THE INTEGRAL MEANS OF CLOSE-TO-CONVEX FUNCTIONS

Donald R. Wilken

Let C denote the class of close-to-convex functions f analytic in the unit disc $\Delta = \{z: |z| < 1\}$ and normalized so that $f(z) = z + \sum_{n=2}^{\infty} a_n z^n$. Let $k(z) = z/(1-z)^2$ denote the Koebe function. In this paper we prove the following result.

THEOREM. If $f \in C$, $0 \le r < 1$, and p is a real number $(p \ge 1)$, then

$$\frac{1}{2\pi} \int_0^{2\pi} \big|f(re^{i\,\theta})\big|^p\,d\theta \, \leq \frac{1}{2\pi} \int_0^{2\pi} \, \big|k(re^{i\,\theta})\big|^p\,d\theta \, .$$

Recently, T. H. MacGregor [2] established this result for the case where p is a positive integer.

Both MacGregor's and our proof rely on the characterization of the extreme points of the class C viewed as a compact family in the space of all analytic functions in Δ with the topology of uniform convergence on compact subsets of Δ (see [1]). The restriction $p \ge 1$ (rather than p > 0) is essential in our technique. In the case $p \ge 1$, the p-norm $\|f\|_p = \left[(2\pi)^{-1} \int |f(re^{i\theta})|^p d\theta \right]^{1/p}$ is subadditive, so that the maximum value is attained over the extreme points.

The proof of the theorem involves some problems in the calculus.

LEMMA 1. Let

$$0 \le x < 1$$
, $1/2 , $F(x, p) = [1 - (2p - p^2)x^2]^{1/2} - px - (1 - x)^p$.$

Then F(x, p) < 0.

Proof. $F(x, p) \le 0$, provided $1 - 2px^2 \le 2px(1 - x)^p + (1 - x)^{2p}$. Since $(1 - x)^p \ge 1 - x$ for $p \le 1$, and since $(1 - x)^{2p} \ge 1 - 2px$ for $p \ge 1/2$, the lemma follows.

LEMMA 2. Let $f(z) = 1 + \sum_{n=1}^{\infty} \gamma_n z^n = (1-z)^p$ (1/2 $\leq p \leq 1$), and let $f_N(z) = 1 + \sum_{n=1}^{N} \gamma_n z^n$ be the Nth partial sum of the power series. Then $|f_N(z)| \leq 1$ if $|z-1/2| \leq 1/2$.

Proof. Because $\gamma_1 = -p$ and $\gamma_n < 0$ $(n = 2, 3, \dots)$,

$$\left|1 + \sum_{n=1}^{N} \gamma_n z^n \right| \leq |1 - pz| + \sum_{n=2}^{N} |\gamma_n| |z|^n \leq |1 - pz| + 1 - p|z| - (1 - |z|)^p.$$

Received March 17, 1972.

This research was partially supported by National Science Foundation Grants GP 12020 and SD GU 3171.

Michigan Math. J. 19 (1972).

We note that the circle |z - 1/2| = 1/2 has the parametric representation

$$z = e^{i\alpha} \cos \alpha \quad \left(-\frac{\pi}{2} \le \alpha \le \frac{\pi}{2}\right),$$

and that with the notation $|z| = r = \cos \alpha$ we can therefore write

$$|1 - pz| + 1 - p|z| - (1 - |z|)^p = [1 - (2p - p^2)r^2]^{1/2} + 1 - pr - (1 - r)^p$$
.

Thus it suffices to show that

$$[1 - (2p - p^2)r^2]^{1/2} + 1 - pr - (1 - r)^p \le 1$$

for $0 \le r \le 1$ and $1/2 \le p \le 1$. The inequality follows from Lemma 1.

The critical step in the proof of the theorem is the following lemma.

LEMMA 3. Let

$$h_a(z) = \left[\frac{1-az}{(1-z)^2}\right]^q = \sum_{n=0}^{\infty} \sigma_n(a) z^n \qquad \left(q \ge \frac{1}{2}, |a-\frac{1}{2}| = \frac{1}{2}\right).$$

Then $|\sigma_n(a)| \leq \sigma_n(0)$; that is, each coefficient is maximized when a = 0.

Proof. Write $q = N/2 + \epsilon$, where N is a positive integer and $0 \le \epsilon \le 1/2$. Let $S = q/N = 1/2 + \epsilon/N$, so that $1/2 \le S \le 1$. Then

$$h_a(z) = \left[\frac{(1-az)^S}{1-z}\right]^N \frac{1}{(1-z)^{2\varepsilon}}.$$

Note that $(1-az)^S/(1-z)=1+\sum_{n=1}^\infty b_n(a)\,z^n$, where $b_n(a)=1+\sum_{k=1}^N \gamma_k\,a^k$ and γ_k is as given in Lemma 2 with p=S. Hence $\left|b_n(a)\right|\leq 1$; that is, $\left|b_n(a)\right|\leq b_n(0)$ for $n=1,2,\cdots$. The same inequality clearly holds for $[(1-az)^S/(1-z)]^N$, and since all coefficients of $(1-z)^{-2\epsilon}$ are nonnegative, the inequality $\left|\sigma_n(a)\right|\leq \sigma_n(0)$ holds.

Proof of the theorem. In [1], the extreme points of C are given, up to an appropriate rotation, in the form $f_a(z) = (z - az^2)/(1 - z)^2$ with |a - 1/2| = 1/2. We therefore need only show that

$$\frac{1}{2\pi} \int |f_a(re^{i\theta})|^p d\theta \leq \frac{1}{2\pi} \int |k(re^{i\theta})|^p d\theta \qquad (p \geq 1).$$

Let p = 2q $(q \ge 1/2)$ and $h_a(z) = \frac{(1 - az)^q}{(1 - z)^{2q}} = \sum_{n=0}^{\infty} \sigma_n(a) z^n$. We want to show that

$$\frac{1}{2\pi} \int |h_a(re^{i\theta})|^2 d\theta \leq \frac{1}{2\pi} \int |h_0(re^{i\theta})|^2 d\theta ,$$

in other words, that

$$\sum_{n=0}^{\infty} |\sigma_{n}(a)|^{2} r^{2n} \leq \sum_{n=0}^{\infty} |\sigma_{n}(0)|^{2} r^{2n} = \sum_{n=0}^{\infty} (\sigma_{n}(0))^{2} r^{2n}.$$

But this follows immediately from Lemma 3, and the theorem is proved.

Since the function $(1 - az)/(1 - z)^2$ is not subordinate to $1/(1 - z)^2$ for every admissible a, the inequality

$$\frac{1}{2\pi} \int |f_a(re^{i\theta})|^p d\theta \leq \frac{1}{2\pi} \int |f_0(re^{i\theta})|^p d\theta \qquad (0 \leq r < 1, \ p \geq 1)$$

cannot be regarded as a special case of subordination theory.

REFERENCES

- 1. L. Brickman, T. H. MacGregor, and D. R. Wilken, Convex hulls of some classical families of univalent functions. Trans. Amer. Math. Soc. 156 (1971), 91-107.
- 2. T. H. MacGregor, Applications of extreme-point theory to univalent functions. Michigan Math. J. 19 (1972), 361-376.

State University of New York Albany, New York 12203