APPLICATIONS OF MAPPING THEOREMS TO
SCHWARTZ SPACES AND PROJECTIONS

Joseph Diestel and Robert H. Lohman

1. INTRODUCTION

S. A. Saxon [13] has shown that if E is a locally convex linear topological space
(henceforth: an LCLT space) that is nuclear and X is an infinite-dimensional
Banach space, then there exists an embedding of E into some power X! of X.
Saxon’s theorem improves a result of A. Grothendieck (see [14, p. 102]) who had
proved the theorem in the cases where X = £, for some p (1 < p < ). This raises
the question as to what LCLT spaces are likewise embeddable in a sufficiently high
power of each infinite-dimensional Banach space.

In the first part of this paper, we show that each LCLT space E that is embed-
dable in a sufficiently high power of every infinite-dimensional Banach space is a
Schwartz space. Actually, we do not need the full strength of embeddability in
powers of every Banach space. In fact, embeddability in powers of any of a large
number of pairs of Banach spaces (see Proposition 2 for a listing of the pairs) is
sufficient to imply that E is a Schwartz space. Since cp occurs as one of the mem-
bers of such a pair, and since every Schwartz space is embeddable in a sufficiently
high power of cq (see D. J. Randtke [10]), our result may be near to characterizing
Schwartz spaces. It remains open, for example, to determine whether for every p
(1 < p < =) every Schwartz space is embeddable in some power of ﬂp .

The result on Schwartz spaces depends on Proposition 1, which concerns the
factorization of mappings of subspaces of a product space into a normed linear
space. Proposition 3 concerns normed linear subspaces of products of LCLT
spaces, and it leads to some results on projections of LCLT spaces onto Banach
spaces (see the next paragraph for a sketch, Section 3 for details).

It is often desirable to determine whether a subspace of a normed linear space
X is the image of a continuous projection on X. This is important because the iden-
tification of such subspaces usually provides structural information about the space.
A. Sobczyk’s classical result in this direction states that if X is a separable normed
linear space and Y is a linear subspace of X topologically isomorphic to cg, then
there exists a continuous projection of X onto Y (see [15]). A more recent result
concerning projections, proved by H. P. Rosenthal in [11], asserts that if X and Y
are closed, totally incomparable linear subspaces of a Banach space, then X +Y is
closed. It then follows that X is complemented in X + Y.

The problem of determining the subspaces of an LCLT space that are images
of continuous projections is more difficult. However, if the subspace in question is
a Banach space, some interesting results can be obtained. We show that the results
of Sobczyk and Rosenthal hold in a more general setting, namely, where the under-
lying space is an LCLT space. For instance, we prove that if E is a separable
LCLT space and F is a linear subspace of E topologically isomorphic to cg, then
there exists a continuous projection of E onto F (Theorem 2). We also prove that
if F is a Banach space such that F is complemented in every Banach space that
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contains F, then for each LCLT space E that contains F, there is a continuous
projection of E onto F (Theorem 3). Finally, it is shown that if F and G are
totally incomparable Banach spaces contained in the LCLT space E, then F + G is
a Banach space (Theorem 4).

Notation and Definitions. All LCLT spaces in this paper are assumed to be
Hausdorff spaces. An LCLT space E is a Schwartz space (see [7]) whenever, cor-
responding to each Banach space F and each linear continuous map u: E — F, there

exists a neighborhood V of 0 in E such that u(V) is compact in F. If E is a sub-
space of the product HiEI E; of LCLT spaces and o is a finite subset of I, we de-
note by 7, the natural projection of E into Hieg E;. If E;=G forall i €l we

denote Hiﬂ E; by GI. If F is a Banach space, we write F € & to say that F is
complemented in every Banach space that contains F. For example, £, € &. Also,
if F € # and G is topologically isomorphic to F, then G € &, by a result of A.
Pelczyiiski [8, Proposition 1]. Finally, the LCLT spaces F and G are said to be
totally incomparable if they have no topologically isomorphic infinite-dimensional
subspaces.

2. SCHWARTZ SPACES

PROPOSITION 1. Let E be an LCLT space, let F be a normed linear space,
and let u: E — F be a continuous linear mapping. Suppose that E is a subspace of
some power Gl of the LCLT space G. Then there exist a finite subset o of 1, a
linear subspace S of GY, and continuous linear mappings u;:E—S and u,: 8= F
such that uw =upu; .

Proof. Let U denote the unit ball of F. There exists a family {U;} (i € I) of
neighborhoods of 0 in G such that U; =G for all i not in some finite subset ¢ of I

with u (E N Hiel Ui) ) C U. It is easily seen that if x, y € E and 74(x) = 74 (y),

then u(x) = u(y). Therefore, the linear mapping uy: 75 (E) — F defined by the equa-
tion u,(my(x)) = u(x) is well-defined and continuous. We complete the proof by let-
ting S=7n5(E) and u; =7, .

Remark. If in Proposition 1 we assume F and G to be Banach spaces, then we
can assume S to be closed in the Banach space GY .

PROPOSITION 2. Let o and T be finite sets. If S is a closed linear subspace
of X9, then every continuous lineay opevator u from S to YT is compact fov the
Jfollowing pairs of Banach spaces X, Y:

(1) X=4p, Y=04 (1<q<p <)

(2) X =L, Y =144 (1<q<p<eo, 1<Lq<2);

(8) X=1Ly, Y=Lq(1<q<p<w, 2<p);

(4) X = cg; Y—any Banach space containing no isomovrphic copy of cg;

(5) X =g ; Y—any quasi-reflexive or weakly sequentially complete or veflexive
Banach space;

(6) X=c¢p, Y=2, (1<p<=);
(1) X=cg, Y=L, (1<p <)

(8) X—any Banach space each of whose sepavable subspaces has a separable
dual space; Y = 43 ;
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(9) X = C(K), where K denotes a compact, dispersed, topological Hausdovff
space; Y = £;

(10) X—any reflexive Banach space; Y = 1.

Proof. The reason that u: S — Y7 is compact for the pair X, Y of (n) above is
listed under (n) in the following arguments:

(1) Each of X and Y is isomorphic to its own square. Thus we may assume
that SC X and Y7 = Y. Now apply Theorem A2 of [12].

(2) and (3) imply the conclusion of compactness in the same manner as (1).

(4) Since X is isomorphic to its own square, we may assume that S C X. On
the other hand, using results of [2], we can easily verify that Y7 has the property
of containing no subspace isomorphic to cg. That (4) implies the conclusion now
follows from Remark 4 on page 212 of [12].

(5) follows the argument of (4) and uses the basic facts about quasi-reflexive
(see [3]), weakly sequentially complete (see [6]) or reflexive (see [6]) Banach
spaces, none of which can contain isomorphs of cg.

(6) and (7) imply the compactness of u because of the weak sequential com-
pleteness of the spaces Y, and by the same reasoning as in (5).

(8) implies compactness because of the following facts: If X is a Banach
space each of whose separable subspaces has a separable dual, then (a) every closed
subspace S of every finite power of X also has this property, and (b) every bounded
sequence possesses a weak Cauchy subsequence; continuous linear maps between
Banach spaces are weakly uniformly continuous (hence preserve weak Cauchy se-
quences), and weak Cauchy sequences in £] are norm convergent (see [1]).

(9) implies compactness because of the main theorem of [9] and the fact that
(8) implies compactness.

(10) is a consequence of (8) and the fact that every separable subspace of a
reflexive Banach space has a separable dual space.

THEOREM 1. Let E be an LCLT space that is topologically isomovphic to a
subspace of both X! and YI, wheve X and Y coustitute one of the paivs of (1) to
(10) of Proposition 2. Then E is a Schwartz space.

Proof. We may assume that E is a subspace of both X! and YJ. Let u be a
continuous linear map from E into the Banach space F. By two applications of
Proposition 1, we can verify that there exist finite subsets ¢ and 7 of I and J,
respectively, and closed linear subspaces S; and S, of the Banach spaces X% and
Y7, respectively, such that u is factorable in the form u = uzupu;, where

u;: E — Sy, up: S; — Sy, usz: S, —» F

are continuous linear mappings. If X and Y constitute one of the pairs of (1) to
(10), then, by Proposition 2, u, is compact. Consequently, u is compact, so that E
is a Schwartz space.

Remark. Theorem 1 shows that an LCLT space that is embeddable in a suffi-
ciently high power of every infinite-dimensional Banach space is a Schwartz space.
It is still an open question, however, whether an LCLT space with this property is
nuclear.
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3. PROJECTIONS ONTO BANACH SPACES

The following result of Diestel, Morris, and Saxon [5, Theorem 4.1] is useful in
the study of the structure of varieties of locally convex spaces (see also [4]). It is
essential to the remainder of this paper.

PROPOSITION 3. If a normed space E is a subspace of the product Hiel E;
of LCLT spaces, then theve exists a finite subset o of 1 such that the mapping 7y

is a topological isomorphism of E into Hieo E;.

Proof. Let U denote the unit ball of E. Then U contains a set of the form
E N ( HieI Ui) , where each U, is a neighborhood of 0 in E; and U; = E; for all i
not in some finite subset ¢ of I. We claim that 7, has the property in the conclu-

sion of Proposition 3. Since 7w, is linear and continuous, we need only show that
Tg is one-to-one and relatively open. If 7;(x) = 0, then x is in every multiple of U,

so that x = 0. On the other hand, ( | ] P Ui) N 75 (E) C n5(U), so that 7, is rela-
tively open.

Remark. It follows from the proof of the preceding proposition that if 7 is a
finite subset of I with 7 O o, then 7, is still a topological isomorphism of E into

II;cr E;.

THEOREM 2. Lel E be a separable LCLT space, and let F be a subspace of
E such that F is topologically isomovphic to cy. Then there exists a continuous
projection of E onto F.

Proof. As a separable LCLT space, E is topologically isomorphic to a sub-
space of a product HieI E; of separable Banach spaces. Therefore, we may as-
sume that E is a subspace of Hi e1 E; . By Proposition 3, there exists a finite sub-
set ¢ of I such that the mapping 7;: E — Hieo E; is a topological isomorphism

into Hieo E; when restricted to F. Now HiE()’ E; is a separable normed linear

space, and 75 (F) is topologically isomorphic {o ¢y . Consequently, there exists a

continuous projection P of Hieg E; onto ﬂU(F). If 7 =74 | F, we can easily see
that Q = 7. P7y is a continuous projection of E onto F.

Since every LCLT space is topologically isomorphic to a subspace of a product
of normed linear spaces, we can use an argument similar to the proof of Theorem 2
to prove an analogue of Theorem 2, under the assumption that E is an LCLT space
and F ¢ &,

THEOREM 3. Let E be an LCLT space, and let F be a subspace of E such
that ¥ € &#. Then there exists a continuous projection of E onto F.

As a final application of Proposition 3, we show that Rosenthal’s theorem can
be extended to the case where the underlying space is an arbitrary LCLT space.

THEOREM 4. Let E be an LCLT space, and let ¥ and G be subspaces of E
such that ¥ and G ave Banach spaces. If F and G arve totally incomparable, then
¥ + G is a Banach space.

Proof. Since F and G are totally incomparable, F N G is finite-dimensional.
Hence we may assume that F N1 G = {0}. As before, we may assume that E is a
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subspace of a product Hid E; of Banach spaces. By Proposition 3, there exist
finite subsets oy and o of I such that To g and Toa are topological isomor-

phisms of F and G into Hieo

0 =0 Uog. By the remark following Proposition 3, the mapping

E. , respectively. Let

i

F Ei and HieoG

Tg: E— Hieo E; has the property that 7 | F and Ty [ G are topological isomor-

phisms into Hieo E; . It follows that 7, (F) and 7,(G) are totally incomparable

subspaces of the Banach space Hieg E; . By Rosenthal’s result for Banach spaces,
75(F) + 715(G) is a Banach space. Since 7,(F) and 7,(G) are totally incomparable,
715 (F) N 75(G) is finite-dimensional. Therefore, there exists a continuous projec-
tion P of ny(F) +75(G) onto 7,(F) that annihilates a closed, complementary sub-
space of 75(F) N 75(G) in 74,(G). If R =7, | F + G, we can easily verify that

Q= 71}}1 PR is a continuous projection of F + G onto F. It follows that F + G is
topologically isomorphic to the product F X G, so that F + G is a Banach space.
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