 3.1, (Dl)gp is of the
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form D, +M, where D, is a subring of K containing D. It follows immediately
from the definition of (D;)g, however, that Dy = D4

To prove (2), we establish the equality (D;)g = (D, )g‘ Vg . The inclusion
(D g 2 (D))g isclear. If t € Vg and tly C V, then t14 C I, € M C D;, where
Ia € T and t € (D;)g. Hence Vg' C (D;)g . It follows from (1) that if t € (D, ) g
and tIy € D;, where I, € &, then t € V C Vg provided I, O M —that is, provided
Io ¢ 7. And if Iy € &, then it is clear that t ¢ V4. Hence, in every case,
(D;)g € Vg, and our proof of the equality in (2) is complete.

In [28], Heinzer defines a GQR-domain to be an integral domain J with identity
such that each overring of J is a generalized quotient ring of J; Heinzer proves that
an integrally closed domain J is a GQR-domain if and only if J is a Prifer domain.
Using Theorems 3.1 and 3.2, we are able to determine necessary and sufficient con-
ditions in order that D; be a GQR-domain.

3.3. THEOREM. The following conditions arve equivalent.
(1) D; is ¢ GQR-domain.

(2) Either (a) D is a GQR-domain with quotient field K, or (b) D is a field, no
proper subfield of K properly contains D, and M is idempotent.

Before proving Theorem 3.3, we remark that a significant step in the proof is
that of determining conditions under which V can be represented as a generalized
quotient ring of D; . In this connection, we shall need the following lemma; it is a
generalization of Lemma 2.8 of [6].

3.4. LEMMA. Let W be a valuation rving, let & = {IA} be a genevalized mulli-
plicative system in W conlaining a proper ideal 17\0’ and let P = ﬂhh . Then P
is a prime ideal of W and Wy =Wp.

Proof. If x and y are in W - P, then there exist I; and I; in & such that
I; C (x) and I, C (y). Thus I5I; € (x)I; C (xy), and xy ¢ P, since xy ¢ I5I; € ¥.
Therefore P is prime in W.

Since W is a valuation ring, W¢ is a quotient ring of W, and in fact, Wy = Wis
where N = {n € W| n-le Wg)}. For n € W (n # 0) the relation n-1 € Wy holds
if and only if n-!I, C V for some X. Therefore

={neW|IAg(n) for some I € ¥} =W - P,

and Wy = Wp, as we asserted.

Proof of Theorem 3.3. We prove first that if (1) holds and (2a) fails, then (2b)
is valid. Let k be the quotient field of D, and let J be an overring of D. If J =K,
then J is a quotient ring of D, and if J C k, then Theorem 3.2 implies that J is a
generalized quotient ring of D. Hence (1) implies that D is a GQR-domain; there-
fore, if (2a) fails, then k C K. Since D; is a GQR-domain, each subring T # K of
K containing D is contained in k. This implies that D =k, for otherwise D admits
a nontrivial valuation overring V;, and V] admits an extension W; to K; thus W
is a proper subring of K containing D, but W; is not contained in k, contrary to
what we have previously shown. Therefore D =k, and there is no field E with
k C E C K. By Theorem 3.2, there is a generalized multiplicative system ' in V
consisting of ideals contained in M such that Vg4 = V. But Lemma 3.4 then implies
that 7' = {M}, and M is idempotent. Thus our proof that (1) implies (2) is
complete.
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That (2) implies (1) follows from Theorem 3.1, Theorem 3.2, and our proof that
(1) implies (2).

In [28], Heinzer raises the following two questions.
Is the integral closure of a GQR-domain a Priifer domain?

If J is a quasi-local GQR-domain with integral closure J*, does there exist a
domain J' such that JC J'c J*?

We remark that for the GQR-domains given by (2b) of Theorem 3.3, the answer to
the first question is affirmative, while the answer to the second is negative.

If J is an integral domain with identity, then Gilmer and J. Ohm in [23] say that
J has the QR-property (or that J is a QR-domain) if each overring of J is a quo-
tient ring of J. A QR-domain is a Priifer domain, and a Priifer domain J has the
QR-property if and only if the radical of each finitely generated ideal of J is the
radical of a principal ideal of J [41]. In [18], Gilmer and Heinzer generalized the
notion of a QR-domain to that of a QQR-domain; the defining property of such do-
mains J is that each overring of J is an intersection of quotient rings of J. A
Priifer domain is a QQR-domain [10], and the integral closure of a QQR-domain is
a Priifer domain [18]. Moreover, a QQR-domain is a GQR-domain [28]. Our next
two results give conditions under which D; is a QQR-domain or a QR-domain.

3.5. THEOREM. The following conditions are equivalent.
(1) Dy is a QQR-domain.

(2) Either (a) D is a QQR-domain with quotient field K, or (b) D is a field,
there ave no proper intermediate fields between D and K, and M is unbranched.

Proof. As in Theorem 3.3, we prove that if (1) holds and (2a) fails, then (2b) is
valid. It is straightforward to prove that (1) implies that D is a QQR-domain.
Hence D does not have quotient field K. Since a QQR-domain is a GQR-domain,
Theorem 3.3 implies that D is a field, there are no fields properly between D and
K, and M is idempotent. Since D; has the QQR-property, and since V is not a

quotient ring of D, part (g) of Theorem 2.1 implies that V = ﬂa (Dl)pa for some

family {Py} of prime ideals of D; (and hence of V) properly contained in M.
Consequently, V is the intersection of its set of proper overrings; this implies, how-
ever, that M is unbranched, for otherwise, Vp is the unique minimal overring of V,
where P is the intersection of the set of M-primary ideals of V (see [15, Theorem
14.3(e), p. 173]).

It is clear that D; is a QQR-domain if the conditions of (2a) are satisfied, and
Theorem 3.3 of [18] implies that D; is a QQR-domain if the conditions of (2b) are
satisfied.

3.6. THEOREM. The domain D) has the QR-property if and only if D has the
QR-property and D has quotient field K.

Theorem 3.6 follows easily from Theorem 3.1 and the following special case of
Theorem 3.2.

3.7. COROLLARY. Let N = {ny} be a multiplicative system in D, .

(1) If N does not meet M, let ng =ay +mg, wherve ag € D - {0} and
my € M for each «. Then N = {aa} is a multiplicative system in D, and
(D = Dy, + M.
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(2) If N meets M, let N' =N N M. Thern N' is a multiplicative sysiem in D,,
and (Dl)N = (Dl)Nr = VN' .

Since an unbranched prime ideal of a Prifer domain is idempotent [39, Theorem
3.4], but not conversely, Theorems 3.3 and 3.5 show that the GQR-property does not
imply the QQR-property. Heinzer has already made this observation in [28, p. 144].

If A is an ideal of the commutative ring R such that A® # (0) for each positive
integer n, then ¢ = {An}::l is a generalized multiplicative system in R. The gen-
eralized quotient ring Ry is what Nagata in [37] calls the transform of A; we use
the notation T(A), or T(A), for the transform of A. Nagata considered transforms
in connection with Hilbert’s fourteenth problem. Other authors have found the con-
cept to be a useful tool in diverse situations; see, for example, [42], [12, p. 334],

[23, p. 100], [17, pp. 282, 297], [15, Section 22]. Other recent papers [5], [21], [26],
[3] have been devoted largely to the development of a general theory of ideal trans-
forms. Our next result is a second special case of Theorem 3.2.

3.8. COROLLARY. Let A be a nonzeyo ideal of D1 . If A properly contains M
—say A =B+ M, wheve B is a nonzevo ideal of D —then T (A) = TD(B) +M. If
1

ACM, then T (A) = Ty(AV).

In [6], Brewer and Gilmer say that an integral domain J with identity has prop-
erty (T) if each overring is an ideal transform; they prove that for Noetherian do-
mains or Krull domains, property (T) is equivalent to the condition that J is a
semi-local PID. Corollary 3.8 and our proofs of Theorems 3.3 and 3.5 establish the
following theorem.

3.9. THEOREM. Tke following conditions are equivalent.
(1) Dy has property (T).

(2) V has property (T), and either (a) D has property (T), and K is the quo-
tient field of D, or (b) D is a field, theve ave no fields properly between D and K,
and M is idempotent.

Brewer and Gilmer [6] raise the following three questions about an integral do-
main J with property (T).

1. Does each overring have property (T)?
2. Is J semi-quasi-local?
3. Is the integral closure of J a Priifer domain?

Theorem 3.9 shows that if J is a domain of the type described in part (2b) of Theo-
rem 3.9, then the answer to each of these three questions is affirmative.

In [21], Gilmer and J. A. Huckaba consider commutative rings R satisfying
various forms of the transform formula TR(AB) = Tr(A) + TR(B). If this formula
holds for all ideals A and B of R, then R is a T,-7ing; if it holds for all finitely
generated ideals A and B of R, then R is a T,-7ing; if it holds for all principal
ideals A and B of R, then R is a T;-7ing. The motivation for considering such
rings comes from the significance of this formula in the context of intersections of
valuation rings, in the case where R is a Krull domain (see [37, p. 59], [21, Section
5]). A Priifer domain is a T,-domain, but need not be a T;-domain. If J isa
Noetherian domain with identity, then the conditions (T;), (T,), and (T3) are equiva-
lent in J, and they are satisfied if and only if the dimension of J is at most one.
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If A and B are ideals of D; and if B is contained in M, then
T(AB) = T(A) + T(B). If A D M, this follows from Proposition (1e) of [21]; if A C M,
then by Corollary 3.8, T(AB) = T(ABV), T(A) = T(AV), and T(B) = T(BV). But
T(ABV) = T(AV) + T(BV), since AV C BV, or vice versa. It follows that D, is a
T;-domain, for i =1, 2, or 3, if and only if T((A +M)(B + M)) = T(A + M) + T(B + M)
for all nonzero ideals, all nonzero finitely generated ideals, or all nonzero principal
ideals A and B of D. Since (A + M) (B + M) = AB + M, and since the equalities
T(AB + M) = T(AB) + M, T(A + M) = T(A) + M, and T(B + M) = T(B) + M are valid by
Corollary 3.8, we have proved the following theorem.

3.10. THEOREM. Lef i=1, 2, 3;then D, is a T;-domain if and only if D is a
T;-domain.

In [22], Gilmer and Huckaba have passed to a more general consideration of A-
vings, which are defined by the property that the set of overrings is closed under
addition. In fact, if R is a subring of the ring S, then S is a A-extension of R if
the set 7 of subrings of S containing R is closed under addition. Hence R is a A-
ring if T, the total quotient ring of R, is a A-extension of R. Gilmer and Huckaba
prove (Corollary 1 of [22]) that if S is a field, and if S is a A-extension of its sub-
ring R with identity, then either R is a field or R has quotient field S. Moreover,
if R is a field, then S is a A-extension of R if and only if the set of intermediate
fields is linearly ordered by inclusion. From these remarks and from Theorem 3.1,
our next result follows easily; compare with Proposition 9 of [22].

3.11. THEOREM. The following conditions ave equivalent.
(1) Dy is a A-domain.
(2) K is a A-extension of D.

(3) Either (a) D is a A-domain with quotient field K, ov (b) D is a field and the
set of subfields of K containing D is linearly ovdered by inclusion.

An integral domain J with identity is a GCD-domain if each pair of nonzero
elements of J has a greatest common divisor in J. The terminology “GCD-domain”
is that of I. Kaplansky in [33]; the terminology of N. Bourbaki [4, p. 86] is “pseudo-
bezoutian” (see also [19]), and in [9], P. M. Cohn refers to such domains as “HCF-
rings” (this is also the terminology of Gilmer in [16]). In [30, p. 65], P. Jaffard
gives four equivalent forms of the condition “J is a GCD-domain,” namely (1) each
pair of nonzero elements of J has a least common multiple in J; (2) the set of prin-
cipal ideals of J is closed under finite intersection; (3) each divisorial ideal of J of
finite type is principal; (4) the group of divisibility of J is lattice-ordered. We de-
termine in Theorem 3.13 conditions under which D; is a GCD-domain. Our proof of
Theorem 3.13 requires a lemma.

3.12. LEMMA. Let x be a nonzevo element of K, and let m be an element of
M. Then {x+m}D; =xDj = xD + M.

Proof. Clearly, (x + m)/x =1+ (m/x), where m/x € M. Hence (x+ m)/x isa
unit of D, and {x+m} D; =xDj. Since x is a unit of V, xM = M. Therefore
xDy = x(D + M) = xD + xM = xD + M.

3.13. THEOREM. The following conditions ave equivalent.
(1) D, is a GCD-domain.
(2) D is a GCD-domain with quotient field K.
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Proof. We observe that if J is an integral domain with identity and with quo-
tient field k, then J is a GCD-domain if and only if the fractional ideal J N xJ is
principal for each nonzero element x of k. This is true since

aJ NbJ = a( Nalpng)

for all nonzero elements a and b of k.

(1) — (2): Lemma 3.12 implies that if x is a nonzero element of K, then
xD; = xD + M. Hence the ideal xD; N D; = (xD N D) + M is principal, as a frac-
tional ideal of D;. Since D C K, part (k) of Theorem 2.1 implies that M is not a
principal ideal of D; . We conclude that xD N D # (0), and this implies that x be-
longs to the quotient field of D. Moreover, Lemma 3.12 implies that xD N D is a
principal fractional ideal of D. Therefore, D is a GCD-domain with quotient
field K.

(2) — (1): We prove that D; N xD; is principal as a fractional ideal of D;, for
each nonzero element x in L. By Theorem 3.1, XD; compares with V under inclu-
sion. If xD; contains V, then D; N xD, = D, is principal. If xD; € V, then
xD;, = yD + M for some nonzero element y of K, and therefore

D; N xD; = (D NyD) + M;
since D is a GCD-domain,
(DNyD)+M = zD+M = zD,

for some nonzero element z of K. Therefore D; is a GCD-domain.

Joe Mott has pointed out to us that Theorem 3.13 also follows from results of
J. Ohm [40] and Jaffard [31] concerning groups of divisibility. In fact, Theorem 3.2
of [40] implies that the group of divisibility G; of D; is a lexicographic extension
of H by G, where H is the group of divisibility of V (that is, the value group of V),
and G is the group of divisibility of K with respect to D (that is, the multiplicative
group of nonzero principal D-submodules of K, where Dx < Dy if and only if
y/x € D). This means, by definition, that there exists an exact sequence

00— G g G]. —B? H — O,
where a and B are order homomorphisms, such that
+ +
G) = {g1 € G| Blg)) >0 or g; € a(G)}.

In [31, pp. 204-205], Jaffard proves that G, is lattice-ordered if and only if H is
totally ordered and G is lattice-ordered; Theorem 3.13 is the ring-theoretic state-
ment of this result. Proposition 3.4 of [40] implies that G; is the lexicographic
direct sum of G and H if and only if the following condition (p) is satisfied.

(p) There exists a set {x) e of representatives of the set of nonzero frac-
tional ideals of V in L such that if @, 8, ¥ are in A and x,, XBV = xyV, then
Xg Xg /X, is a unit of D, .
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4. DIVISORIAL IDEALS OF D,

Let J be an integral domain with identity and with quotient field k, and let &
be the family of nonzero fractional ideals of J. If F € &%, then

N{x3| xe x, Fcxs}

is a fractional ideal of J, which we denote by F, ; we call F,, the v-ideal or the
divisorial ideal associated with F. If F = F,, we say that F is a v-ideal or a di-
visovial ideal. A divisorial ideal F is of finite type if F = G,, for some finitely
generated fractional ideal G of J. A basic development of properties of the v-
operation and divisorial ideals can be found in [43, Chapter 1], [4, Section 1], and
[15, Section 28]. In this section, we examine the v-operation on Dj.

4.1. THEOREM. Let A be a fractional ideal of D, and let B = A + M. If
A # (0), then B, = A, + M; on the other hand, M is a divisovial ideal of Dy - that
is, M =M,.

Proof. By Theorem 3.1, each fractional ideal of D; compares with V under
inclusion. Since B is contained in a principal fractional ideal of D; properly con-

tained in V, it follows that B, = n{xD1| BCxD; C V}. From this and Lemma
3.12, we deduce that

B, = n{xD+M[ x € K, AcxD} =|:n{xD|Ang}]+M.

Since A # (0), we observe that the inclusion A C xD implies that x belongs to the
quotient field k of D. Therefore,

Bv=l:n{xD| x € k, Ang}:|+M=AV+M.

If D is not a field, then ﬂ{xD| x# 0} =1(0), and M = n{xDll xeD-{0}},
so that M is divisorial. If D is a field, then for x € K- D, Dx N D = (0), so that
D;xND; =M, and again M is divisorial.

4.2. LEMMA. Lelt W be a valuation ving with quotient field k and maximal
ideal P, and let A be a nonzero fractional ideal of W.

(1) P is divisorial if and only if P is principal.

(2) A is not divisovial if and only if P is not principal and A = bP for some b
in k.
Proof. If P is principal, then P is divisorial. If P is not principal, then each

principal fractional ideal of W containing P contains W, and hence P, =W. This
proves (1).

It is clear from (1) that A is not divisorial if it is of the form bP, where P is
not principal. If A is not divisorial, then we choose b in A, - A. Then
A c(b) C A, C (b), and hence A, = (b). Since A C (b), A C bP; but since there are
no ideals properly between A and (b), the reverse inclusion also holds. Therefore,
A =DbP, and A is not divisorial, so that P is not principal.

The second author discussed Lemma 4.2 and its proof with William Heinzer
several years ago, and (1) appears as Lemma 5.2 of [27]; but statement (2) of
Lemma 4.2 is apparently not in the literature.



88 EDUARDO BASTIDA and ROBERT GILMER

4.3. THEOREM. Lel A be a nonzero ideal of D, properly contained in M.

(1) If AV is not principal as an ideal of V, then A is divisorial as an ideal of
D .

(2) If AV =cV is principal as an ideal of V, wheve ¢ € A, then A =Wc + Mc
Jor some D-submodule W of K such that D C W C K; if W is not a fractional ideal
of D, then A C A, =cV; otherwise, A, =cW_ + cM.

Proof. In (1), we consider two cases. Note that by part.(n) of Theorem 2.1, A
is an ideal of V.

Case I: A is not divisorial as an ideal of V.

Lemma 4.2 shows that in this case, A = bM for some b in L. Since M is a di-
visorial ideal of D, by Theorem 4.1, it follows that A is also divisorial.

Case II: A is divisorial as an ideal of V.

Thus A = ﬂ {xV| x € L, ACxV}, and because A is not principal as an ideal
of V, the inclusion A C xV implies that A C xV. Therefore A C M-xV =xM C xD,

for each x in L such that A C xV. It follows that A = ﬂ{xD1| x e L, ACVx},
and A is divisorial.

To prove (2), note that A/c =W + M and hence A, =c(A/c), =c(W+M),. If W
is a fractional ideal of D, it follows from Theorem 4.1 that (W + M), =W, + M. If
W is not a fractional ideal of D, let F be a principal fractional ideal of D, contain-
ing W. By Theorem 3.1, F either contains V or is contained in it. Lemma 3.12
implies that if F C V, then F = Dx+ M for some x in K, and hence D C W C Dx.
But this implies that x belongs to the quotient field of D, and hence W is a frac-
tional ideal of D, contrary to hypothesis. We conclude that if a principal fractional
ideal of D contains W + M, then it also contains V. Hence (W + M), =V, and in
order to complete the proof we need only show that V,=V. Let t be an element of
L - V, and let s be an element of K - D. Then s ¢ D; implies that 1 ¢ s-1D;, and
hence that t ¢ ts"! D; . Moreover, ts"! ¢ V, sothat VCts'ID;,and t ¢ V,.

In [27], Heinzer has considered integral domains J with identity such that each
nonzero ideal of J is divisorial. It follows easily from Theorem 4.3 that the domain
D; has this property if and only if each D-submodule W of K satisfying the condi-
tion D € W C K is a divisorial fractional ideal of D. Taking into account the cases
where D is or is not a field, we obtain the following corollary to Theorem 4.3.

4.4. COROLLARY. The following conditions are equivalent.
(1) Each nonzevo fractional ideal of D, is divisorial.

(2) Either (a) D has quotient field K and each D- submodule W of K such that
D C W C K is a divisorial fractional ideal of D, ov (b) D is a field and the degree
of K over D is two.

The condition on D-submodules of K given in (2a) is not definitive; we attempt
to rectify this situation in Theorem 4.5.

4.5, THEOREM. Let J be an integrval domain with identity and with quotient
field k # J, and let ¥ = {W, } be the family of nontrivial valuation overvings of J.
The following conditions arve equivalent.

(1) Each J-submodule S of k such that J C S C k is a fractional ideal of J.
(2) Each W, is a fractional ideal of J.
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(3) The conductor of J in W, is nonzevo for each Wy in .
(4) The conductor of J in Wy, is nonzero for some Wy in .

Proof. The implications (1) — (2), (2) — (3), and (3) — (4) are clear. To prove
that (4) implies (1), let T be a J-submodule of k such that J C T Ck, and let
W € & be such that the conductor of J in W is nonzero. If ¢ is a nonzero element
of the conductor of J in W, then ¢cWT C JT C T C k, and hence WT # k. K
x € k- WT, then x ¢ W, since 1 € T. Hence x~1 € W and WT C Wx, so that
x"IWT C W, and c¢x"!WT C cW C J, where cx~! is a nonzero element of J.
Therefore WT and T are fractional ideals of J, and (1) holds.

We remark that condition (1) of Theorem 4.5 implies that each nonzero J-sub-
module S # k of k is a fractional ideal of J. Thus, if s is a nonzero element of S
and if s =a/b, where a, b € J - {0}, then a is a nonzero element of S N J. Since
aca-lS =82k, the set a-! S is a J-submodule of k containing J and distinct from
k; therefore (1) implies that a~1 S is a fractional ideal of J, and consequently,
S=aoa"ls is also a fractional ideal of J.

Kaplansky, in [33, p. 37], departs from more common terminology and defines,
for an integral domain J with identity, a fractional ideal of J to be a J-submodule
S of Kk, the quotient field of J. Thus Kaplansky’s fractional ideals are not fractional
ideals in the usual sense (in which the requirement “xS C J for some nonzero ele-
ment x of J” is imposed), and Theorem 4.5 can be interpreted as giving conditions
under which the two definitions, except for k itself, coincide. (If J # k, then k is
not a fractional ideal of J under the ordinary definition.)

5. DIMENSION THEORY OF D [X;, ***, X,]

In this section, we obtain a formula for the dimension of the polynomial ring
D, [X;, :++, X,] in terms of the dimension of D[X], *:, X,]. To obtain our for-
mula, we need a generalization of the following result, due to Arnold [1, Theorem 5].

5.1. THEOREM. Let J be a finite-dimensional integval domain with identity
and with quotient field k, and let m be a positive integev. Then

dim J[X), =, Xp] = m +sup {dim I[t;, -, t,]] { ;17" ck}.

The generalization of Arnold’s theorem that we need is to the case where {ti }rln
is a subset of an extension field of k.

5.2. LEMMA. Lel J be an integral domain with identity and with quotient field
k,let E be an extension field of k algebraic over K, and let {ti}in be a finite sub-
set of E. If P is the kernel of the homomovphism £(Xy, ---, X)) = f(t;, ---, t) of
J[X,, -+, Xl onto J[ty, -, t,,], then P has height m in J[X1, -, Xm].

Proof. The proof is identical to the proof of Lemma 1 of [1], with the following
modifications. The ideal Q; is nonzero because t; is algebraic over J, and
Q; [X;41]1 € Q;;1 because t;,; is algebraic over J.

5.3. THEOREM. LetJ be a finite-dimensional integral domain with identity
and with quotient field Kk, let E be an extension field of k, and let m be a positive
integev. Then

sup {dim J[t;, -+, tm]] {t:i}]" CE}

= dim J[X;, ***, X;,] - sup{m - tr.d.(E/k), 0} .
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Pyoof. Since J[tl, e t
J[Xl) Ty Xm],

m] is isomorphic to a residue class ring of

dim J[t;, =, t ] <dimJ[x,, =, X

-

for each subset {t;}]" of E. Thus the formula is valid if tr.d.(E/k) > m. We
establish the formula in the case where E/k is algebraic. Using Theorem 5.1, we
therefore seek to prove that

sup {dim J[t;, -+, tn]| {t;}7" CE}
< sup {dim J[t;, -, t)| {t;}7 €k} = dim I[X,, -, Xpl.

Thus we take a subset {u;}] of E such that the dimension of J[uy, ---, u,,] is as
large as possible. Then J[uj, =+, uy] ~ J[Xy, -, X,,,I/P, where P is the kernel
of the homomorphism (X, -+, X,,,) = f(u;, **-, uy,). By Lemma 5.2, P has height
m, and hence dim J[uj, -, uy] < dim J[X, -+, X;] - m, as we wished to prove.

Flnally, we consider the case where tr.d. (E/k) =d, with 0 <d < m. Let
{Yl}l be a transcendence basis for E over k. Then E/k yi, ***, g is algebraic,
and hence

. -d

sup {dim J[y1, -, yallt1, =, tm-al| {t:i}1 =~ CE}
= dim J[X{, =, X,,] - (m - d) = dim J[X,, =, X,,] - sup{m - d, 0}

< sup {dim J[uy, **, uml| {wy}T"cE}.

On the other hand, if {v;}] C E, and if the labeling is such that {v;}] is a tran-
scendence basis for k(vy, ==+, v,,) over Kk, then

dimJ[vy, =+, vm] = dim J[vy, -+, vs][Vvs+1, **» Yml)
< sup {dim J[vy, =+, vgl[wy, =, Wi -s]| {wi}1 Ck(vy, ", vl }
= dim J[X;, -, Xl - (m - 8) < dim J[X;, -, Xn] - (m - d).
Consequently,
sup {dim J[t;, =, tm]| {t;}7 CE} < dim J[X,, =, Xpp] - (m - d),

and equality holds, as we wished to show.

The equality
m
sup {dim J[tq, -, tm]| {t;}7 CE} = sup{dim I[t;, -, tp,]] {t;}) <k},

in the case where E/k is algebraic in Theorem 5.3, follows from Theorem 3 of [1].
We have not cited Theorem 3 of [1] in our proof of Theorem 5.3, because the proof
of this result, as given in 1], is incomplete (but assertion of Theorem 3 of [1]is
correct). The statement in [1, p. 315] that

dim J[s,, -+, s,,] = dim J[1/d;, ---, 1/d ]
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lacks justification; since J[1/d;, *--, 1/d,,] need not be a subring of J[s;, -, s,],
Arnold can only claim that

dim J [s1, ***, $m, 1/d1, =, 1/dm] = dim I[s1, ***, sm],
and the validity of the inequality
dimJ[s,, =+, s ] < dim J[s), -, s, 1/dy, -7, 1/d ]

is in question.

5.4. THEOREM. Lef m be a positive integer, let Kk be the quotient field of D,
and let d be the transcendence degvee of K over k (d may be infinite). Then

dim D; [X;, -, X,,] = dim V +dim D[X,, ***, X ] +inf{m, d}.
Pvoof. By Theorem 5.1,
dim Dy [X;, =, X;0] = m+sup {dim D [t;, -+, t, ]| {t;}1 <L},

and Theorem 3.1 implies that

sup {dim Dy [t;, -, t, )] {t;}T° € L} = sup {dim D [t;, -, t,]| {ti}’f‘cK}.

Moreover, if {t;}] CK, then Dy[ty, -, tm] = D[t1, -, tm] + M, and by part (f)
of Theorem 2.1, dim(D[t;, -, t,] + M) =dim D[t;, ***, t,n,] + dim V. Therefore

]

dim D; [X;, -, X,,] = m + sup {dim D[t;, -, t,] +dim V| {t;}]" € K}

Il

m +dim V +sup {dim D[t,, -, t ]| {t;}]" <K}

m +dim V +dim D[X,, -, X;,] - sup{m - ¢, 0}

m +dim V +dim D[X,, ***, X, ] +inf {d - m, 0}

]

dim V +dim D[X,, -, X ]+ inf {d, m},

and this completes the proof of Theorem 5.4.

If R is a commutative ring with identity, and if R is of finite dimension ng,
then associated with R we have the sequence {n,};.,, where n; =dim R[X|, -+, X|]
for each i; we shall call {ni} the dimension sequence for R. We shall call the se-
quence {nl - ng, Ny - ny, } the diffevence sequence for R. Theorem 5.4 is re-
lated to the problem of determining the sequences of positive integers that are
realizable as the dimension sequence of a ring. More precisely, we have the follow-
ing result.

5.5. COROLLARY. Let {n;}y be the dimension sequence for D, where ngy < «,
and let {di} ‘fo be the diffevence sequence for D. Let k be the quotient field of D,
and assume that the dimension of V has a finite value w. Then the dimension se-
quence for D, and the diffevence sequence for D) are, vespectively,

(1) {w+n+i}i g and {d,+1, d,+1, -} if tr.d.(K/k) is infinite,

2) {w+n;}0 and {d1, dz, -} if tr.d.(K/k) =0,
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(3) {w+ng, w+n; +1, -, w+n, jt3, wAnje +i, wHnjee +i, } and
{dy+1, =, d5+1, dj+1,dj+2, b ifdr.d. K/k§~3, where 0 <j < .

Numerous conditions satisfied by the dimension sequence {nl}o and the differ-
ence sequence {d;}] for a ring are known. For example, A. Seidenberg showed in
[44] that n; + 1 <nj;; <2n; + 1 for each i; in particular, ng+1 <n; < 2ng + 1.
Moreover, Seldenberg [45] proves that if mg and m; are nonnegative integers such
that mg + 1 < m; <2mg + 1, then there exists an integrally closed domain J such
that dim J = mg and dim J[X 1l=m;. In[32, p. 17], Jaffard proves that there are
at most t + 1 prime ideals in a chain of primes of R[Xj, ---, X¢] lying over a fixed
prime ideal of R, and hence t +ng < n; <t(1+ ng) + ng for each positive integer t.
In particular, if ng = 0, then ny =t for each t; that is, {0, 1, 2, ---} is the only se-
quence with first term 0 that can be realized as the dimension sequence for a ring.
In [32, p. 42], Jaffard proves that the difference sequence is eventually constant:
dyr =dy4; = - for some r, where d < ng +1. Moreover, Jaffard proves that if R
is an integral domain, then the difference sequence is eventually the constant 1 if
and only if R has finite valuative dimension; this result also follows from Theorem
5.1 and results of [15, Section 25]. If ng = 1, then n; is 2 or 3. Seidenberg [44]
proved that if R is an integral domain, then n; = 2 if and only if the integral closure
of R is a Priifer domain; he also proved that if n; = 2, then n; =i + 1 for each posi-
tive integer i. It is easy to show that the same result is valid for a one-dimensional
ring S with zero divisors — that is, if dim S[X;] =2, then dim S[X;, -, X,]=n+1
for positive integer n.

If J is a one-dimensional domain with identity such that dim J {X;] = 3, then
n+2<dim D[X, -, X,] < 2n + 1, for each positive integer n. Further, Seiden-
berg [45, Theorem 7] shows that if n and N are positive integers such that
n+2 <N 2n+ 1, then there exists a one-dimensional domain J; with ideniity such
that dim J; [X;] = 3 and dim J, [X;, -:, X,] = N. In [32, Chapitre III, Section 2],
Jaffard improves Seidenberg’s results by proving that if R is a one-dimensional
ring with identity, then the dimension sequence {n-l} is of one of the three forms

{1,2,8, -}, {1,385, -}, {1,385, -+, 2t+1,2t+2 2t +3, - }.

Moreover, it follows from Corollary 5.5 that each of these sequences can be realized
as the dimension sequence for an integral domain with identity. It is clear that re-
peated use of Corollary 5.5 yields numerous sequences that can be realized as the
dimension sequence for an integral domain J with identity; in particular, dim J and
the eventual value d of the difference sequence for J can be chosen arbitrarily,
subject to the condition 1 <d < dim J + 1. In closing, we remark that an example
suggested by William Heinzer and presented by Arnold [1, p. 325] shows that for
each positive integer n, the sequence {n,n+1, -, 2n-1, 2n+ 1, 2n + 2, 2n + 3, }
is the dimension sequence of an integral domain with identity. In this connection, if
J is an n-dimensional domain with identity such that dim J[X;, -, X{]=n +1t for

1 <t <n, then J has valuative dimension n, and dim J [Xl, ey Xt] =n +t for each
positive integer t [15, Theorem 25.10].

Addendum. Arnold and the second author have recently determined all se-
quences of nonnegative integers that can be realized as the dimension sequence of

a ring.
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