THE INTEGRAL MEANS OF CLOSE-TO-CONVEX FUNCTIONS

Donald R. Wilken

Let C denote the class of close-to-convex functions f analytic in the unit disc

A={z: Izl < 1} and normalized so that f(z) = z + Z:zz a,z". Let
k(z) = z/(1 - z)¢ denote the Koebe function. In this paper we prove the following
result.

THEOREM. If fe C, 0<r <1, and p is a real number (p > 1), then
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27 . 1 2m .
= (7 Jtwei®)Pas < EES |k(reif)[P do .
0

0
Recently, T. H. MacGregor [2] established this result for the case where p is a
positive integer.

Both MacGregor’s and our proof rely on the characterization of the extreme
points of the class C viewed as a compact family in the space of all analytic func-
tions in A with the topology of uniform convergence on compact subsets of A (see
[1]). The restriction p > 1 (rather than p > 0) is essential in our technique. In the

case p > 1, the p-norm ”f“p = [(211’)-1 5 |f(reie)]pd9:| H is subadditive, so that
the maximum value is attained over the extreme points.

The proof of the theorem involves some problems in the calculus.

LEMMA 1. Let

0<x<1, 1/2<p<1, Flx,p)=[1- (2p - p2)x2]1/2 - px - (1 - x)P.

Then F(x, p) <O0.

Proof. F(x, p) <0, provided 1 - 2px% < 2px(1 - x)P + (1 - x)%P. Since
(1-xP>1-x for p<1, and since (1 - x)2P > 1 - 2px for p > 1/2, the lemma
follows.

o0
LEMMA 2. Let £(z) = 1+ 20y-1 yuz® = (1 - 2)P (1/2 <p < 1), and let

N
fN(z) =1+ En:l Yn 2" be the Nth partial sum of the poweyr sevies. Then
lin(2)] <1 if |z - 1/2] < 1/2.

Proof. Because y) = -p and y, <0 (n=2, 3, ),

N N
1+ 27 'ynzn < Il—pzl + 2 |'yn| |z|n < ]1—pz| +1-plz| - (1- lzl)p.
n=1 n=2
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We note that the circle Iz - 1/2] = 1/2 has the parametric representation
= aiC - _i T )
z = e®cosa ( 5 L<a< 3 )

and that with the notation ]z] =T =¢C0S 0 we can‘ therefore write

|1-pz|+1-plz| -(1-|z])P=[1-@p-p?)r?]/2+1-pr-(1-r)P.

Thus it suffices to show that
[1-@p-pY)r2]t/2+1-pr-(1- r)P < 1

for 0<r<1 and 1/2 < p L 1, The inequality follows from Lemma 1.
The critical step in the proof of the theorem is the following lemma.
LEMMA 3. Let .

q BN
hy(a) = [ S22 | = 3 gh(a)en (a3, a-ll =
( n=0

3= 2)
Then ]an(a)| S c'r‘h(O); that is, each coefficient is maximized when a = 0.

_ ,Proof. Write q = N/2 + ¢, where N is a positive integer and 0 <& <1/2. Let
S=q/N=1/2 +¢/N, so that 1/2 <S < 1. Then

D=

- z)2

(1 - az)S

1-"z jl (lu_z)za.

h (z) =

co N
Note that (1 - az)S/(1 - z) =1+ 27 _; b.(a)z", where by(a) = 1+ 2J_; yxakK and
7x is as given in Lemma 2 with p = S. Hence ]bn(a)l < 1; that is, Ibn(a)[ < b,(0)
for n=1,2, ---. The same inequality clearly holds for [(1 - az)S/(1 - z)[N, and since
all coefficients of (1 - z)-2% are nonnegative, the inequality |o,(a)] < 0,,(0) holds.
Proof of the theorem. In [1], the extreme points of C are given, up to an ap-

propriate rotation, in the form f .(z) = (z - az?)/(1 - z)‘2 with |a - 1/2| =1/2. We
therefore need only show that

5; Slfa(reif’)lp ao < -21;5 |k(rei®)|Pas (> 1).

(1.- az)d

Let p=2q (q > 1/2) and h,(z) = (1= 22 = 24n.0 opla)z. We want to show that
-7 R . )

517? X |ha(reif)|?do < 515 S lﬁo(reie)IZ'dB;

in other words, that

27 o (a)]2r2n < Z‘: |0, (0)]2r2n = 23 (0 (0))2r2n,
n=0 n=0 ‘

But this follows immediately from Lemma 3, and the theorem is proved.
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Since the function (1 - az)/(1 - 2z)? is not subordinate to 1/(1 - z)? for every
admissible a, the inequality

-21‘7? ‘g |£,(reif)|Pde < -2% S |fo(rei?)|Pde  (0<r<1, p>1)

cannot be regarded as a special case of subordination theory.
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