TWO EXAMPLES IN SURFACE AREA THEORY
J. C. Breckenridge and T. Nishiura

1. INTRODUCTION

By a k-surface in Rk, we mean the class of Fréchet-equivalent, continuous
mappings f: X — RK from a compact topological k-cell X in RK (k> 2). We in-
vestigate representation problems for such k-surfaces of finite Lebesgue k-area.
In particular, we examine the following two notions.

Absolutely continuous mappings. A continuous mapping f: X — Rk (Xc RY is
said to be absolutely continuous (briefly, AC) if there exists a Lebesgue-integrable

funclion ¢ on int X such that L(f, G) = S ¢(x) dx for every open subset G of X.
G

Here, L(f, G) denotes the Lebesgue k-area of the restriction of f to G.

Diffeventiably absolutely continuous mappings. A continuous mapping
f: X — Rk (X € RY) is said to be differentiably absolutely continuous (DAC) if it is
AC and possesses a weak total differential a.e. in int X. (See [7].)

Equivalent definitions of absolute continuity have been used in [2] for k = 2, in
[1]for k > 2, and in [7] for k > 2. If f is AC, then we may take ¢ = |J|, where J
is the generalized Jacobian of f. If f is DAC, then we may take ¢ = |]| , where j is
the ordinary Jacobian of f.

By means of two examples of three-dimensional Fréchet surfaces of finite
Lebesgue 3-area, we show that

(1) finiteness of 3-area of a Fréchet surface does not imply the existence of an
absolutely continuous representation, and

(2) there exists a Fréchet surface of finite 3-area with an absolutely continuous
representation but no differentiabily absolutely continuous representation.

We use the surface discussed in [6] in the first example, and a surface of the type
discussed in [3] in the second example.

It is known that for two-dimensional Fréchet surfaces, such examples never
exist. (See [2].)

2. PRELIMINARIES

For use in the examples below, we recall the construction of some multiplicity
functions and k-areas associated with Lebesgue k-area.

O(y, f, I) denotes the usual topological index of a point y in Rk with respect to
the restriction of f to a polyhedral region I contained in X. Corresponding to each
subset A of X, we define the essential multiplicity
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N(y, f, A) = sup 27 |Oly, £, )| ,

where the supremum is taken over all finite collections D =[1I] of nonoverlapping
polyhedral regions, and where the sum ranges over all I in D that are contained in
A. It is well known that

L(f, A) = S N(y, f, A)dy .
Rk

Associated with the essential multiplicity N is the stable multiplicity S(y, f, A),
which counts the number (possibly «) of essential components of f-1(y) contained in
int A (see [3]or [7]). We set

s, &) = § sy, £, Ay,
Rk

We also define
L*(f, A) = sup 2 L(f, q),

where the supremum is taken over all finite collections Q = [q] of nonoverlapping
compact topological k-cells q, and where the sum ranges over all q in Q that are
contained in A.

If £;:X; — RK is a continuous mapping, Fréchet-equivalent to f, and if the
diagram '

m m)
X —> M <— X,

NDZ

represents simultaneous monotone-light factorizations of f and f; with common
middle space M and light factor £, then

L{f, m"1(G)) = L{f,, m7}(Q))

for every open subset G of M, and corresponding statements hold for the functionals
S and L*. This was proved in [4] for L and S; it holds also for L*, since we can
easily verify that L* is lower-semicontinuous with respect to uniform convergence,
L* is invariant with respect to Lebesgue equivalence, and L*(f, A) = sup L*(f, K),
where the supremum is taken over all compact subsets K of A.

3. THE FIRST EXAMPLE

It is convenient to describe points of R3 in terms of the usual cylindrical co-
ordinates (r, 6, z). By 23 we denote the 3-dimensional Lebesgue measure.

Let
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X =1{(r,0,2:0<r<3,0<0<2m, 0<z<1},
B={(r,6,2):r=0,0<z<1},

A=A{(r,0,2:1<r<3,0<6<2rm 0<z<1},
Y={(r, 0,2:0<r<1,0<0<27m, 0<z<1}.

Define g: A — Y by

(2 - r)%, 6, 2) if 1<r<2,
glr, 6,z) =
(2-1)? -0,2) if2<r<3,

and let h be a homeomorphism of Y onto itself such that £3[h(B)]> 0. Define
f: A— Y by the formula f=h o g. Straightforward computations show that

2 if yeintY,
N(y, f, A) =
0 otherwise .

But N(y, f, q) =0 for every y in h(B) and every compact topological 3-cell q con-
tained in A, and it follows that L¥*(f, A) < L(f, A) < «.

Now extend f to a continuous mapping defined on all of X such that L(f, X) <,
let

represent the monotone-light factorization of f, and observe that if G = m(A), then G
is open in M and A = m~!(G). Since clearly L *(f,, U) = L{f; , U) for every AC
mapping f;: X; — RK and every open subset U of X, the inequality

L*(f, A) < L(f A) implies that f is not Fréchet-equivalent to any AC mapping.

4, THE SECOND EXAMPLE
Let X and B be defined as in the preceding example, and let
glr, ,2z) = (r,26,2z) for (r, 6,z) € X.
Let h be a homeomorphism of X onto itself such that
(i) 23 [nB)]> o,
(ii) h satisfies Lusin’s condition (N) on X - B, and

(iii) h-! satisfies Lusin’s condition (N) on X - h(B).

Define the mapping f: X — X by the composition f = h o g. Straightforward compu-
tations yield the relations
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2 if y € int X,

N(y, f, X) =
0 otherwise,
2 if y € int X - h(B),
S(y, f,X) = <1 if y € int X N h(B),

0 otherwise ,

so that S(f, X) < L(f, X) < «. With the help of [7, p. 356], we can verify, however,
that S(f;, X;) = L(f;, X;) for every DAC mapping f;: X; — Rk. Thus f is not
Fréchet-equivalent to any DAC mapping.

On the other hand, if f;: X — X is defined by f; =f o h~!  then f is Lebesgue-
equivalent and therefore Fréchet-equivalent to f; . Moreover, f; is AC, since it
satisfies Lusin’s condition (N) on X (see [7, p. 255]).
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