SETS OF CONSTANT DISTANCE FROM A PLANAR SET
Morton Brown

Let A be a compact subset of the Euclidean plane R?. For each € > 0, define
dg(A) = e-boundary of A = {x € R?; ”x - A" =g},

where nx - A“ = inf "x - a" is the distance from x to A. I shall prove that
a€A

(i) 8¢(A) is the union of a finite collection of simple closed curves minus the
union of their interiors, and therefore

(ii) each component of aS(A) is locally connected, which implies that

(iii) for all but a countable number of &, each component of 3.(A) is a point, a
simple arc, or a simple closed curve.

The key idea for (i) works in R™, but (ii) and (iii) require restriction to the plane.

First consider the case where € is large compared with the diameter
sup |la - a']|] of A.
a,0'eA

LEMMA 1. Let A have diameter 6, wheve & < g, and suppose that A contains

the ovigin 0. Then 0g(A) is an (n - 1)-spheve. In fact, theve exists a homeomor-
phism H of R™ upon itself such that

Hx) _ _x
1) < [H@] x|
H(0) = 0,

(x# 0),

(ii) H carvies the unit (n - 1)-spheve onto 9g(A),

(iii) H carries the intevior of the unit (n - 1)-spheve onto
Ve(A) = {x ¢ Al x- Al <e}.

Proof. For each point ¢ on the unit sphere S®-!, let Ay denote the half-line
Ay ={x e Rnl x/||x]| = 0}. ¥ x and y are two points of Ay and 6 < ||x| < |y/,
then ||x - A| <|ly - A||. To see this, let Ty be the (n - 1)-hyperplane normal to

Ay at 60 € Ay . By elementary geometry, each point on the other side of T; from
x is closer to x than to y. This includes all points of A. Now let ¢ be a fixed

point of S™-1, and consider the function.t — |[to - A|| (0 <t < ). We have just
observed that " to - A" is strictly increasing with t as longas 6 <t. For t <o,

lto - Al < [to - of = fto]) <5<,
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and for t > € + 9,
[te - Al > [[e +8)o - A| > |[(e+8)o - 60| =

Thus the line Ay intersects 9g(A) in precisely one pomt by . In other words, the
map by — ¢ defines a bijection from 8¢(A) onto SP-!. It is continuous (being the

restriction to 9g(A) of the map x — x/||x||), and hence it is a homeomorphism,

since 9g(A) is compact. Let h: S%~1 — 9¢(A) be its inverse. Now define
H: R™ — R" by the rule

H(0)

0,

H(tg) = th(c) (t>0).

THEOREM 1. Let A be a compact subset of R", and let € > 0. Then there
exists a finite collection of stavlike n-cells such that 9:(A) is the union of the
boundaries of the cells minus the union of theiv inteviors.

Proof. Since A is compact, there exists a finite collection A;, A,, ---, Ay of
compact sets such that A = Ui{zl A; and each A; has diameter less than €. The set
A has the property that 95(A) = U; a:(ay) - U; veay).

By Lemma 1, V¢(A;) is a starlike n-cell whose interior is Vg(A;).

COROLLARY 1. Let A be a compact set in R?, and let € > 0. Then d.(A) is
the union of a finite collection of simple closed curves minus the union of theiv
interiors.

Definitions. A vegular curve is a metrizable, compact, connected space such
that each point has arbitrarily small neighborhoods whose boundaries are finite sets.
A set is nondegenevate if it contains more than one point. A simple arc is a ho-
meomorphic copy of a rectilinear interval. A point is of ovder 2 in a space if it has
arbitrarily small neighborhoods whose boundaries have exactly two points.

LEMMA 2. A Hausdovff space X thal is the union of finitely many simple arcs
is a regular curve.

Proof. The proof will be by induction on n. Because the theorem is trivial for
n = 1, we consider the induction step n - 1 = n. Let C be the set of all points of X
at which X is not regular. By [3, p. 98], C is empty or contains a nondegenerate

continuum C. Suppose c € C. Let 1<j<n. If c¢ @j , then by the induction hy-

pothesis ¢ is a regular point of EH&J . But since X - a; is open in X, ¢ must

J
be a regular pomt of X. Therefore c ¢ Q; for each j. Thus C (:r]]L 1 ;. But

this implies that C is an arc common to all o; , and this in turn implies that C con-
tains points of order 2 in X, a contradiction. Hence C is empty and X is regular.

THEOREM 2. Each component of BS(A) is locally connected.

Proof. According to Corollary 1 and Lemma 2, 0 (A) is a subset of a regular
curve. By [3, p. 99], every subcontinuum of a regular curve is locally connected.

THEOREM 3. For all but a countable number of €, each component of 3-(A) is
a point, a simple arc, ov a simple closed curve.

Proof. Recall that a f7iod is a homeomorph of the cone on three points. By [1],
it is impossible to embed the union of an uncountable collection of pairwise disjoint
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triods in the plane. Hence, for all but a countable number of €, 9g(A) contains no
triod. Now, by Theorem 75 of [2, p. 218], the only atriodic, locally connected,
metrizable continua are the point, the simple arc, and the simple closed curve.
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