INNER FUNCTIONS IN THE POLYDISC AND MEASURES
ON THE TORUS

P. R. Ahern

The purpose of this note is to prove a proposition about the structure of R. P.
measures, and to use this result in the consideration of some problems about inner
functions in the polydisc. In the first section, we give the result about R. P. meas-
ures. In the second section, we apply this result to get some information about
factoring inner functions, and in the last section we consider some examples.

1. In what follows, C denotes the space of complex numbers, U the open unit
disc in C, and T the boundary of U. We consider Borel measures p carried on
TN < CN, where N is a positive integer. We fix positive integers k and ¢ such
that k + £ =N, and we write

cN =ckxc?, TN=r7kxTrl{  yN=ykxul.

If ze CN, we write z = (¢, w), where £ € Ck and w € c?. If n is an N-tuple of
integers, we write n = («, 8), where « is a k-tuple and B is an £-tuple. We use the

n n
usual multi-index notation z" = zll zNN. If p is a Borel measure on T, we let

i) = j ),
T

and if E C TN is a Borel set, we let pug denote the restrictionof p to E. If p isa
Borel measure on TN, we denote by 7y the measure on TX such that

(mp) (E) = u(E x TY) for every Borel set E C TK. We note that if f is a continuous
function on TX, then

A real Borel measure u on TN is said to be an R.P. measure if [i{n) = 0 when-
ever not all the n; have the same sign. The R.P. measures are the measures
whose Poisson integrals are the real parts of holomorphic functions (see [3, p. 33]).
Finally, m; denotes Haar measure on Tk, and my denotes Haar measure on TL.

PROPOSITION 1. Let p be an R.P. measure on TN, and let E C TK be a
Borel set such that m(E) = 0; then 0= () Xmy.

£(¢) d(mp) (¢) = j £(2) du (e, w) .

Tk TN

EXT

Proof. Fix an {-tuple B # 0, say B; > 0 for some i. Then, since p is an
R.P. measure, we see that [i(a, g) =0 unless a; >0 for j=1, -*-, k. Now
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ile, ) = | Eeebau,w = [ ta@ e, w = [ a@efu) .
N N Tk
In other words, (7®P )" (a) = 0 unless a; 20 for j=1, -+, k. It follows from a

theorem of S. Bochner [1] that the measure 7®F 4 is absolutely continuous with re-
spect to Haar measure my . If 8; <0 for some i, then the same argument shows
that (7wh ©)” (@) = 0, unless a; <0 for j=1, -+, k, and we may still conclude from
Bochner’s theorem that 7wh 4 is absolutely continuous with respect to m; . It fol-
lows that if 8 # 0, then awh ¢ is absolutely continuous with respect to my, . Hence
(mwP u)g = 0, since my (E) = 0. Hence, for each a, we have the relation

(rwh 1)g (@) = 0, in other words,
{ ta@wpw© = o
E
for all a. But

{ rrawwtm@ = §  t@sfau, w;
E ExT{

that is, (u__,)" (@, ) =0 if g # 0. Note that when g = 0, then
EXT

(uEXTﬂ)“ (@, 0) = (k) (@)

hence we see that the measures By g 20d (mp)g X my have the same Fourier co-

efficients, so that they are equal. The proof is complete.

2. If ¢ is a bounded holomorphic function in UN, then lim,._,,- ¢(rz) = ¢*(z)
exists for almost all z ¢ TN, If Iqb*(z)l = 1 almost everywhere, we say that ¢ is
an inner function. If | is a positive singular (with respect to Haar measure) R. P.
measure on TN and f is the function whose real part is the Poisson integral of pu,
then ¢ = exp(-f) is an inner function. Moreover, every nonvanishing inner function
arises in this way. These matters are discussed in [3]. If ¢ and ¥ are inner func-
tions in UN, we say that ¢ divides ¥ if ¥/¢ is an inner function. If ¢ and ¥ are
nonvanishing inner functions with corresponding R.P. measures p and v, then ¢
divides y if and only if 0 < u < v. Therefore the problem of finding all divisors of
Y is equivalent to finding all R. P. measures p suchthat 0 <y < v. Finally, we
point out that if ¢ is a nonvanishing inner function whose R.P. measure is u, then
¢ is independent of the last ¢ variables if and only if 4 =0 X my, where ¢ is an
R.P. measure on TX.

PROPOSITION 2. Let ¢ be a nonvanishing inner function in UN with R.P.
measure | on TN, Let ¢, be a nonvanishing innev function in U¥ with R.P.
measure o on TX. Then ¢, divides ¢ in UN if and only if o < mp.

Proof. If ¢, divides ¢ in UN | then the preceding remarks imply that
o Xmyg < p, and hence ¢ =7(0c X my) <7p. On the other hand, suppose o < 7p.
Since ¢; is an inner function, ¢ is singular. Let E be a Borel set in TK such that
m, (E) =0 and ¢ is carried on E. Then, by Proposition 1,
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and hence ¢ X myg < uEXTﬂgp.

PROPOSITION 3. Let ¢ be a nonvanishing innev function in UN | and let ¢, be
an inner function in UK ; then ¢| divides ¢ in UN 4f and only if the function
F(€) = ¢(¢, 0)/$,(€) is bounded in U .

Pyoof. If ¢, divides ¢ in UN, then ¢(¢, 0)/¢,(¢) is certainly bounded in UK.
To see the other implication, let y be the R.P. measure for ¢; in other words, let
¢ = e-f, where the real part of f is the Poisson integral of .. Because
o(t, 0) = exp {-£(¢, 0)}, we see that

N1(g, 0) = Pe(0)du(6, ¢) = Pe(0)d(mp) (6) ,
N ¢ K ¢

where Pg(6) is the Poisson kernel [3]. If ¢ is the R.P. measure for ¢,, then

¢; = exp(-g), where %ng(¢) = S P;;(B)do(@). Now it follows that
Tk

#(€, 0)/¢,(€) = exp{-(f- g} and REE) - &) = S Pe(0)d(mp - o) (0).
Tk

Since the quotient F({) = ¢(¢, 0)/¢,(¢) is bounded and ¢; is an inner function, F
must be bounded by 1. Hence the Poisson integral of nu - o is always nonnegative,
so that 7y - ¢ > 0. The result now follows from Proposition 2.

We shall see from the examples how this can fail if ¢ is allowed to take the
value 0.

PROPOSITION 4. Let ¢ be a nonvanishing inner function in UN. Then ¢ has a
unique factovization in the form

oz, o, zp) = o1(z)) Wz, o, 200,

where ¢1 and Y are innev functions and ¥ has no factor depending on z| alone.

Proof. We take k=1 and £ =N - 1 in the previous propositions, and we con-
sider the Lebesgue decomposition of the measure 7wy, where p is the R.P. meas-
ure for ¢. We see that 7y = hm, + 0. Let ¢; be the inner function corresponding
to the measure o. (Since k = 1, every measure is R.P.) Since ¢ < my, ¢, divides
¢ in UN, by Proposition 2. If ¢ = ¢/¢ , then the R.P. measure for ¥ is
-0 Xmyg=v. Because nv =7y - ¢ = hm;, there are no positive singular meas-
ures 7 X 7, and therefore Y has no factor depending only on z; (again by Proposi-
tion 2). Finally, the uniqueness of the decomposition follows from the uniqueness of
the Lebesgue decomposition of mu.

It is easy to see that if ¢ is any inner function in UN and k + ¢ = N, then we can
write ¢(¢, w) = ¢;(¢) (¢, w), where ¢; and y are inner functions and ¥ has no fac-
tor depending on ¢ alone. However, we shall see that when k > 1, we no longer get
uniqueness, even if ¢ has no zeros.

3. First we show that Proposition 3 can fail if ¢ is allowed to vanish. It is easy
to find an inner function ¢(¢, w) in U2 such that ¢(0, 0) = 0 (and hence ¢(¢, 0)/¢ is
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bounded) but ¢ does not divide ¢(¢, w) in U2. We go a bit further and show that
there exist an inner function ¢ in U2 and a nonvanishing inner function ¢ in U
such that ¢(¢, 0)/¢,(¢) is bounded but ¢; does not divide ¢ in U2. To get such
functions ¢ and ¢;, let ¢; be a singular inner function in U, and pick vy so that

I'y| < 1 and B = (¢; +9)/(1 + ¥$;) is a Blaschke product. This is possible, by a
well-known theorem of Frostman [2, pp. 109-113]. Let ¢ be another singular inner
function, define « = y¥(0), and let

B(C)d/(W) - o
- aB(g) y(w) -

(¢, w) =

Clearly, ¢ is an inner function in U?2 , and since

B(¢) -y
1 - ay(0)B(¢)’

$(g, 0) = ¥/(0)

it follows that ¢(¢, 0)/¢1(¢) is bounded. However, if ¢ were to divide ¢ in U2,
there would exist an inner function & in U2 such that

B(¢) - a/y(w) _

This would imply that ¢, divides the inner part of B - a/y¥(w) for all le < 1. But
the inner part of B - 6 is a Blaschke product, for all § outside a set of capacity
zero, again by Frostman’s theorem. This gives a contradiction, because a/y/(w)
covers a neighborhood of ¥, as w varies over U. Hence ¢(¢, O)/qbl(E) is bounded,
but ¢, does not divide ¢ in UZ.

Next we show that the uniqueness part of Proposition 4 can fail if k > 1. We
give an example of a nonvanishing inner function ¢ in U3 with two essentially dif-
ferent factorizations ¢ = ¢, where ¢; depends only on the first two variables and
¥ has no factors that depend only on the first two variables. If ¢ is a nonvanishing
inner function in U3 with measure pu, and 7u is its projection on T2, then finding a
factorization of the type indicated is equivalent to finding a singular R.P. measure
o on T2 such that 0 <o <7u and ¢ is maximal with respect to this property, in
other words, such that if 7 is a singular R.P. measure satisfying the relations
o <7 <L mu,then 7 =¢. Therefore, to produce our example we need a singular
positive R.P. measure p on T3 such that there exist two different singular R.P.
measures ¢ ] and ¢, on T2, both maximal with respect to the property of being
less than wp. We sketch the construction and omit the verification of the details.
We begin with three measures on T:

dr(8) = [17/8 + cos 6 + cos 29]%?—,

dae

do 1(9) = Ey

do »(0) = (9/8 + cos 9)%

All are positive, and o3 <A, 0 <. We map T into T2 py the map z +— (z, Z).
This induces measures X, 0;, 0p On T2 from the measures A, 0], and o, . They
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are singular with respect to Haar measure mp on TZ, and 01 and 0, are R.DP.
measures. Define the measure 7 on T2 by the formula

do do
(2m)? ’

d7(6, ¢) = [1 - cos(6 - ¢)]

and let v =7 +X. Then v > 0, v is an R.P. measure, and X is the singular part
of v. Moreover, 0} < v and 0,< v, and among singular R.P. measures they are
maximal with respect to this property. Therefore we need only show that there is a
positive singular R.P. measure p on T3 such that 7 = v. To this end, we map
T2 into T3 by the correspondence (¢, w) —'({, w, {2w2). This induces a measure
t; from the measure 7, and we can easily verify that p =pu, + A X m; is a posi-
tive, singular R.P. measure and that 7y = v.
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