A GENERALIZATION OF A THEOREM OF KAPLANSKY
AND RINGS WITH INVOLUTION

M. Chacron

I. Kaplansky has shown that if R is a semisimple ring each of whose elements
is power-central (that is, if for each element x of R, there exists a positive integer
n(x) such that x*(x) is in the center Z of R), then R is a commutative ring.

In this paper, we generalize Kaplansky’s theorem to a ring with involution each
of whose symmetrvic elements is power-central. We show that if the ring R has no
nil right ideals, then all norms xx* and all traces x + x* in the ring are central
elements. If we weaken the assumption of no nil right ideals and assume merely that
R has no nil ideals, the conclusion still holds, provided the least positive exponent
n(s), for which s™(8) ¢ 7, remains bounded as s ranges over the subset of symmet-
ric elements in R (see Theorem 4).

Since semisimple rings R have no nil right ideal other than 0 (for brevity, we
refer to them as rings with no nil vight ideal), the first part of Theorem 4 general-
izes Kaplansky’s theorem.

I. N. Herstein has established the following extension of Kaplansky’s theorem:
A ring R with no nil ideal all of whose elements are power-central is a commutative
ring [4]. The second part of Theorem 4 generalizes Herstein’s theorem in the case
of bounded exponents. The conclusion is the best one could expect; for if R consists
of the 2-by-2 matrices over a field of characteristic 2, its symmetric elements

under the involution (a b) — ( d —b) are the matrices (a b), which are all
cd -Cc a c a
square-central.

Whether the assumption “with no nil right ideal” in Theorem 4 can be replaced
by its two-sided version “with no nil ideal” is an open question equivalent to a ques-
tion of K. McCrimmon (see Section 4).

We break the proof of Theorem 4 into three steps. In Section 1 we prove the re-
sult for the case of division rings (see Theorems 1 and 2). In Section 2, we extend
the results of Section 1 to certain *-prime rings (see Theorem 3), and in Section 3
we establish the general result by reduction to the preceding case. The author was
inspired by Herstein’s proof of [5, Theorem 3.2.2], and similar techniques are used.
Finally, in Section 4, we give an example of a division ring all of whose symmetric
elements are square-central, but not all of whose elements are central, and we
conclude the paper with some open questions.

1. DIVISION RINGS

Some notation and conventions: Throughout this paper, R denotes a ring with
involution in which
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(1) each symmetric element is power-central.
By
S = S(R) = {s| s=s*}

we denote the subset of symmetric elements, by Z = Z(R) the center of R, by
7t =7 N S the subring of central symmetric elements, and by Z° =2Z* - {0} the
subset of nonzero central symmetric elements.

For division rings, we can replace condition (1) with the following:

(2) For each s € S, there exist an r > 1 and a polynomial p = p(t) in t with
rational integer coefficients such that s¥ - st™tlp(s) € Z.

As a digression, we prove the following result.

PROPOSITION 1. If R is a division ving with involution, then (1) and (2) are
equivalent conditions.

Proof. Obviously, (1) implies (2). Conversely, let s € Z, and let F = Z'(s) be
the subdivision ring generated by Z* and s. This is a subfield of symmetric ele-
ments satisfying (2). By a theorem of Herstein [3, Theorem 1], F has one of the
following forms:

(i) F=2";
(ii) F is a purely inseparable extension of Z7;
(iii) F is an algebraic extension of a finite field.
In each case, one sees at once that s®(8) ¢ Z* C Z for some n(s) > 1.

In the course of the proof of Proposition 1, we saw that if s ¢ Z, then F must
be of type (ii) or (iii). Now Herstein and S. Montgomery have recently proved that a
division ring with involution in which the symmetric elements are algebraic over a
finite field must be a field [7, Theorem 1]. Therefore, if (iii) were to occur, Z*
would be algebraic over a finite field, and consequently S would be algebraic over a
finite field (by (1)). It would follow that R = Z, which is in conflict with the assump-
tion x ¢ Z. We are therefore left with (ii). Recall that this means that R has char-

k
acteristic p # 0 and that there exists a k = k(s) such that sP € Z. We have thus
established the following result.

PROPOSITION 2. A symmetvic element s of R that is not purvely inseparable
(over the center) is central.

The next proposition, which improves slightly Remark 6 in [1], is not true in the
case of characteristic 2 (see Example 1).

PROPOSITION 3. Let R be a 2-torsion-free division ving. If S is algebraic
but not contained in Z, then S contains a sepavable element.

Proof. We may assume that R has characteristic p> 2. If S were insepar-
able, a partial duplication of [5, Lemma 3.2.1] would yield some s € S - Z of the
form s =c¢s - sc, for some ¢ € R. Writing o = (¢ - c*)/2, we get the relations

1 2

s=0s-s0, o0-1=s0s"l, ¢24+1-20 =s0%s"!.

S

Because o2 € S, either the subfield Z+(0 2) generated by 7% and 02 contains a

m
proper subfield separable over Z*, or (o 2P ¢ 7 for some m > 1. Since
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m
Z+(02) C S, we must conclude that ozp € Z. From this it follows that

m m m m - m Pm - m
(62 +1 - 20)P = g2 41-9P"gP = (so?s )P =gg2" sl=g ,

m m m m
oP™ = ——1; €Z, (0-1P =0oP -1=(sos )P =oF
9P

which is impossible. Combining Propositions 1 to 3, we get the following theorem.

THEOREM 1. For a 2-torsion-free division ving R with involution, the follow-
ing conditions are equivalent:

(i) each symmetric element s satisfies a condition s* - sT™™1p(s) € Z, where
r =r(s) > 1, and where p = p(t) denotes a polynomial with vational irtegral coeffi-
cients;

(ii) each symmetric element is poweyr-ceniral.
The conditions imply that all symmelrvic elements ave central.

Theorem 1 generalizes [3, Theorem 1], and in the case of 2-torsion-free rings,
it extends [7, Theorem 2] and [2, Theorem 1.5]. Now to the case of characteristic 2.

PROPOSITION 4. If S € Z, there exists a paiv of symmetvic elements a and b
in R with the properties

(i) ab+ba =1,
(ii) ab ¢ Z,
(iii) {1, a, b, ab} is linearly independent over Z,

(iv) the subdivision ring Z(a, b) genervated by Z, a, and b has a center
7(a2, b2) with the basis 11, a, b, ab } over its center.

Proof. Assume, by way of contradiction, that ab = ba for all a and b in S.
This implies that R satisfies a polynomial identity of degree at most 4. Conse-
quently, R is at most 4-dimensional. Let M be a maximal subfield of R. In
R (X); M, define an involution (on generators) by

@@m)* =a*x@®m (aeR me M).

Again, any two symmetric elements in R(X); M commute. Now consider the natural
M-isomorphism from R(X); M onto M, . We can equip M, with an involution that
leaves fixed every element in M such that every two symmetric matrices com-
mute. It follows that all symmetric elements of M, must be central. Thus all sym-
metric elements of R are central, a contradiction. We must conclude that there are
two noncommuting symmetric elements u and v in R. In view of Proposition 3,

‘ m
2 ¢ Z. Let n and m

n m

denote the least integers for which ul2 commutes with v and vZ commutes with
2n—l on- pm-1

n
there exist two positive integers n and m such that u? , v

u . Set a=u and b'=v . . Clearly, a%(b'%) commutes with b'(a), but a
does not commute with b'. If b = (ab'+ b'a) b, condition (i) is satisfies. A rou-
tine inspection shows that (ii), (iii), and (iv) also hold.

PROPOSITION 5. If S& Z, the i’nvolution is of the first kind.
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Proof. Let a and b be defined as in Proposition 4. It suffices to show that the
involution leaves each element of Z(a2, b2) fixed. Thus one may assume that
R = Z(a, b) and that consequently Z = Z(a, b2). Let £ € Z, and let x = a + £b.
Then

x* = a-i—E*b,
s = xx* = a4+ Et*ab+ fba + EE¥D2 = 2+ (£ +£E%ab  for some z € Z,

k k
s2” =g +(6+£%)% ab  for some z, € Z (k=1,2, ).
Assume, by way of a contradiction, that £ + £*¥+ 0. If s € Z, then
(¢ + £%¥ab € Z; consequently ab € Z, which is impossible. One must conclude that

s ¢ 7Z. By Proposition 2, there exists a positive integer k such that sZk € Z, so

k k
that (¢ +£*)% ab e Z. Since £ +£* # 0, we see that (£ + £%)% # 0. Consequently,
ab € 7, which is again impossible. This shows that £ + £* = 0, that is, £ = £*.

PROPOSITION 6. If S ¢ Z, there is a sepavable *-closed subfield M D Z.

Proof. Let a and b be defined as in Proposition 4, and let x = ab. We see that
x* = ba and xx* = x*x. By Proposition 2, a and b are purely inseparable over Z,

k k
and therefore there exists a positive integer k such that a2 € Zand b® € Z. &
follows that

k k
(xx¥)2" € Z and x% +(EM% =1¢€ Z.

We may therefore assume that R contains an element x with x -+ x*=1 and
xx* € Z. From the equation x2 + (x + x*) + xx* = 0, which has two distinct roots x
and x* it follows that x is separable over Z but x ¢ Z.

PROPOSITION 7. If S € Z, then the centralizer T of any subfield M of R,
which is maximal with respect to the properties of being sepavable over 7 and *-
closed, is a commutative subfield.

Pyoof. Clearly, T' is a *-closed subdivision ring containing M in its center;
therefore we can regard it as a division ring with involution. If SN I" were not con-
tained in Z, then the involution on I' would be of the first kind (Proposition 5).
Hence each element of M would be fixed by the involution and M C S. Since M is
separable, M C Z (Proposition 2), which is in conflict with Proposition 6. One must
conclude that SN I' € Z. From this it follows that yy* = y*y for each y € I'. Let
y € ' with y # y* and y ¢ M. By maximality, M(y) = M. One must conclude that
the difference set I' - M consists entirely of symmetric elements. By the hypothe-
sis, xn(x) ¢ Z C M for each x € T' - M. By Kaplansky’s result, I is commutative.

PROPOSITION 8. If S <& Z, R contains maximal subfields that ave 2-dimen-
stonal over the center.

Proof. By Proposition 6, R contains a subfield M that is maximal with respect
to the properties of being separable and *_closed. By Proposition 2, M N S C Z.
Consequently, M is a quadratic extension of Z. Since M is separable, it must be of
dimension 2 over Z. By [5, Theorem 4.3.2], the centralizer I' of M has the center
M. By Proposition 7, I' = M; that is, M is a maximal subfield.
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THEOREM 2. If R is a division ving with involution, the following conditions
are equivalent:

(i) each symmetric element s satisfies the condition s* - s*1p(s) € Z;
(ii) each symmetrvic element is power-central;
(iii) for each x € R, x+x* and xx* are ceniral elements.
The conditions imply that R must be commutative or 4-dimensional over its center.
Proof. (iii) = (ii). In fact, s%=ss* € Z, for each s € S.

(ii) <= (i). By Proposition 3, (ii) =- (i). In view of Theorem 1, we may assume
that the characteristic of R is equal to 2 and that S € Z. By Proposition 8, R con-
tains a maximal subfield M that is 2-dimensional over Z. Since R is a right-
Artinian algebra over Z, and since M is a finite-dimensional algebra over Z, it
follows that R(X), M is right Artinian [see 8, p. 116, footnote 2]. Because the latter
ring is a primitive ring of linear transformations of R regarded as a left vector
space over M, it follows that R is finite-dimensional over M, and consequently R
is finite-dimensional. Therefore R is 4-dimensional. By Proposition 4, R contains
a subdivision ring A = Z(a, b) that is 4-dimensional over its center C = Z(aZ, b?).
It follows that R = A and Z = C. Writing

and using the property that the involution is of the first kind (Proposition 5), we
verify that x + x* € Z and that

xx* = Egb,+EG+E5al +E £, +E5b5 +E5a%b% e 2 forall x € R.

From the relations xx* € Z and x +x* € Z, it follows at once that R is either
commutative or 4-dimensional.

2. *-PRIME RINGS

In this section, we extend Theorems 1 and 2 to rings R with involution and with
the following properties:

(3) R is a *-prime ring; that is, nonzero two-sided ideals of R that are closed
under the involution (symmetric ideals) have nonzero product;

(4) there exists a nonnilpotent symmetric element s, in R such that SIS(I) €l
for each nonzero symmetric ideal I of R.

Hereafter, we assume that R satisfies (3) and (4).
PROPOSITION 9. Z° is a nonempty subsemigroup of vegular elements.

Proof. By (4), there exists an element s € S that is not nilpotent. Because sg
is power-central, there exists an n > 1 such that sg € Z - {0} and consequently
sg € z%=2"- {0}. This shows that z° is not empty. Next, let s € Z°. Let
x € R with sx = 0. Because s € Z', we see that (s)(x, x*) = 0, where (s) is the
ideal generated by s, and where (x, x*) is the ideal generated by x and x*. Since
these ideals are symmetric, condition (3) above implies x = 0. This shows that s is
regular. Hence z0 is closed under multiplication.
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Evidently, the subset 70 has the Ore property; therefore one can form the par-
tial ring of fractions

Q =Rz = {-}ZE| XxeR, z¢€ ZO},

* *
upon which one defines the involution ( EZ{- > = % .

PROPOSITION 10. (i) Q is the total ring of fractions of R.
(ii) Each symmetric element of Q is nilpotent or invertible.
(iii) Q is semisimple.

Proof. (i) Let x be a regular element, and let s = xx*. This is again a regu-

lar element. Consequently, s® € Z°, and therefore s® is invertible in Q. Since
sM = (xx*)" = x (x*x)"~1 x*, it follows that x is left-invertible in Q. Similarly, x is
right-invertible.

(ii) Let u € S(Q). There exist elements a € R and z € 70 such that
u =a/z =a*/z. From this it follows that a = a* € S(R). If a is nilpotent, then a/z
is nilpotent for z-! € Z(Q). If a is not nilpotent, then a™(@) ¢ 7z and consequently
a is invertible in Q. Then u = a/z is invertible.

(iii) Let J be the Jacobson radical of Q. Let Jy be the restriction to R. Since
J is symmetric, Jg is symmetric. If J # 0, then Jg # 0. By (4), slg € Jo, with
53 e 7Z°. Therefore 515 € J, where sp is an invertible element of Q. It follows that
Q =J. But Q has a unit and cannot be radical. We conclude that Q is semisimple.

J. M. Osborn [12, Theorem 2] has shown that every 2-torsion-free ring Q with
properties (ii) and (iii) in Proposition 10 is of one of the following types:

(5) a division ring;
(6) a direct product of a division ring by itself with the interchanging involution;

() a 2-by-2 matrix over a 2-torsion-free field with involution
( a by _ ( d —b)
cd -¢c al/’
More recently, K. McCrimmon [11, Theorem 2] showed that rings with characteris-
tic 2 and properties (ii) and (iii) are subject to the same classification (with the ob-

vious rectification on the characteristic of the ground field in case (7)). These re-
sults lead immediately to the following theorem.

THEOREM 3. Let R be a *prime ring whose symmelvic elements are power-
central. Suppose that R has at least one nonnilpotent symmetric element sy such

that slam € 1 for each symmetric ideal 1+ 0 of R. Then, for each x € R, the ele-
ments xx* and x +x* arve central.

Proof. Let Q be the partial ring of fractions of R with respect to 7,0 (Proposi-
tion 9). It suffices to prove the theorem for Q. By Osborn’s and McCrimmon’s re-
sults, Q is of one of the types (5), (6), and (7). In the last case, the result is ob-
vious. In case (6), write Q=D @D*, where D is a division ring. For each x € D,
set s = s(x) = x +x* € S(Q). Now, each symmetric element s of Q is of the form
s = a/z, where a =a* and z-! € Z(Q). Since a™ € Z C Z(Q) for some n > 1,
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s" = a—i e Z(Q) = Z(D) D z(DY).

z

From this it follows that x™ € Z(D). By Kaplansky’s result, D = Z(D). This implies
that Q = Z(Q). In case (5), the theorem follows at once from Theorem 2.

3. RINGS WITH NO NIL RIGHT IDEALS

If R is a subdirect product of rings R, with induced involutions such that for
each s, € R, the elements x; x{ and x, +x} belong to Z(R,) for all indices ¢,
then obviously xx* and x + x* belong to Z(R) for all x € R. In order to prove
Theorem 4, it is therefore sufficient to find at least one subdirect representation of
the ring R all of whose factors R, have properties (3) and (4) in Theorem 3.

PROPOSITION 11. If R is a ving with involution, then theve exists a symmetric
ideal N such that

(i) N NS isnil,

(ii) the factov ving R/N, equipped with the induced involution x + N — x* + N,
is a subdivect product of vings with properties (3) and (4).

Proof. For each nonnilpotent symmetric element u of R, define the subset
AW = {u¥| k=12, }.

Clearly, A(u) is a multiplicative system excluding 0. By Zorn’s Lemma, there
exists a symmetric ideal P = P(u), maximal with respect to the exclusion of A(u).
A routine inspection shows that the factor ring R(u) = R/P(u) is a *-prime ring
having properties (3) and (4) with respect to the symmetric element sg =u + P(u).
Let

N = ﬂ {P(u)l u is a nonnilpotent symmetric element } .

This set is a symmetric ideal such that N N S is nil (by construction).

Does the hypothesis in Theorem 4 imply that N = 0? This, in conjunction with
Proposition 11, would at once imply Theorem 4. In fact, we shall prove the follow-
ing result.

PROPOSITION 12. (i) If R has no nil vight ideals (except 0), then N = 0.

(ii) If R has no nil ideals, and if the integers n(s) in the relations sh(s) ¢ g7

have a finite maximum, then N = 0.

Proof. (i) Let s € NN S and s2=0. Let d=sx+x*s e NN S, for an arbi-
trary x € R. There is an n such that

d” =0 = (sx)" + (x*s)® +sy, s

for some y, € R. From this it follows that 0 = d"s = (sx)" s, and consequently
(sx)™*! = 0. This implies that the right ideal generated by s is nil. By hypothesis,
s = 0. It follows that NN S =0. Thus x +x* = xx* =0 for each x € N. Therefore
x2 =0 for all x € N. By a result of J. Levitzki (see [7, Lemma 1]), either N =0 or
R contains a nil ideal different from 0. We conclude that N = 0.
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(ii) By the argument above, if N NS # 0, there exists an s € NN S, with s2 =0
and s # 0, such that the right ideal generated by s is nil of finite index. Again, by
Levitzki’s result, R would contain a nil ideal, and therefore N NS = 0. As above,
this implies that N = 0. We have now proved our main result.

THEOREM 4. Let R be a ving with involution and with center Z, and suppose
that (1) each symmelric element s of R is power-central.

(i) If the only nil right ideal of R is 0, then for each x € R, xx* and x + x*
are centrval elements.

(ii) If R has no nil ideal, and if the integevs n(s) in the velations snls) € 7
have a finite maximum as s vanges ovev the symmelvic elements, then xx* and
x + x* ave central, for each x € R.

COROLLARY 1. If R is a 2-torsion-free ving having no nil vight ideal in which
each symmetric element is power-central, then each symmetric element of R is
central,

Proof. By Theorem 4, 2s € Z, for each s € S. This implies that
2sx - 2xs = (2s)x - x(2s) = 0,
and consequently 2(sx - xs) =0 for all x € R. Since R is 2-torsion-free,

sX - xs = 0. Therefore s € Z for all s € S.

COROLLARY 2. A ving R satisfying the hypotheses in Theovem 4 is a quad-
vatic integrval extension of its center with a standavd identity of degree at most 4.

COROLLARY 3. A semisimple ving R satisfying the hypotheses in Theovem 4
is a subdivect product of vings of one of the following types:

(i) fields;
(ii) 4-dimensional division vings;
(iii) the product of a field by itself;

(iv) 2-by-2 mairices over a field.

4. AN EXAMPLE AND OPEN QUESTIONS

Example (a 4-dimensional division ring R as described in Theorem 2). Let
F = Z (s, t) be the field of rational functions in two commuting variables s and t,
with coefficients in the field Z, of integers modulo 2. Let K = F(y) be the simple
extension of F obtained by adjoining an indeterminate y subject to the condition
y2 -y =t. Let R=K@®KX (X is a multiplicative symbol), and for
u, v, ¢, d € K, define

(u+vX)(c+dx) = (uc +s(1 +d)b) + (du + b(1L +c)X).

Let a=X b= s‘l(yX). Then ab +ba = 1. Thus R is a division ring with the basis
{1, a, b, ab} and center Z = F. The map

v=E(gltEaté,b=tzab o vF=v+Es (£, € Z(R)

turns Q into a quaternion algebra with an involution of the first kind. Here S Z 2z,
but each norm and each trace is central.
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Concerning part (i) of Theorem 4, K. McCrimmon has recently asked the follow-
ing question [10].

Question 1 (McCrimmon). Let R be a ring with involution with symmetric ele-
ments S. If I is a symmetric ideal such that IN S is nil, is I always nil? This
question is equivalent with the following.

Question 2. Let R be a ring without nil ideals. If each symmetric element is
power-central, is each norm and each trace central?

To see that Questions 1 and 2 are equivalent, one can proceed as follows. As-
suming an affirmative answer to Question 1, one can choose the ideal N in Proposi-
tion 11 to be a nil ideal. As we saw earlier, Theorem 3 would immediately give an
affirmative answer to Question 2. Conversely, let R be a ring in which S is nil.
Let N be the nil radical of R, and let R, be the factor ring R/N. By construction,
R, has no nil ideal. If s; is a norm or a trace of Rj, there is, respectively, a
norm or a trace s in R that is mapped back on s;. Because s is nilpotent, s,
must also be nilpotent, and consequently s; is power-central. By the assumption,
s1 is central. Since s; is nilpotent and R; has no nil ideal, s; = 0. From this it
follows that xx* =x +x*=0 for all x € R;. Since x = -x¥ x2 is symmetric, and
x%=0 forall x ¢ R;. Ifnow N # R, then R; contains a nil ideal different from
{0} (Levitzki’s result). One must conclude that R = N, and therefore R is nil.
Thus a more accurate generalization of Herstein’s theorem (no boundedness as-
sumption when there are no nil ideals) is equivalent with an affirmative answer to
McCrimmon’s question. As McCrimmon has pointed out, an affirmative answer to
his question would follow from an affirmative answer to a question of A. Kurosch
[10].
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