FINITE GROUPS IN WHICH ANY TWO PRIMARY SUBGROUPS
OF THE SAME ORDER ARE CONJUGATE

Fletcher Gross

1. INTRODUCTION

Define a class % of finite groups as follows: the group G belongs to € pro-
vided that whenever H and K are subgroups of G of the same order, then H and K
are conjugate in G. A. Machf [10] showed that if G € € and some Sylow 2-subgroup
of G is either an elementary abelian group of order 4 or a quaternion group of order
8, then A4, the alternating group on 4 letters, is involved in G. The hypothesis
G ¢ % seems so strong that it is natural to expect a stronger conclusion than
Mach{’s result. One of the main results of the present paper is that if G € &, then
G/021(G) is isomorphic to one of the following groups: a cyclic 2-group, As,
SL,(5), PSL(8), PI'L»(32), A4, SL,(3), or specific solvable groups of orders 56,
168, or 4,960. Thus the only simple nonabelian groups in % are Ags and PSL(8).

If p is a prime, the class & consists of the finite groups G with the property
that whenever H and K are p-subgroups of the same order in G, then H and K are
conjugate in G. Finally, let & consist of the groups that belong to &p for every
prime p. Clearly, € C &; but the reverse is not true. In Theorem 1, we list all the
possibilities for G/Ozv(G) if G € 9. This immediately leads to the classification of
groups belonging to @.

2. NOTATION AND PRELIMINARY RESULTS

All groups considered in this paper are assumed to be finite. We use repeatedly
the fact that the classes @, &,, and & are closed under the operation of taking
factor groups. J; denotes the simple group of order 175,560, discovered by Z.
Janko [9]. If p is a prime and n is a positive integer, then the groups R(p™), S(p?),
and T(p™) are defined as follows: Let V be the additive group of the field GF(pn),
and let X be a primitive (p™ - 1)th root of unity in GF(p™). Let A and B be the
automorphisms of V defined by

vA=Av and vB=vP forveV.

Then A and B generate a group T(p") of order n(p™- 1). The semidirect product
of V and the cyclic group generated by A is denoted by R(p™), while the semidirect
product of V and T(p™) is denoted by S(p"). The orders of R(p™) and S(p™) are
pn(p“[- ]1) and np™(p™ - 1), respectively. All other notation is as in D. Gorenstein’s
book |5].

LEMMA 1. Suppose G € &, and P is a Sylow p-subgroup of G. Then one of
the following is tvue:
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(i) P is a cyclic group;
(ii) P is an elementary abelian group;
(iii) P is a quaternion group of ovder 8, and p = 2;
(iv) P is a nonabelian group of ovder p3 and exponent p, and p > 2.

This was proved by R. Armstrong [1] under a weaker hypothesis. As will be
seen, the last possibility cannot occur if G € 9.

LEMMA 2. Suppose that G € )y Jov an odd prime p, that P is a Sylow p-
subgroup of G, and that H is a normal p-solvable subgroup of G. Assume p
divides |H|. Then P is abelian, and either P C H oy P is cyclic.

Proof. Under the hypothesis of the lemma, all subgroups of order p in G are
contained in H and are conjugate in G. If P is not cyclic, the previous lemma im-
plies that P has exponent p, from which it follows that P C H. Then
PO, (H)/O (H) must be contained in Z(O p(H)/OP:(H)) Hence P is abelian.

LEMMA 3. Suppose that G € &, and that P, a Sylow p-subgroup of G, is an
elementary abelian group of order p® > p>. Let N =Ng(P) and K = O,(N). As-
sume that N/K. is solvable (this must be the case if p = 2, by the themfem of W. Feit
and J. Thompson [4]). Then one of the following is tvue:

(i) n =3 and N/K is isomovphic to a subgvoup of S(p3); if p = 2, then N/K is
isomorphic either to S(8) or to R(8);

(ii) n=5, p =2, and N/K is isomorphic to S(32).

Proof. Since P is abelian, a theorem of Burnside [5, Theorem 7.1.1] implies
that two subgroups of P are conjugate in G if and only if they are conjugate in N.
Hence N € &,. Consequently, it is sufficient to prove the lemma in the special
case G=N and K =1. Then, by the theorem of Schur and Zassenhaus, P has a
complement H in G. Since G is solvable and Op(G) =1, Cg(P) = P [5, Theorem
6.3.2]. This implies that H is faithfully represented as a group of automorphisms
of P. Since G € &, H transitively permutes the subgroups of order p in P.
Similarly, H tran51t1ve1y permutes the subgroups of order p2 in P. Now let L be
the group of power automorphisms of P (in other words, let L consist of the auto-
morphisms ¢ for which there is an integer m such that x0 =x™ for all x e P). L
is the center of Aut(P); therefore, considering H as a subgroup of Aut(P), we see
that HL is a solvable subgroup of Aut(P). Clearly, HL transitively permutes the
nonidentity elements of P. Since n > 2, Theorem 19.9 of [11] implies that either we
may identify P with the additive group of GF(p™) in such a way that HL is a sub-
group of T(p™), or else p =3 and n = 4.

For the exceptional case, when HL is not a subgroup of T(p™, B. Huppert [7]
shows that IHL| is one of the numbers 27 -5, 26 -5, and 25 .5. However, when
p=3 and n =4, P contains exactly 130 d1st1nct subgroups of order 9. Smce H
transitively permutes these subgroups, 130 must divide |H| which is impossible.

Thus we may identify P with the additive group of GF(p™) in such a way that H
is contained in T(p™). It then follows that G is a subgroup of S(p™). Since H transi-
tively permutes the (p™ - 1)/(p - 1) subgroups of order p in P, |H| must be divisi-
ble by (p - 1)/(p - 1). If n=3 and p =2, then |H| must be d1v181b1e by 7. Since
| T(8)| =21, |H| mustbe 7or 21. It follows that G = R(8) or S(8) when n =3 and
p=2. The lemma is now proved for n = 3.

Assume n > 3. Then IHI divides IT(pn)| = n(pn - 1), and H transitively
permutes the (p™ - 1)(p™ - p)/(p2 - 1) (p? - p) distinct subgroups of order p2 in P.
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It follows from this that (p™ - 1)(p® - p) divides n(p™ - 1) (p2 - 1) (p? - p). Hence
(pr-! - 1) divides n(p% - 1)(p - 1).

However, if n > 6, then pr-1 -1 >n(p - 1)(p-1). Thus n=4 or n=5. Sup-
pose n =4. Then (p3 - 1) divides 4(p2 - 1)(p - 1). Therefore (p?+p +1) must
divide 4(p2 - 1). Since (p2 +p + 1, 4) = 1, this implies that (p? + p + 1) divides
(p? - 1), an impossibility.

Thus n = 5. Therefore (p% - 1) divides 5(p% - 1)(p - 1). This implies that
(p2 + 1) divides 5(p - 1). This can happen only if p =2 or p = 3. In both of these

cases, the fact that (p5 - 1) (p5 - p)/(p? - 1) (p? - p) divides |H|, together with the
fact that H is a subgroup of T(p®), implies that H = T(p).

Hence G = S(p5), and either p =2 or p = 3. Suppose p = 3. T(3°) contains
exactly one element of order 2, and this element normalizes every subgroup of
order 9 in P. Thus, if Q is a subgroup of order 9 in P, then |H:Nu(Q)| < |H|/2.
Since the number of subgroups of order 9 in P is ‘Hl and H transitively permutes

these subgroups, we have a contradiction. Therefore, n =5 implies that p=2 and
G = 5(32).

3. THE MAIN RESULTS
THEOREM 1. Suppose G € @. Then G/0,.(G) is isomorphic to one of the fol-
lowing:

(i) a cyclic 2-group,

(ii) R(8),

(iii) S(8),

(iv) S(32),

(V) Iy,

(vi) PSL,(8),

(vii) PTL,(32),
(viii) PSL,(p),

(ix) PSL(p3),

(x) SLa(p),

(xi) SLy(p3).

In (viii), (ix), (x), and (xi), p is a prime and p = +3 (mod 8). Conversely, each of
the groups listed belongs to 9.

Proof. We leave it to the reader to verify that the groups listed do belong to <.
Suppose G € @. Without loss of generality, we may assume that 0,(G) =1. Let Q

be a Sylow 2-subgroup of G. If Q is cyclic, then G has a normal 2-complement [5,
Theorem 7.6.1]. Since 0,.(G) =1, it follows that G = Q.

We now assume that Q is not cyclic. Lemmas 1 and 3 then imply that Q is
either a quaternion group of order 8 or an elementary abelian group of order 4, 8, or
32. Assume first that Q is abelian of order 2" (n =2, 3, or 5).

Case 1. G is solvable.

Since Q is abelian, Theorem 1.2.6 of [6] implies that G has 2-length 1. Since
0,:(G) = 1, the subgroup Q@ must be normal in G. Since Cg(Q) =Q [5, Theorem
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6.3.2], G must be isomorphic to a subgroup of the holomorph of Q. Since all involu-
tions are conjugate in G and ]G/QI is odd, we easily deduce that G is isomorphic
to A4 when n =2 (Ay4 is included in our list in (viii), since A4 is isomorphic to
PSL,(3)). If n=3 or n =5, Lemma 3 implies that G is isomorphic to one of the
groups R(8), S(8), or S(32).

Case 2. G is not solvable,

The main result of [13] implies that G has a normal subgroup H such that
|G/H| is odd and H=A X B X - X B,., where A is an abelian 2-group and
B,, ‘', B, are simple groups chosen from the following list:

(a) J¢,

(b) PSL,(q), where q is a prime power (q > 5) and q = +3 (mod 8),
() PSL,(2™) (m > 2),

(d) a group of Ree type [14].

Now H' is normal in G, and H'=B; X --- X B,.. Since G ¢ 9, H' must contain all
involutions in G. Hence A =1. Since B;, ---, B, are simple nonabelian groups,
conjugation by elements of G permutes the factors. Thus, if r > 1 and t; is an in-
volution in B; for i =1, 2, then t;t, is an involution that is not conjugate to t;.
Hence r = 1, and therefore H is a simple group.

It follows that Co(H) N H = 1. Since |G/H| is odd, |Cq(H)| must be odd.
Therefore, Cg(H) € 0,+(G) = 1. Thus we may consider G as a subgroup of Aut (H)
and identify H with the inner automorphism group.

If H is a group of Ree type, then a Sylow 3-subgroup of H is not cyclic and is
not of exponent 3 [14]. Since this contradicts Lemma 1, H is not of Ree type.

If H=J,,then Aut(H) = H [9], and therefore G =J;. If H = PSL,(2™), we
need consider only m =3 and m = 5, since |Q| =4, 8, or 32, and since PSL,(4),
being isomorphic to PSL,(5), is included in (b).

Suppose H = PSL,(8). Then Aut(H) = HF, where F is cyclic of order 3 and
consists of the field automorphisms [12]. Thus G = H or G = HF. Since the sub-
groups of order 3 in HF are not all conjugate, G # HF. Hence G = PSL,(8).

Suppose now H = PSL(32). Because Aut(H) =5 |H| (see [12]), the group G is
either PSL,(32) or Aut(PSL(32)). Now |PSL(32)| is not divisible by 5, whereas
Lemma 3 implies that |Ng(Q)| is divisible by 2°:5-31. Hence G # PSL(32).
Therefore G = Aut (PSL2(32)) = PT'L(32).

Now assume that H = PSL»(q), where q = p® (p a prime) and q = +3 (mod 8).
Then s is odd and p = +3 (mod 8). If s =1, then |Aut(H)| =2 |H|. Since |G/H]| is
odd, it would follow that G = PSLZ(p).

Suppose now s > 1. Let P be a Sylow p-subgroup of G. P cannot be cyclic,
since P N H is an elementary abelian group of order p°®. Lemma 1 implies that P
has exponent p. Since H is normal in G and G € 9, it follows that P € H. Now
N(P) is solvable (the subgroups of PSL(q) are given in [3, page 285]) and G/H is
solvable. Since s > 3, we can apply Lemma 3 to show that s = 3.

Therefore |Aut(H)| =6 |H|, and hence |G/H| =1 or 3. It follows that either
G =H or G =HF, where F is cyclic of order 3 and consists of the field automor-
phisms [12]. However, 3 divides [Hl , and therefore not all subgroups of order 3 in
HF are conjugate. Hence G = PSL(p3).
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We have now proved Theorem 1, provided Q is not a quaternion group of order
8. If Q is a quaternion group of order 8, then |Z(G)| =2 [2]. It is easily verified
that 0,:(G/Z(G)) = 1. Hence our previous work implies that G/Z(G) is isomorphic
either to PSL.(p) or to PSLy(p3). From the theory of Schur multipliers [8, page
646], it follows that G is isomorphic to SL,(p) or SL(p3). Hence Theorem 1 is
proved.

COROLLARY. Suppose G € @ and P is a Sylow subgvoup of G. Then one of
the following is true:

(i) P is cyclic;
(ii) P is an elementary abelian group;
(iii) P is a quaternion group of ovder 8.

Proof. If P N 02(G) # 1, then Lemma 2 implies that P is abelian. If
P N 02:(G) =1, then P is isomorphic to a Sylow subgroup of G/0,:(G), and the re-
sult now follows from the theorem.

THEOREM 2. Suppose G € €. Then G/O3(G) is isomovphic to one of the fol-
lowing:

(i) a cyclic 2-group,
(ii) R(8),
(iii) S(8),
(iv) S(32),
(v) PSL,(8),
(vi) PT'L,(32),
(vii) Ay,
(viii) As,
(ix) SL,(3),
(x) SL,(5).
Conversely, the groups listed do belong to €.

Proof. J; does not belong to ¥, since J| has two conjugacy classes of groups
of order 60 [9]. Now suppose q is a power of a prime (q > 5), and q = +3 (mod 8).
Let e=1 if g = 3(mod 8) and e =-1 if q = -3 (mod 8). Then PSL,(q) contains a
cyclic group of order (q +e)/2 and also a dihedral group of the same order. Hence
PSL2(q) does not belong to #. Since PSL2(q) is a factor group of SLy(q), we see
that SL,(q) ¢ @. Deleting J;, PSL>(q), and SL,(q) for q > 5 from the list in
Theorem 1, we arrive at Theorem 2 (note: Ay is isomorphic to PSL,(3), and As is

1somorphlc to PSL,(5)). We leave it to the reader to verify that the remaining
groups belong to €.

4. RESULTS ON SOLVABLE GROUPS

The fact that J; € @ but J; ¢ & shows that & # €. An example of a solvable
group belonging to & but not to @ is constructed as follows: Let A be the additive
group of GF(25), and let B be the additive group of GF(49). Let A be a primitive
24th root of unity in GF(25), and . a primitive 48th root of unity in GF(49). Let V
be the direct product of A and B, and let T be the automorphism of V defined by
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(u, v)T = (Au, pv). Finally, let G be the semidirect product of V and T. Then G is
solvable of order 2% -3:52-72, It is easy to verify that G € @ (G € %, , for exam-
ple, since a Sylow 2-subgroup of G is cyclic). G ¢ &, however, since G has 2 con-
jugacy classes of subgroups of order 35.

THEOREM 3. Suppose G is a solvable group belonging to ©. Assume that for
all but at most one prime p, the Sylow p-subgroups of G are cyclic. Then G € @.

Proof. We use induction on IGI . Suppose H and K are subgroups of the same
order in G, and let M be a minimal normal subgroup of G. Then M is an elemen-
tary abelian p-group for some p.

Since G € €, we may assume (by replacing H by one of its conjugates, if nec-
essary) that H N K contains a Sylow p-subgroup of H and K. Then HN M=K N M.
This implies that |HM| = |KM].

Suppose HN M = 1. Since M must contain all subgroups of order p in G, p
cannot divide |H|. By induction, HM/M and KM/M are conjugate in G/M. But H
is a Hall p'-subgroup of HM, and K is a Hall p'-subgroup of KM. Thus H and K
would be conjugate.

Now suppose HN M # {1} If HN M =M, then HM=H and KM = K. By in-
duction, H/M and K/M would be conjugate, and this would imply that H and K are
conjugate.

Finally, suppose 1 < |H N M| < IM | . Since M contains all subgroups of order
p in G and M cannot be cyclic (clearly, |M| > p?), the corollary to Theorem 1
implies that M is a Sylow p-subgroup of G. Hence the Sylow q-subgroups of G for
q # p are cyclic. Let N =Ng(H N M). Then H, K, and M are all contained in N.
By the theorem of Schur and Zassenhaus, M has a complement L in N. By a theo-
rem of Hall [5, Theorem 6.4.1], we may assume, by replacing H and K by con-
jugates under N, that H N M=K N M and that L. contains a Hall p'-subgroup A of
H and a Hall p'-subgroup B of K. Now all the Sylow subgroups of L are cyclic.
Hence L € 9. By induction, we see that L € ©. But

|A] = |H/H 0 M| = |EM/M| = |KM/M| = |B].

Hence A = BX for some x € L. Therefore K*=(B(HN M)* = A(H N M) = H.

Remavrk. Theorem 3 becomes false if we omit the hypothesis that G is solv-
able. J; satisfies the remainder of the hypothesis, but J; ¢ €.

COROLLARY. If all the Sylow subgroups of the gvoup G ave cyclic, then
Ge@®.

Proof. Clearly, G € 9. By [5, Theorem 7.6.2], G is solvable. The corollary
now follows from the theorem.

If G is a solvable group belonging to &, then the following statements are true:
(i) the nilpotent length of G is at most 3; (ii) the derived length of G is at most 4;
(iii) if a Sylow 2-subgroup of G is not a quaternion group, then the derived length of
G is at most 3; (iv) G is a Sylow tower group.

These results are not difficult to prove, and they were obtained by Armstrong
[1] under a similar but different hypothesis. Since Armstrong’s ideas can be applied
effectively here, I have omitted proofs of these statements. The upper bounds on the
nilpotent length and derived length are best possible, as is shown by examples in [1].
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