FINITE GROUPS IN WHICH ANY TWO PRIMARY SUBGROUPS OF THE SAME ORDER ARE CONJUGATE

Fletcher Gross

1. INTRODUCTION

Define a class $\mathscr C$ of finite groups as follows: the group G belongs to $\mathscr C$ provided that whenever H and K are subgroups of G of the same order, then H and K are conjugate in G. A. Machí [10] showed that if $G \in \mathscr C$ and some Sylow 2-subgroup of G is either an elementary abelian group of order 4 or a quaternion group of order 8, then A_4 , the alternating group on 4 letters, is involved in G. The hypothesis $G \in \mathscr C$ seems so strong that it is natural to expect a stronger conclusion than Machí's result. One of the main results of the present paper is that if $G \in \mathscr C$, then $G/O_{2'}(G)$ is isomorphic to one of the following groups: a cyclic 2-group, A_5 , $SL_2(5)$, $PSL_2(8)$, $P\Gamma L_2(32)$, A_4 , $SL_2(3)$, or specific solvable groups of orders 56, 168, or 4,960. Thus the only simple nonabelian groups in $\mathscr C$ are A_5 and $PSL_2(8)$.

If p is a prime, the class \mathscr{C}_p consists of the finite groups G with the property that whenever H and K are p-subgroups of the same order in G, then H and K are conjugate in G. Finally, let \mathscr{D} consist of the groups that belong to \mathscr{C}_p for every prime p. Clearly, $\mathscr{C} \subseteq \mathscr{D}$; but the reverse is not true. In Theorem 1, we list all the possibilities for $G/O_{2'}(G)$ if $G \in \mathscr{D}$. This immediately leads to the classification of groups belonging to \mathscr{C} .

2. NOTATION AND PRELIMINARY RESULTS

All groups considered in this paper are assumed to be finite. We use repeatedly the fact that the classes \mathscr{C} , \mathscr{C}_p , and \mathscr{D} are closed under the operation of taking factor groups. J_1 denotes the simple group of order 175,560, discovered by Z. Janko [9]. If p is a prime and n is a positive integer, then the groups $R(p^n)$, $S(p^n)$, and $T(p^n)$ are defined as follows: Let V be the additive group of the field $GF(p^n)$, and let λ be a primitive (p^n-1) th root of unity in $GF(p^n)$. Let A and B be the automorphisms of V defined by

$$vA = \lambda v$$
 and $vB = v^p$ for $v \in V$.

Then A and B generate a group $T(p^n)$ of order $n(p^n - 1)$. The semidirect product of V and the cyclic group generated by A is denoted by $R(p^n)$, while the semidirect product of V and $T(p^n)$ is denoted by $S(p^n)$. The orders of $R(p^n)$ and $S(p^n)$ are $p^n(p^n - 1)$ and $np^n(p^n - 1)$, respectively. All other notation is as in D. Gorenstein's book [5].

LEMMA 1. Suppose $G \in \mathscr{C}_p$ and P is a Sylow p-subgroup of G. Then one of the following is true:

Received February 14, 1972.

This research was supported in part by the National Science Foundation.

Michigan Math. J. (19) 1972.

- (i) P is a cyclic group;
- (ii) P is an elementary abelian group;
- (iii) P is a quaternion group of order 8, and p = 2;
- (iv) P is a nonabelian group of order p^3 and exponent p, and p > 2.

This was proved by R. Armstrong [1] under a weaker hypothesis. As will be seen, the last possibility cannot occur if $G \in \mathcal{D}$.

LEMMA 2. Suppose that $G \in \mathscr{C}_p$ for an odd prime p, that P is a Sylow p-subgroup of G, and that H is a normal p-solvable subgroup of G. Assume p divides |H|. Then P is abelian, and either $P \subseteq H$ or P is cyclic.

Proof. Under the hypothesis of the lemma, all subgroups of order p in G are contained in H and are conjugate in G. If P is not cyclic, the previous lemma implies that P has exponent p, from which it follows that $P \subseteq H$. Then $PO_{p'}(H)/O_{p'}(H)$ must be contained in $Z(O_{p'p}(H)/O_{p'}(H))$. Hence P is abelian.

- LEMMA 3. Suppose that $G \in \mathscr{C}_p$, and that P, a Sylow p-subgroup of G, is an elementary abelian group of order $p^n \geq p^3$. Let $N = N_G(P)$ and $K = O_{p'}(N)$. Assume that N/K is solvable (this must be the case if p = 2, by the theorem of W. Feit and J. Thompson [4]). Then one of the following is true:
- (i) n = 3 and N/K is isomorphic to a subgroup of $S(p^3)$; if p = 2, then N/K is isomorphic either to S(8) or to R(8);
 - (ii) n = 5, p = 2, and N/K is isomorphic to S(32).

Proof. Since P is abelian, a theorem of Burnside [5, Theorem 7.1.1] implies that two subgroups of P are conjugate in G if and only if they are conjugate in N. Hence N $\in \mathscr{C}_p$. Consequently, it is sufficient to prove the lemma in the special case G = N and K = 1. Then, by the theorem of Schur and Zassenhaus, P has a complement H in G. Since G is solvable and $O_{p'}(G) = 1$, $C_G(P) = P$ [5, Theorem 6.3.2]. This implies that H is faithfully represented as a group of automorphisms of P. Since $G \in \mathscr{C}_p$, H transitively permutes the subgroups of order p in P. Similarly, H transitively permutes the subgroups of order p^2 in P. Now let L be the group of power automorphisms of P (in other words, let L consist of the automorphisms σ for which there is an integer m such that $x^{\sigma} = x^m$ for all $x \in P$). L is the center of Aut (P); therefore, considering H as a subgroup of Aut (P), we see that HL is a solvable subgroup of Aut (P). Clearly, HL transitively permutes the nonidentity elements of P. Since n > 2, Theorem 19.9 of [11] implies that either we may identify P with the additive group of $GF(p^n)$ in such a way that HL is a subgroup of $T(p^n)$, or else p = 3 and n = 4.

For the exceptional case, when HL is not a subgroup of $T(p^n)$, B. Huppert [7] shows that |HL| is one of the numbers $2^7 \cdot 5$, $2^6 \cdot 5$, and $2^5 \cdot 5$. However, when p = 3 and n = 4, P contains exactly 130 distinct subgroups of order 9. Since H transitively permutes these subgroups, 130 must divide |H|, which is impossible.

Thus we may identify P with the additive group of $GF(p^n)$ in such a way that H is contained in $T(p^n)$. It then follows that G is a subgroup of $S(p^n)$. Since H transitively permutes the $(p^n - 1)/(p - 1)$ subgroups of order p in P, |H| must be divisible by $(p^n - 1)/(p - 1)$. If n = 3 and p = 2, then |H| must be divisible by 7. Since |T(8)| = 21, |H| must be 7 or 21. It follows that G = R(8) or S(8) when n = 3 and p = 2. The lemma is now proved for n = 3.

Assume n > 3. Then |H| divides $|T(p^n)| = n(p^n - 1)$, and H transitively permutes the $(p^n - 1)(p^n - p)/(p^2 - 1)(p^2 - p)$ distinct subgroups of order p^2 in P.

It follows from this that $(p^n - 1)(p^n - p)$ divides $n(p^n - 1)(p^2 - 1)(p^2 - p)$. Hence $(p^{n-1} - 1)$ divides $n(p^2 - 1)(p - 1)$.

However, if $n \ge 6$, then $p^{n-1} - 1 > n(p^2 - 1)(p - 1)$. Thus n = 4 or n = 5. Suppose n = 4. Then $(p^3 - 1)$ divides $4(p^2 - 1)(p - 1)$. Therefore $(p^2 + p + 1)$ must divide $4(p^2 - 1)$. Since $(p^2 + p + 1, 4) = 1$, this implies that $(p^2 + p + 1)$ divides $(p^2 - 1)$, an impossibility.

Thus n = 5. Therefore $(p^4 - 1)$ divides $5(p^2 - 1)(p - 1)$. This implies that $(p^2 + 1)$ divides 5(p - 1). This can happen only if p = 2 or p = 3. In both of these cases, the fact that $(p^5 - 1)(p^5 - p)/(p^2 - 1)(p^2 - p)$ divides |H|, together with the fact that H is a subgroup of $T(p^5)$, implies that $H = T(p^5)$.

Hence $G = S(p^5)$, and either p = 2 or p = 3. Suppose p = 3. $T(3^5)$ contains exactly one element of order 2, and this element normalizes every subgroup of order 9 in P. Thus, if Q is a subgroup of order 9 in P, then $|H:N_H(Q)| \le |H|/2$. Since the number of subgroups of order 9 in P is |H| and H transitively permutes these subgroups, we have a contradiction. Therefore, n = 5 implies that p = 2 and G = S(32).

3. THE MAIN RESULTS

THEOREM 1. Suppose $G \in \mathcal{D}$. Then $G/O_{2}(G)$ is isomorphic to one of the following:

- (i) a cyclic 2-group,
- (ii) R(8).
- (iii) S(8),
- (iv) S(32),
- $(v) J_1$
- (vi) $PSL_2(8)$,
- (vii) $P\Gamma L_2(32)$,
- (viii) $PSL_2(p)$,
 - (ix) $PSL_2(p^3)$,
 - (x) $SL_2(p)$,
 - (xi) $SL_2(p^3)$.

In (viii), (ix), (x), and (xi), p is a prime and $p \equiv \pm 3 \pmod{8}$. Conversely, each of the groups listed belongs to \mathcal{D} .

Proof. We leave it to the reader to verify that the groups listed do belong to \mathscr{D} . Suppose $G \in \mathscr{D}$. Without loss of generality, we may assume that $O_{2'}(G) = 1$. Let Q be a Sylow 2-subgroup of G. If Q is cyclic, then G has a normal 2-complement [5, Theorem 7.6.1]. Since $O_{2'}(G) = 1$, it follows that G = Q.

We now assume that Q is not cyclic. Lemmas 1 and 3 then imply that Q is either a quaternion group of order 8 or an elementary abelian group of order 4, 8, or 32. Assume first that Q is abelian of order 2^n (n = 2, 3, or 5).

Case 1. G is solvable.

Since Q is abelian, Theorem 1.2.6 of [6] implies that G has 2-length 1. Since $O_{2'}(G) = 1$, the subgroup Q must be normal in G. Since $C_G(Q) = Q$ [5, Theorem

6.3.2], G must be isomorphic to a subgroup of the holomorph of Q. Since all involutions are conjugate in G and |G/Q| is odd, we easily deduce that G is isomorphic to A_4 when n=2 (A_4 is included in our list in (viii), since A_4 is isomorphic to $PSL_2(3)$). If n=3 or n=5, Lemma 3 implies that G is isomorphic to one of the groups R(8), S(8), or S(32).

Case 2. G is not solvable.

The main result of [13] implies that G has a normal subgroup H such that |G/H| is odd and $H = A \times B_1 \times \cdots \times B_r$, where A is an abelian 2-group and B_1 , \cdots , B_r are simple groups chosen from the following list:

- (a) J₁,
- (b) $PSL_2(q)$, where q is a prime power $(q \ge 5)$ and $q = \pm 3 \pmod{8}$,
- (c) $PSL_2(2^m)$ $(m \ge 2)$,
- (d) a group of Ree type [14].

Now H' is normal in G, and H' = $B_1 \times \cdots \times B_r$. Since G ϵ \mathscr{D} , H' must contain all involutions in G. Hence A = 1. Since B_1 , \cdots , B_r are simple nonabelian groups, conjugation by elements of G permutes the factors. Thus, if r > 1 and t_i is an involution in B_i for i = 1, 2, then $t_1 t_2$ is an involution that is not conjugate to t_1 . Hence r = 1, and therefore H is a simple group.

It follows that $C_G(H) \cap H = 1$. Since |G/H| is odd, $|C_G(H)|$ must be odd. Therefore, $C_G(H) \subseteq O_{2'}(G) = 1$. Thus we may consider G as a subgroup of Aut (H) and identify H with the inner automorphism group.

If H is a group of Ree type, then a Sylow 3-subgroup of H is not cyclic and is not of exponent 3 [14]. Since this contradicts Lemma 1, H is not of Ree type.

If $H = J_1$, then Aut(H) = H [9], and therefore $G = J_1$. If $H = PSL_2(2^m)$, we need consider only m = 3 and m = 5, since |Q| = 4, 8, or 32, and since $PSL_2(4)$, being isomorphic to $PSL_2(5)$, is included in (b).

Suppose $H = PSL_2(8)$. Then Aut (H) = HF, where F is cyclic of order 3 and consists of the field automorphisms [12]. Thus G = H or G = HF. Since the subgroups of order 3 in HF are not all conjugate, $G \neq HF$. Hence $G = PSL_2(8)$.

Suppose now $H = PSL_2(32)$. Because Aut (H) = 5 |H| (see [12]), the group G is either $PSL_2(32)$ or Aut $(PSL_2(32))$. Now $|PSL_2(32)|$ is not divisible by 5, whereas Lemma 3 implies that $|N_G(Q)|$ is divisible by $2^5 \cdot 5 \cdot 31$. Hence $G \neq PSL_2(32)$. Therefore $G = Aut(PSL_2(32)) = P\Gamma L_2(32)$.

Now assume that $H = PSL_2(q)$, where $q = p^s$ (p a prime) and $q = \pm 3 \pmod 8$. Then s is odd and $p = \pm 3 \pmod 8$. If s = 1, then |Aut(H)| = 2 |H|. Since |G/H| is odd, it would follow that $G = PSL_2(p)$.

Suppose now s>1. Let P be a Sylow p-subgroup of G. P cannot be cyclic, since $P\cap H$ is an elementary abelian group of order p^s . Lemma 1 implies that P has exponent p. Since H is normal in G and $G\in \mathscr{D}$, it follows that $P\subseteq H$. Now $N_H(P)$ is solvable (the subgroups of $PSL_2(q)$ are given in [3, page 285]) and G/H is solvable. Since $s\geq 3$, we can apply Lemma 3 to show that s=3.

Therefore $|\operatorname{Aut}(H)| = 6 |H|$, and hence |G/H| = 1 or 3. It follows that either G = H or G = HF, where F is cyclic of order 3 and consists of the field automorphisms [12]. However, 3 divides |H|, and therefore not all subgroups of order 3 in HF are conjugate. Hence $G = \operatorname{PSL}_2(p^3)$.

We have now proved Theorem 1, provided Q is not a quaternion group of order 8. If Q is a quaternion group of order 8, then |Z(G)| = 2 [2]. It is easily verified that $O_{2'}(G/Z(G)) = 1$. Hence our previous work implies that G/Z(G) is isomorphic either to $PSL_2(p)$ or to $PSL_2(p^3)$. From the theory of Schur multipliers [8, page 646], it follows that G is isomorphic to $SL_2(p)$ or $SL_2(p^3)$. Hence Theorem 1 is proved.

COROLLARY. Suppose $G \in \mathcal{D}$ and P is a Sylow subgroup of G. Then one of the following is true:

- (i) P is cyclic;
- (ii) P is an elementary abelian group;
- (iii) P is a quaternion group of order 8.

Proof. If $P \cap O_2(G) \neq 1$, then Lemma 2 implies that P is abelian. If $P \cap O_2(G) = 1$, then P is isomorphic to a Sylow subgroup of $G/O_2(G)$, and the result now follows from the theorem.

THEOREM 2. Suppose $G \in \mathscr{C}$. Then $G/O_{2^1}(G)$ is isomorphic to one of the following:

- (i) a cyclic 2-group,
- (ii) R(8).
- (iii) S(8).
- (iv) S(32),
- (v) $PSL_2(8)$,
- (vi) $P\Gamma L_2(32)$,
- (vii) A_4 ,
- (viii) A₅,
 - (ix) $SL_2(3)$,
 - (x) $SL_2(5)$.

Conversely, the groups listed do belong to \mathscr{C} .

Proof. J_1 does not belong to \mathscr{C} , since J_1 has two conjugacy classes of groups of order 60 [9]. Now suppose q is a power of a prime (q > 5), and $q = \pm 3 \pmod 8$. Let e = 1 if $q = 3 \pmod 8$ and e = -1 if $q = -3 \pmod 8$. Then $PSL_2(q)$ contains a cyclic group of order (q + e)/2 and also a dihedral group of the same order. Hence $PSL_2(q)$ does not belong to \mathscr{C} . Since $PSL_2(q)$ is a factor group of $SL_2(q)$, we see that $SL_2(q) \notin \mathscr{C}$. Deleting J_1 , $PSL_2(q)$, and $SL_2(q)$ for q > 5 from the list in Theorem 1, we arrive at Theorem 2 (note: A_4 is isomorphic to $PSL_2(3)$, and A_5 is isomorphic to $PSL_2(5)$). We leave it to the reader to verify that the remaining groups belong to \mathscr{C} .

4. RESULTS ON SOLVABLE GROUPS

The fact that $J_1 \in \mathscr{D}$ but $J_1 \notin \mathscr{C}$ shows that $\mathscr{D} \neq \mathscr{C}$. An example of a solvable group belonging to \mathscr{D} but not to \mathscr{C} is constructed as follows: Let A be the additive group of GF(25), and let B be the additive group of GF(49). Let λ be a primitive 24th root of unity in GF(25), and μ a primitive 48th root of unity in GF(49). Let V be the direct product of A and B, and let T be the automorphism of V defined by

(u, v)T = (λ u, μ v). Finally, let G be the semidirect product of V and T. Then G is solvable of order $2^4 \cdot 3 \cdot 5^2 \cdot 7^2$. It is easy to verify that G ϵ Ø (G ϵ Ø₂, for example, since a Sylow 2-subgroup of G is cyclic). G \notin Ø, however, since G has 2 conjugacy classes of subgroups of order 35.

THEOREM 3. Suppose G is a solvable group belonging to \mathscr{D} . Assume that for all but at most one prime p, the Sylow p-subgroups of G are cyclic. Then $G \in \mathscr{C}$.

Proof. We use induction on |G|. Suppose H and K are subgroups of the same order in G, and let M be a minimal normal subgroup of G. Then M is an elementary abelian p-group for some p.

Since $G \in \mathcal{C}_p$, we may assume (by replacing H by one of its conjugates, if necessary) that $H \cap K$ contains a Sylow p-subgroup of H and K. Then $H \cap M = K \cap M$. This implies that |HM| = |KM|.

Suppose $H \cap M = 1$. Since M must contain all subgroups of order p in G, p cannot divide |H|. By induction, HM/M and KM/M are conjugate in G/M. But H is a Hall p'-subgroup of HM, and K is a Hall p'-subgroup of KM. Thus H and K would be conjugate.

Now suppose $H \cap M \neq \{1\}$. If $H \cap M = M$, then HM = H and KM = K. By induction, H/M and K/M would be conjugate, and this would imply that H and K are conjugate.

Finally, suppose $1<|H\cap M|<|M|$. Since M contains all subgroups of order p in G and M cannot be cyclic (clearly, $|M|\geq p^2$), the corollary to Theorem 1 implies that M is a Sylow p-subgroup of G. Hence the Sylow q-subgroups of G for $q\neq p$ are cyclic. Let $N=N_G(H\cap M)$. Then H, K, and M are all contained in N. By the theorem of Schur and Zassenhaus, M has a complement L in N. By a theorem of Hall [5, Theorem 6.4.1], we may assume, by replacing H and K by conjugates under N, that $H\cap M=K\cap M$ and that L contains a Hall p'-subgroup A of H and a Hall p'-subgroup B of K. Now all the Sylow subgroups of L are cyclic. Hence L $\in \mathscr{D}$. By induction, we see that L $\in \mathscr{C}$. But

$$|A| = |H/H \cap M| = |HM/M| = |KM/M| = |B|$$
.

Hence $A = B^x$ for some $x \in L$. Therefore $K^x = (B(H \cap M))^x = A(H \cap M) = H$.

Remark. Theorem 3 becomes false if we omit the hypothesis that G is solvable. J_1 satisfies the remainder of the hypothesis, but $J_1 \notin \mathscr{E}$.

COROLLARY. If all the Sylow subgroups of the group G are cyclic, then $G \in \mathscr{C}$.

Proof. Clearly, G \in \mathscr{D} . By [5, Theorem 7.6.2], G is solvable. The corollary now follows from the theorem.

If G is a solvable group belonging to \mathcal{D} , then the following statements are true: (i) the nilpotent length of G is at most 3; (ii) the derived length of G is at most 4; (iii) if a Sylow 2-subgroup of G is not a quaternion group, then the derived length of G is at most 3; (iv) G is a Sylow tower group.

These results are not difficult to prove, and they were obtained by Armstrong [1] under a similar but different hypothesis. Since Armstrong's ideas can be applied effectively here, I have omitted proofs of these statements. The upper bounds on the nilpotent length and derived length are best possible, as is shown by examples in [1].

REFERENCES

- 1. R. Armstrong, Finite groups in which any two subgroups of the same order are isomorphic. Proc. Cambridge Philos. Soc. 54 (1958), 18-27.
- 2. R. Brauer and M. Suzuki, On finite groups of even order whose 2-Sylow group is a quaternion group. Proc. Nat. Acad. Sci. U.S.A. 45 (1959), 1757-1759.
- 3. L. E. Dickson, Linear groups with an exposition of the Galois field theory. Teubner, Leipzig, 1901.
- 4. W. Feit and J. G. Thompson, Solvability of groups of odd order. Pacific J. Math. 13 (1963), 775-1029.
- 5. D. Gorenstein, Finite groups. Harper and Row, New York, 1968.
- 6. P. Hall and G. Higman, The p-length of p-soluble groups and reduction theorems for Burnside's problem. Proc. London Math. Soc. (3) 6 (1956), 1-42.
- 7. B. Huppert, Zweifach transitive, auflösbare Permutationsgruppen. Math. Z. 68 (1957), 126-150.
- 8. ——, Endliche Gruppen. I. Grundlehren, Band 134. Springer-Verlag, Berlin, 1967.
- 9. Z. Janko, A new finite simple group with abelian Sylow 2-subgroups and its characterization. J. Algebra 3 (1966), 147-186.
- 10. A. Machí, On a class of finite groups. (Italian summary) Atti Accad. Naz. Lincei Rend. Cl. Sci. Fis. Mat. Natur. (8) 48 (1970), 147-151.
- 11. D. Passman, Permutation groups. Benjamin, New York, 1968.
- 12. R. Steinberg, Automorphisms of finite linear groups. Canad. J. Math. 12 (1960), 606-615.
- 13. J. H. Walter, The characterization of finite groups with abelian Sylow 2-sub-groups. Ann. of Math. (2) 89 (1969), 405-514.
- 14. H. N. Ward, On Ree's series of simple groups. Trans. Amer. Math. Soc. 121 (1966), 62-89.

University of Utah Salt Lake City, Utah 84112