SETS OF CONSTANT DISTANCE FROM A PLANAR SET

Morton Brown

Let A be a compact subset of the Euclidean plane \mathbb{R}^2 . For each $\epsilon>0$, define

$$\partial_{\varepsilon}(A) = \varepsilon$$
-boundary of $A = \{x \in \mathbb{R}^2 : ||x - A|| = \varepsilon\}$,

where $\|\mathbf{x} - \mathbf{A}\| = \inf_{\mathbf{a} \in A} \|\mathbf{x} - \mathbf{a}\|$ is the distance from \mathbf{x} to \mathbf{A} . I shall prove that

- (i) $\partial_{\epsilon}(A)$ is the union of a finite collection of simple closed curves minus the union of their interiors, and therefore
 - (ii) each component of $\partial_{\varepsilon}(A)$ is locally connected, which implies that
- (iii) for all but a countable number of ϵ , each component of $\partial_{\epsilon}(A)$ is a point, a simple arc, or a simple closed curve.

The key idea for (i) works in Rⁿ, but (ii) and (iii) require restriction to the plane.

First consider the case where ε is large compared with the diameter $\sup \|\alpha - \alpha'\|$ of A. $\alpha, \alpha' \in A$

LEMMA 1. Let A have diameter δ , where $\delta < \epsilon$, and suppose that A contains the origin 0. Then $\partial_{\epsilon}(A)$ is an (n-1)-sphere. In fact, there exists a homeomorphism H of R^n upon itself such that

(i)
$$\begin{cases} \frac{H(x)}{\|H(x)\|} = \frac{x}{\|x\|} & (x \neq 0), \\ H(0) = 0, \end{cases}$$

- (ii) H carries the unit (n 1)-sphere onto $\partial_{\varepsilon}(A)$,
- (iii) H carries the interior of the unit (n 1)-sphere onto

$$v_{\epsilon}(A) = \left\{ x \in A \middle| \|x - A\| < \epsilon \right\}.$$

Proof. For each point σ on the unit sphere S^{n-1} , let Λ_{σ} denote the half-line $\Lambda_{\sigma} = \{x \in R^n \mid x/\|x\| = \sigma\}$. If x and y are two points of Λ_{σ} and $\delta \leq \|x\| < \|y\|$, then $\|x - A\| < \|y - A\|$. To see this, let T_{σ} be the (n-1)-hyperplane normal to Λ_{σ} at $\delta \sigma \in \Lambda_{\sigma}$. By elementary geometry, each point on the other side of T_{σ} from x is closer to x than to y. This includes all points of A. Now let σ be a fixed point of S^{n-1} , and consider the function $t \to \|t\sigma - A\|$ $(0 < t < \infty)$. We have just observed that $\|t\sigma - A\|$ is strictly increasing with t as long as $\delta \leq t$. For $t < \sigma$,

$$\|t\sigma - A\| < \|t\sigma - 0\| = \|t\sigma\| < \delta < \epsilon$$
,

Received March 3, 1971, and May 18, 1972.

This research was partially supported by the National Science Foundation.

and for $t > \varepsilon + \delta$,

$$\|t\sigma - A\| > \|(\epsilon + \delta)\sigma - A\| \ge \|(\epsilon + \delta)\sigma - \delta\sigma\| = \epsilon.$$

Thus the line Λ_{σ} intersects $\partial_{\epsilon}(A)$ in precisely one point b_{σ} . In other words, the map $b_{\sigma} \to \sigma$ defines a bijection from $\partial_{\epsilon}(A)$ onto S^{n-1} . It is continuous (being the restriction to $\partial_{\epsilon}(A)$ of the map $x \to x/\|x\|$), and hence it is a homeomorphism, since $\partial_{\epsilon}(A)$ is compact. Let $h : S^{n-1} \to \partial_{\epsilon}(A)$ be its inverse. Now define $H : R^n \to R^n$ by the rule

$$\begin{cases} H(0) = 0, \\ H(t_{\sigma}) = th(\sigma) & (t > 0). \end{cases}$$

THEOREM 1. Let A be a compact subset of R^n , and let $\epsilon > 0$. Then there exists a finite collection of starlike n-cells such that $\partial_{\epsilon}(A)$ is the union of the boundaries of the cells minus the union of their interiors.

Proof. Since A is compact, there exists a finite collection A_1 , A_2 , \cdots , A_k of compact sets such that $A = \bigcup_{i=1}^k A_i$ and each A_i has diameter less than ϵ . The set A has the property that $\partial_{\epsilon}(A) = \bigcup_i \partial_{\epsilon}(A_i) - \bigcup_i V_{\epsilon}(A_i)$.

By Lemma 1, $V_{\varepsilon}(A_i)$ is a starlike n-cell whose interior is $V_{\varepsilon}(A_i)$.

COROLLARY 1. Let A be a compact set in R^2 , and let $\epsilon>0$. Then $\partial_\epsilon(A)$ is the union of a finite collection of simple closed curves minus the union of their interiors.

Definitions. A *regular curve* is a metrizable, compact, connected space such that each point has arbitrarily small neighborhoods whose boundaries are finite sets. A set is *nondegenerate* if it contains more than one point. A *simple arc* is a homeomorphic copy of a rectilinear interval. A point is of *order* 2 in a space if it has arbitrarily small neighborhoods whose boundaries have exactly two points.

LEMMA 2. A Hausdorff space X that is the union of finitely many simple arcs is a regular curve.

Proof. The proof will be by induction on n. Because the theorem is trivial for n = 1, we consider the induction step n - 1 \Rightarrow n. Let C be the set of all points of X at which X is not regular. By [3, p. 98], C is empty or contains a nondegenerate continuum \widetilde{C} . Suppose c \in \widetilde{C} . Let $1 \leq j \leq n$. If c $\notin \alpha_j$, then by the induction hypothesis c is a regular point of $\sum_{i \neq j} \alpha_i$. But since X - α_j is open in X, c must be a regular point of X. Therefore c $\in \alpha_j$ for each j. Thus $\widetilde{C} \subset \bigcap_{i=1}^n \alpha_i$. But this implies that \widetilde{C} is an arc common to all α_i , and this in turn implies that \widetilde{C} contains points of order 2 in X, a contradiction. Hence C is empty and X is regular.

THEOREM 2. Each component of $\partial_{\mathcal{E}}(A)$ is locally connected.

Proof. According to Corollary 1 and Lemma 2, $\partial_{\mathcal{E}}(A)$ is a subset of a regular curve. By [3, p. 99], every subcontinuum of a regular curve is locally connected.

THEOREM 3. For all but a countable number of ε , each component of $\partial_{\varepsilon}(A)$ is a point, a simple arc, or a simple closed curve.

Proof. Recall that a *triod* is a homeomorph of the cone on three points. By [1], it is impossible to embed the union of an uncountable collection of pairwise disjoint

triods in the plane. Hence, for all but a countable number of ϵ , $\partial_{\epsilon}(A)$ contains no triod. Now, by Theorem 75 of [2, p. 218], the only atriodic, locally connected, metrizable continua are the point, the simple arc, and the simple closed curve.

REFERENCES

- 1. R. L. Moore, Concerning triods in the plane and junction points of plane continua. Proc. Nat. Acad. Sci. U.S.A. 14 (1928), 85-88.
- 2. ——, Foundations of point set topology. Revised edition. Amer. Math. Soc. Colloquium Publications, Vol. 13. Amer. Math. Soc., Providence, R.I., 1962.
- 3. G. T. Whyburn, *Analytic topology*. Amer. Math. Soc. Colloquium Publications, Vol. 28. Amer. Math. Soc., New York, 1942.

The University of Michigan Ann Arbor, Michigan 48104 and University of Warwick Coventry, England