ON THE EXISTENCE OF SIMPLE QUADRATURES
Seymour Haber

If S is a set of functions that are Riemann-integrable on [0, 1], then a formula

(1) S foax = 2 a; £(x;),

i=1

in which the x; are distinct and the a; and x; are fixed independently of the function
f, is called a simple quadrature for S if it holds for every function f in S. The
functions may be complex-valued, and the a; and x; may be any complex numbers.

The notion of simple quadrature was introduced by Philip Davis, who investi-
gated it in a series of papers ([1], [3], [4]; see also [2, pp. 357-358]). The term
“simple” indicates the contrast with the usual numerical quadrature rules, which
have the form '

(2) 51 f(x)dx = lm 27 a;  f(x; ).
0

n—oo i=1

There are rules of the form (2) — for example the trapezo1da1 rule, with
=({i-1)/(n-1) and 2 = =1/(n-1) for i # 1, n; a; n= = 1/2(n - 1) —that
are valid for all (properly) Riemann-integrable functions. In contrast Davis showed
that no rule of the form (1), with distinct x;, is valid for all continuous functions, and
he asked what classes of functions have simple quadratures. He proved [1] that there
is a simple quadrature for the class of polynomials, and later [3],[4], he showed that
there are some regions R in the complex plane —R containing the integration in-
terval — such that the set of functions analytic on R has a simple quadrature. In
this paper I shall construct simple quadratures for some wide classes of continuous
functions; it will follow, for example, that the class of all functions continuously dif-
ferentiable on [0, 1] has a simple quadrature; this extends Davis’s results.

The present construction is related to a theorem of Fritz John ([5] to [7]), who
found formulas of the form (1), where the x; are not distinct, that are valid for every
Riemann-integrable f. One way to obtain such formulas is as follows: We first gen-
erate a rule of the form (2) in which the sums on the right are Riemann sums: For
n=1,2, -, let

I, = (W, 0, Wn,is """s W)y Where 0=w, o <w, < <wy,=1,

be a partition of [0, 1] into n subintervals; and for i=1, 2, ---, n, let x,, ; be a
point in the ith subinterval. Writing

An,i = Wn,i~ Wn,i-1 and A, = m_a-x{an,i} ’
i
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we specify that the II,, be such that A, — 0 as n — «. With these x,, ; and a, ;, (2)
holds for all Riemann-integrable functions. Furthermore,

t
(3) S f(x)dx = lim 27 an,; f(xp,1)
0

n—eo xp s <t

for every t.€ [0, 1], since (3) is simply equation (2) with f - 0,t] in place of f,
where x[o’t] is the characteristic function of the interval [0, t]; and Riemann in-
tegrability of f implies Riemann integrability of f - X[o,t]- What is important, for
the remainder of the construction, is that the convergence in (3) is uniform in t. To

establish the uniformity, let i* =i*(n, t) be the greatest index i such that x ; <t.
Then

t
SO f(x)dx - 2o an, i f(xp,1)

Xn,i-<-—t
1ot  a%Wni* | Y, i* , « :
<|§tax- § 7 e+ | (7 swax- D e, )
0 0 0 xn, i<t ’
Wn,i* R
< S f(x)dx| + 2 a-n,i(lwn,i - mn,i)’
t Xn,iSt )

where M,, ; is the supremum, and m,, ; the infimum, of f on [wy ;_), Wy ;). E M
is an upper bound for |f| on [0, 1], then

n

S MAL+ 27 an‘,i(Mn,i - mn,i):

i=1

t _
S £(x) dx - 27 an,if(Xn,1)
0 .

xn,i_<.t

and the 'right—hand side, which is independent of t, tends to zero as n — «,

Now form a series (1), block by block, as follows: The first block contains only
the term a; ;f(x; ;). For m > 2, the mth block consists of the terms ap, ;f(x,, ;)
(i=1, ---, m), together with the terms -ay,_j ;f(xp,_1,3) (i=1, ---, m - 1), arranged
in the natural order of the abscissas x occurring in them.  The sum of the first m
blocks is thus '

m
2 am,if(xm,i) ’

i=1

and this converges to the integral as m — «; to show that the series converges, it is
now sufficient to show that the maximum of the partial sums of terms in the mth
block is o(1) as m — «. But any such partial sum consists of precisely those terms
in the mth block whose abscissas do not exceed t, for some particular t in [0, 1].
Thus the partial sum is
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E Am 1f(xm 1) E Am-1 1f(xm-l 1)
*m, i St Xm-1,iSt
t
(4) = (S fix)dx - 2 a_ .f(x_ i))
0 Xpm,; St ’ ’

t
- (S £(x) dx - 27 am_l’if(xm_l,i)),
0 Xm-1,i<t

and each of these two quantities is o(1) uniformly in t.

The series constructed does not define a simple quadrature, since each of the
abscissas occurs in it twice.

The construction above is based on the idea of converting a rule of the form (2)
into one of the form (1) by use of the standard identity

n-— co

Each S, is a Riemann sum, and each S,;; - S, is a difference of two sums; we ar-
ranged the terms of S, ;; - S, so as to ensure that the partial sums of S, ;; - S,
tend to zero uniformly as n increases. Interleaving the terms of S, ,; and those of
-S, as described accomplished this.

We can form simple quadrature formulas by modifying the construction to avoid
the double occurrence of abscissas. In proving the theorem below, when the Rie-
mann sum S, is to be cancelled by introduction of its negative -S,, we shift the
abscissas occurring in the terms of -S,, by a small amount. Let us temporarily call
the sum actually introduced -S, ,0 - We shall have cancelled S, only approximately,
introducing an error. To cancel this error—again only approx1mate1y, since that is
all that we can do without duplicating abscissas—we introduce the negative of -S_ g
at a later stage, with abscissas shifted once more, but by a smaller amount. Call
this last sum introduced S, At the same time, we must cancel the original sum
S, anew, by a new sum —Sn 1 whose abscissas differ from those of S, —but differ
by a much smaller amount than did the abscissas in -Sh The errors introduced
at this stage are reduced by introducing, at a later stage a sum Sn > to cancel
(very nearly) both S,, | and S,), and a sum S, , to do the same for -S; | and
-S,,,0; and so the process continues.

Care must be taken to interleave the terms of the various sums introduced at
each stage so that in the final simple series, all blocks of consecutive terms will
have appropriately small sums. For this purpose we will find it useful, each time a
previously introduced sum is to be approximately cancelled, to have the number of
terms in the cancelling sum greater than that in the sum being cancelled, by a fac-
tor that is a power of 2—the power being related to the number of stages between the
sum being cancelled and the cancelling sum.

By Davis’s theorem, no such construction can succeed for all continuous func-
tions. We must restrict the rapidity of variation of the function to ensure the con-
vergence to zero of the errors introduced at the successive cancellation stages.
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Finally, it is necessary to arrange that all the various shifted abscissas, arising
from different sums S, at different stages, be distinct. A number-theoretic device
accomplishes this.

THEOREM. Let w(x) be a continuous, stvictly increasing, veal function defined
on [0, 1], with w(0) =0. Let C(w) be the class of all functions £ defined on [0, 1]
and satisfying the condition

lt(x)) - i(x;)| < Aw(]|x) - x,]|)

Jor some constant A = A(f) and for all x|, x, € [0, 1]. The class C(w) has a simple
quadvature (1), in which the a; ave veal and the x; lie in (0, 1).

Proof. For n=1, 2, -+, let p; be the nth odd prime, and let q,, = (p, - 1)/2.
Set
(5) tnr=2r_1 (r=12 -,q).
. ) P,
Let {81 > €2, } be a sequence of irrational numbers such that, for each n, the
numbers 1, &, €, , -*+, €, are linearly independent over the field of rationals. Let

the ¢, satisfy the further conditions

w@"e,) = 0(2™n%) asn-— o,

1 ) |
(6) E:‘n _<__ 2pn (Il - 1’ 2: )!
€, > 26, +4E ,+8 0 (m=1,2, ).

(One way to construct such a sequence is to set €, = { Vp, }/m, , where {a}
denotes the fractional part of a and where {ml , My, ---} is a sequence of positive
integers defined recursively as follows: m; is chosen sufficiently large to make
w(2e;) < 1/2 and €, < 1/6. For n > 1, m, is chosen sufficiently large to make
£, <min {2 w 1(2""n"?), 1/2p,, €,_1 /4}.)

I now define a collection of sets C, . + and C, . _ whose union will be the set
of abscissas of the simple quadrature formula. I shall use the following notation: If
S is a set of real numbers, x is a real number, and m is a positive integer, then

S+x = {s+x| s e 8},

S+m*x = {s+hx| s €S, hisaninteger, h+ 0, |h| < om-11

Set Cn,0,+ = {tn,ﬁl 1< ‘Q.__<_ qn} and Cn,O,— = Cn,0,+ +¢,,for n=1,2, -, and
r-1
(1) Chry = U (Cp o7 t(r-Oxe )
- £=0
for n, r, =1, 2, ---. Each number in the set C, .. , is of the form
(8) th,s T oy Ty &y + o+ 0 Eyy,

where ¢g =0 or 1 and @, @,, ---, @, are integers such that |a;| < 2i-1.
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Let us describe the sequences (ag, @;, ***, ) that actually occur in writing
elements of C, ..+ or C, . _ in this form (call those admissible sequences): An
r-symbol ¢ will be an ordered (r + 1)-tuple of nonnegative integers, some of them
starred (for example, (1, 0, 1, 0) and (0, 1*, 2%, 1) are 3-symbols). For each r-
symbol o, S(o) will be the set of all ordered (r + 1)-tuples of integers that we can
obtain from ¢ by replacing each starred integer n* by nonzero integers between
-27-1 and 2°-1 . The set of admissible sequences for C, o ; is S((0)); that for
Cy.0,- is S((1)); that for C,, ; ; is S((1, 1%)), that for C, , ; is

s((1 0, 2*)) U s((0, 1*, 1)),

and so forth. It is easy to see, by 1nduct10n that the set of adm1ss1b1e sequences for
Ch,r,+ Or Cy . _ isof the form .

21‘—1

5 | U S(Ui):
i=1

where each ¢; is an r-symbol having the property that the sum of the starred inte-
gers in it is r, and where the 2-! sets S(o;) are disjoint. Since each S(o;) has:
2% members, there are exactly 2 2r-1 admissible sequences for C, . , or for

C

n,r,-
If (ozo, o, -+, o) and (ap, aj, -+, @,) are two admissible sequences, then,
by the rational independence of the ¢,. the equation
th,s T@En+ "+ Qe =ty o H00EL + o+ QrEnyy

can hold only when s =s' and ag = @), o) =a}, -+, @, = @k. Thus each of
Ch,r,+ and C,, . _ has er'lqn members for r >0, and q, for r = 0. The various
sets Cn 0,4+ are d1s101nt and it follows from the rational independence of the £, that
all the sets Cy,r,+ are disjoint. Since 1/p, <t, ¢ <1 - 1/py, it follows from (8)
and from the second and third conditions of (6) that each point in each Cp,r,+ isin
(0, 1). e

It remains to define the coefficients a; and the order of appearance of the terms
involving the various abscissas. I shall refer to terms of the series by way of the
abscissas used in them, in phrases such as “the C, ¢ ;-terms.”

For each n and r, the coefficients (or weights) of the Ch,r,+terms will all be
(2" q,)" 1. and those of the C_ . _-terms will be -(27q,)"!. It follows that the
series (1) will not converge afsolutely, because for each n the sum of the absolute

values of the C, ,. ,-terms and the C, , _-terms will be 2% when'f = 1.

I shall describe first the order of certain blocks of terms, and then the order
within those blocks: The first block, B, , consists of the C 1,0,+-terms; B, consists
of the CZ 0, +-terms and the Cl 0, _-terms, B3 of the C3 0,+7> CZ 0,-"> Cl,l +- and
Ci1- -terms; in general, B, consists of the Ch,0,+- and Cn LO,_—terms, and all
the C and C,_; ;_;, _-terms for all i=2,3,4,---,n-1

For n > 1, B, consists of n - 1 consecutive subblocks; B, j contains the
Cph,0,+~ andthe C,_; o -terms;for i=2,3, -, n-1, B,,; contains the
+- and the C -terms. I shall write B, ; = B;.

n-i,i-1,-

n-i,i-1,+"

n-i,i-1,

For each n, the terms in B, ; are arranged in the natural order of the
abscissas occurring in them. For i > 1, B, ; consists of consecutive subblocks
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Bn,i,j G=1,2, -, qn_i)- B,,i,j contains the terms of B, ; whose abscissas have
the form

thoijt oot ey g3 trta; 1€6,,

where (ag, @, -+, @;_]) is an admissible sequence for Ca-1,i-1,4 or Cp_1,5-1,--
Now consider all the numbers of the form

Qoen_ T8, 441 T+ a5 38,3,

where (ag, @), -, @;_3, @;_, @;_;) is an admissible sequence for C,_) ;_| 4+ or
Cn-1,i-1,-; denote these, in their natural order, by y;, y2, ***, yp. Divide Bn,i,j
into consecutive subblocks B, ; ; x k=1, 2, -+, M), where By,i,j,k contains terms
of Bp,i,j whose abscissas have the form th-i,j t Yk T @¢i-2&n-2 T ®j-18&n-1.

LEMMA 1. In each B, ; ;1 theve are exactly as many tevms with positive co-
efficients as with negative coefficients.

Proof. By, ; consists of all the C,,_; ;_;,+- and the Cp.j,i-1,--terms; each
Bg,i,j,k consists of all the terms with abscissas in C,,_; ;1,4 or Cp_j ;-1,- that
have the form

1 1 1
(9) thgjtagen i tae gt taoy 3, 3+t 28, 205 18,

with certain fixed j,yab, aj, *+, a;_3. Thus we need to show that there are the
same number of abscissas of the form (9) in C; _; ;.1,+ asin Cp_; ;.1,-. Now

i-3
(10) Cpqi-1,6 = (Cpji23+1%e, 1)U EU (Cn-i g7+ G-1-0%,))
=0
and -
. . i_3 B
(11) Cpnoii2f = EUO (Cpoios+(-2-0%, ;).

Therefore an abscissa of the form (9) is in Ch-ii-1,+ if

!
Tty 38, 3

n-i

'
tn-i,j + a08

is either in.'cn-i,ﬁ,+ orin C, ; p._, for some £ between 0 and i- 3. Ifitisin
Ch-i,0,-, then by (10), there are 2i-1-¢ abscissas of the form (9) in Cn-1,i-1,+, and
by (11) and (10), there are 2i-2-£.21 = 2i-1-£ gych terms in Cn-1,i-1,-- Repeating
the last 2 sentences with subscripts + and - interchanged, we see that the lemma
holds. ' ’ ’

I now compiete the definition of the formula (1) by specifying that in each
Bn,i, ik the terms are arranged in any manner that results in their coefficients
alternating in sign, with the first one positive.

LEMMA 2. For each f € C(w),

' 1
(12) : lim (By+Bp + - +B,) = S £
, y

n— o« '
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This lemma says that the series (1) constructed above converges- “by blocks” to
the desired sum. To prove it, we first define T(C), for any set C of abscissas, to -
be the sum of the terms of (1) involving the abscissas of C.- Then . :

n-1 i-1

(13)* B; +Bp + - +B, —T(Cn0+)+Z‘l 2 {T(C,- 1r+)+T(Cn 1r-)}'~~
i=1 r=0 a

Clearly,

T(Cn0+)— (2r—1) S f asn—ow,
. nrl

and the lemma will follow if we show that the double sum in (13) is o(1). Now

i-1
2 {T(Cn-i,r,+) + T(Cn—i,r,—)} .
r=0 ’ -
i-2
= T(Cn -i,i- 1+)+T(Cn i,i-1, J+ Z)O {T n- 1r+)+T(Cn 1,r, -)}
~i 2 )
= 27 {T(Cpjr, -+ = 150) e, 1)+T(Cn S,r, )
r= 0
i-2 )
+ E {T(Cn 1r++(1"' l‘r)*sn l)+T(C -1r+)}
r=0
But
T(Cpoi,r, ) + T(Cpyp, o + (- 1~ ) * e, y)

o1 .
21‘ ’ E ( n- 1))
qn-i X€ Cn_i’r,_ -

where the inner sum extends over all integers m between —21 -2-T and -!-21 -2-r
except 0. For each m,

]

f(x + rh‘an*l) f(x) + 0Aw(me, ;) = f(x) + 0Aw(2i-2"T €n-1)

£(x) + 0Aw(2™ 3 ) = i(x) + 0Aw(2" te, ),

where each 6 is some number in [-1, 1]. Since the number of abscissas.in Cy_j r,+
is no more than 22%q_ _;, it follows that

| T(Cpoi e, ) +T(Chlip, -+ - 1- )%, )| < 27 Aw(@le__));
a similar statement holds for C,_; . . Thus the inner sum in (13) has absolute

value less than 21 Aw(2n-1 € ) the double sum is therefore bounded by
2" Aw(22-l g _;), and the lemma follows from the first condition in (6).
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Now define M, to be the maximum, over all integers s, of the absolute value of
the sum of the first s terms in B,,. To prove the main theorem, it is sufficient, in
view of Lemma 2, to show that M, —» 0 as n — «. This will be done in Lemmas 3,
4, and 5.

LEMMA 3. Let M, be the maximum, over all integers s, of the absolute value
of the sum of the first s terms in By, | . Then M, — 0 as n— .

Proof. Since the terms in B, ; are arranged in natural order of the abscissas
occurring in them, we may write

Mi=| T Lligg- T L
x< xQ In x<xq n-1
Xecn,0,+ Xecn"l,os'

for some x( = xy(n). Furthermore,

. Y fx) = -t Y i(x+ey)

Un-1 x< % In-1 x<xg-En

(14) € EnoL0,- *CnoL,0pt
S T )+ 0Aw(e,) + 25,
qn-l XSXO qn_l

x€Cph_1,0,+

where each 6 lies in [-1, 1] and K is an upper bound on |f| in [0, 1]. (The last
term in (14) is included to provide for the possibility that the last sum written in
(14) contains one more term than the previous sum.) The number of points in
Cn_l’o’Jr is q,,_;; therefore we may write

-l T Lliw- T L i) + 0Aw(E,) + 25

x€ Cn,0,+ x€ Cn-l,0,+

M

'
n

The last two terms clearly tend to 0 as n — «; that the sum of the first terms is
o(1) uniformly in x;, as n — «, follows from the argument used to prove the same
fact for (4).

LEMMA 4. If i>2 and 22 is the sum of thefirst s terms of By ;, where s
is an even integer, then lE' < A'n~?%, where A'= A'(f) is independent of i and
of s.

Proof. Denote the terms in E, in order, by B8;, B2, ', Bg- The set B, ;
consists of blocks By,i,j,k> each of which contains, by Lemma 1, an even number of
terms. Therefore we can write

20 = (B +Bp) + (B3 + By + -+ (B 1 +Bg),

and each pair of terms (8,,._;, B2,) belongs to a particular By ; ;1. The coeffi-
cient of B,._; is (21-1q,_;)-1, and that of B, is -(21-1q,_j)-1; the abscissas
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occurring in the two terms differ by no more than 2i-3 ¢, _, +2i-2¢ _,, which is
less than 2°%~2¢__, . Thus

1821 + B2 | < AQRUq )-tw(@n-2e ,);

and since s is no greater than the number of terms in Bn’i , which is 221-3 d,_;, We
see that

|Z] < Agi2w@r-2e, ;) < A2r2w(e2e ,);

the lemma now follows from the first condition in (6).
LEMMA 5. Lim_ _, ., M_ = 0.

Proof. Let us say, to be specific, that M, is the absolute value of the sum of
all the terms in B,, through the sth term in B,, ;. If i =1, Lemma 5 reduces to
Lemma 3. If i > 1, assume, for the moment, that s is odd. Write

n —> o0

+Z)+7|,

where 27 is the sum of the first s - 1 terms in B,, ;, and where 7 is the sth term.
The coefficient in 7 is (Zl‘lqn_i)-l, and therefore |7|< K(21'1qn_i)-1, where K
is an upper bound on |f|. By Lemma 4, each of |Bn,2|, |By,3], =+5 |By,i-1], and

I El is less than A'(f)n-2; since i <n - 1, we see that

M, = IBn’l +B, ,++B

n,i-1

M, <M, +A'n!+D;lK,
where D, = min {2q,_,, 22qn_3, 23q,_4, s 2n‘lq1}. Since q, > n,
D, > min{2(n - 2), 22(n - 3), ---, 27 -1} = 2n- 4

and M, = o(1). If s is even, the proof goes through more simply, with 7 absent.

This completes the proof of the theorem. We obtain an interesting particular
case by taking w(x) = x; there is a simple quadrature for the class of all functions
satisfying a Lipschitz condition on [0, 1].
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