DENSITY THEOREMS FOR ALGEBRAS OF OPERATORS AND ANNIHILATOR BANACH ALGEBRAS

Bruce A. Barnes

INTRODUCTION

Let X be a Banach space, $\mathcal{B}(X)$ the algebra of bounded operators on X, and $\mathcal{F}(X)$ the algebra of bounded operators on X with finite-dimensional range. An algebra A of operators on X is *irreducible* if the only closed A-invariant subspaces of X are $\{0\}$ and X (many authors use "transitive" in place of "irreducible"). In Section 1, we consider conditions on a subalgebra A of $\mathcal{B}(X)$ under which $\mathcal{F}(X) \subset A$. In particular, we show that if X is reflexive and A is a closed irreducible subalgebra of $\mathcal{B}(X)$ that contains a nonzero operator in $\mathcal{F}(X)$, then $\mathcal{F}(X) \subset A$ (Theorem 2).

In Section 2, we prove some Stone-Weierstrass theorems in the setting where B is an annihilator algebra and A is a closed subalgebra satisfying certain conditions (Theorems 9, 10, and 11). The following is a special case of Theorem 10: If B is an annihilator B^* -algebra and A is a semisimple closed subalgebra of B with the property that for each pair of distinct maximal left ideals M and N in B, A contains an element in M but not in N, then A = B. In [7], I. Kaplansky proved a similar theorem with the stronger hypothesis that A is a closed *-subalgebra of B (see [7, Theorem 2.2, p. 223]).

1. CONDITIONS IMPLYING THAT A SUBALGEBRA OF $\mathscr{B}(X)$ CONTAINS $\mathscr{F}(X)$

An algebra A is called *semiprime* if A has no nonzero nilpotent left or right ideals. In fact, A is semiprime if it has no nonzero nilpotent left ideals. For in this case, suppose that R is a nonzero right ideal of A such that $R^n = \{0\}$ and $R^{n-1} \neq \{0\}$, where n is an integer (n > 1). Set $N = R^{n-1}$. Then $N \neq \{0\}$ and $N^2 = \{0\}$. Choose a \in N $(a \neq 0)$. Then $(aA)^2 \subset N^2 = \{0\}$. Therefore $(Aa)^3 = A(aA)^2 a = \{0\}$. By hypothesis, a belongs to the set $\{b \in A \mid Ab = \{0\}\}$; but this set is a nilpotent left ideal of A. This contradiction proves that A has no nonzero nilpotent right ideals.

Throughout this paper, X denotes a Banach space of dimension greater than 1.

LEMMA 1. Let A be an irreducible subalgebra of $\mathcal{B}(X)$. Then A is semi-prime.

Proof. By the remarks preceding the lemma, it suffices to prove that A has no nonzero nilpotent left ideal. Suppose A contains such a left ideal. Then there exists $T \in A$ ($T \neq 0$) such that $(AT)^2 = \{0\}$. The set

$$Y = \{x \in X | Sx = 0 \text{ for all } S \in A\}$$

Received September 17, 1971.

This research was supported by National Science Foundation Grant GP-28250.

Michigan Math. J. 19 (1972).

is a proper, closed, A-invariant subspace of X, and therefore $Y = \{0\}$. But $TAT(X) \subset Y$, so that $TAT = \{0\}$. Choose an $x \in X$ such that $T(x) \neq 0$. Then the A-invariant subspace AT(x) is dense in X and is contained in the null space of T. This contradiction proves the lemma.

Let $\mathscr{D}(X)$ be the set consisting of the zero operator and all the operators in $\mathscr{B}(X)$ with 1-dimensional range. Let X^* be the normed dual space of X. If $x \in X$ and $f \in X^*$, we can define $T \in \mathscr{D}(X)$ by the condition $T(y) = f(y) \cdot x$ ($y \in X$). We use the notation $(f \mid x)$ for this operator T. Conversely, it is easy to verify that if $T \in \mathscr{D}(X)$, then $T = (f \mid x)$ for some $x \in X$ and some $f \in X^*$.

THEOREM 2. Let A be a subalgebra of $\mathcal{B}(X)$ with the properties

- (i) A acts irreducibly on X,
- (ii) $\mathcal{D}(X) \cap A$ is closed in $\mathcal{B}(X)$,
- (iii) $\mathcal{F}(X) \cap A \neq \{0\}.$

Then there exists a closed subspace $K \subseteq X^*$ such that

- (1) $(g \mid y) \in A$ whenever $g \in K$ and $y \in X$,
- (2) $\{y \mid g(y) = 0 \text{ for all } g \in K\} = \{0\}.$

In particular, if X is reflexive, then $\mathscr{F}(X) \subset A$.

Proof. First we prove that A contains a minimal idempotent. By (iii), $\mathscr{F}(X) \cap A$ is a nonzero ideal of A. Then, by Lemma 1, there exist $T, S \in \mathscr{F}(X) \cap A$ such that $ST \neq 0$. The algebra TAS is finite-dimensional. If there exists a positive integer n such that $(TAS)^n = \{0\}$, then the ideal $(AST)^{n+1} = \{0\}$. This contradicts Lemma 1. It follows by Wedderburn Theory (see [6, pp. 38, 53, 54]) that TAS is not a radical algebra, and consequently there exists a nonzero idempotent $F \in TAS$. Suppose that the finite-dimensional algebra FAF has a nonzero, nilpotent left ideal. Then there exists $T \in FAF$ ($T \neq 0$) such that $(FAFT)^2 = \{0\}$. Note that T = FT = TF. Then, whenever Q, R, $S \in A$, we have the relation

QTRTST =
$$Q(FTRF)T(FSF)T = \{0\}$$
.

This implies that $(AT)^3 = \{0\}$, a contradiction. It follows from Wedderburn Theory that FAF is semisimple. Therefore there exists a projection $E \in FAF$ ($E \neq 0$) such that $EFAFE = \{\lambda E \mid \lambda \text{ complex}\}$. Then, for each $S \in A$, there exists a scalar λ such that $ESE = EFSFE = \lambda E$. Thus E is a minimal idempotent of A.

Now let $K = \{g \in X^* | (g | y) \in A \text{ for some } y \in X, y \neq 0\}$. The proof of [4, Theorem 3] implies that K has properties (1) and (2).

When X is reflexive, then (2) implies that $K = X^*$. By (1), it follows that $\mathscr{D}(X) \subset A$. Therefore, since $\mathscr{F}(X)$ is the linear span of $\mathscr{D}(X)$, we see that $\mathscr{F}(X) \subset A$.

As a corollary of Theorem 2, we have a result of E. A. Nordgren, R. Radjavi, and P. Rosenthal (see [9, Corollary 2, p. 177]).

COROLLARY 3. If A is an irreducible, weakly closed subalgebra of $\mathcal{B}(X)$ and $\mathcal{F}(X) \cap A \neq \{0\}$, then $A = \mathcal{B}(X)$.

Proof. Theorem 2 applies to A, and therefore there exists a subspace K of X* with properties (1) and (2). Property (2) implies that K is dense in X* in the X-topology. Therefore, if $g \in X^*$, there exists a net $\{g_{\alpha}\} \subset K$ such that $g_{\alpha}(y) \to g(y)$ for every $y \in X$. If $x \in X$, the net of operators $(g_{\alpha} \mid x)$ converges

weakly to $(g \mid x)$. By (1), $\{(g_{\alpha} \mid x)\} \subset A$, and therefore $(g \mid x) \in A$. This implies that $\mathscr{D}(X) \subset A$. It follows that $\mathscr{F}(X) \subset A$. It is easy to verify that $\mathscr{F}(X)$ is weakly dense in $\mathscr{B}(X)$, and this proves the corollary.

We say that an algebra $A \subset \mathcal{B}(X)$ separates the independent vectors of X provided to each pair of (linearly) independent vectors x, $y \in X$ there corresponds an operator $T \in A$ such that Tx = 0 and $Ty \neq 0$.

LEMMA 4. Suppose A is a semiprime subalgebra of $\mathcal{B}(X)$ that separates the independent vectors of X, and E is a minimal idempotent of A; then E = (f | x) for some $x \in X$ and some $f \in X^*$.

Proof. Suppose x and y are independent in X, and Ex = x and Ey = y. By hypothesis, there exists T ϵ A such that Tx = 0 and Ty \neq 0. Clearly, TE \neq 0, and it follows from [10, Corollary (2.1.19), p. 46] that ATE = AE. Therefore there exists S ϵ A such that STE = E. But then x = Ex = STx = 0. This contradiction proves that E ϵ $\mathscr{D}(X)$, and this implies that E = (f | x) for some x ϵ X, f ϵ X*.

Let T^* be the adjoint (or conjugate) operator of an operator $T \in \mathcal{B}(X)$. When $x \in X$ and $f \in X^*$, we sometimes use the notation $\langle x, f \rangle$ for f(x). In this notation, $\langle Tx, f \rangle = \langle x, T^*f \rangle$ whenever $x \in X$, $f \in X^*$, and $T \in \mathcal{B}(X)$. Corresponding to subspaces $\mathcal{J} \subset X$ and $\mathcal{J} \subset X^*$, we write

$$\mathcal{J}^{\perp} = \left\{ f \in X^* \middle| \left\langle x, f \right\rangle = 0 \text{ for all } x \in \mathcal{J} \right\},$$

$${}^{\perp}\mathcal{K} = \left\{ x \in X \middle| \left\langle x, f \right\rangle = 0 \text{ for all } f \in \mathcal{K} \right\}.$$

THEOREM 5. Assume that X is reflexive, and that A is a semiprime subalgebra of $\mathcal{B}(X)$ such that

- (i) $\mathscr{F}(X) \cap A \neq \{0\},$
- (ii) A separates the independent vectors of X and A* = $\{T^* \mid T \in A\}$ separates the independent vectors of X*.

Then $\mathscr{F}(X) \subset \overline{A}$.

Proof. As in the proof of Theorem 2, A contains a minimal idempotent E. By Lemma 4, E = $(f \mid x)$ for some $x \in X$, $f \in X^*$. Set $\mathcal{J} = \{Tx \mid T \in A\}$ and $\mathcal{K} = \{T^*f \mid T \in A\}$. The subspace \mathcal{J} is A-invariant, and \mathcal{K} is A*-invariant. Therefore ${}^{\perp}\mathcal{K}$ is A-invariant.

Next we prove that $\mathcal{J} \cap {}^{\perp}\mathcal{K} = \{0\}$. Because $E^2 = E$, a simple computation shows that f(x) = 1. Also, $Ex = (f \mid x)x = f(x) \cdot x = x$. Now assume that $y \in \mathcal{J} \cap {}^{\perp}\mathcal{K}$. Then y = Tx for some $T \in A$. If $g \in X^*$ and $S \in A$, then

$$S^* E^*(g) = g(x) \cdot S^*(f) \in \mathcal{K}$$
.

Since $\operatorname{Tx} \in {}^{\perp}\mathcal{K}$, $\left\langle \operatorname{ESTEx}, \operatorname{g} \right\rangle = \left\langle \operatorname{Tx}, \operatorname{S}^*\operatorname{E}^*\operatorname{g} \right\rangle = 0$. It follows that $\operatorname{ESTEx} = 0$. There exists a scalar λ such that $\operatorname{ESTE} = \lambda \operatorname{E}$. The relations $\lambda x = \lambda \operatorname{Ex} = \operatorname{ESTEx} = 0$ imply that $\lambda = 0$, so that $\operatorname{ESTE} = 0$ for all $\operatorname{S} \in A$. But then $\left\{ \operatorname{R} \in \operatorname{AE} \middle| \operatorname{EAR} = \left\{ 0 \right\} \right\}$ is a nilpotent left ideal of A and contains TE . Therefore $y = \operatorname{Tx} = \operatorname{TEx} = 0$. This establishes that $\mathcal{J} \cap {}^{\perp}\mathcal{K} = \left\{ 0 \right\}$. Suppose $y \in {}^{\perp}\mathcal{K}$ and $y \neq 0$. Then x + y and x - y are independent vectors in X. But if $\operatorname{T} \in A$ and $\operatorname{T}(x + y) = 0$, then

$$T(x) = -T(y) \in \mathcal{J} \cap {}^{\perp}\mathcal{K} = \{0\} .$$

Thus Tx = T(y) = 0, so that T(x - y) = 0. This contradicts (ii). It follows that $^{\perp}\mathcal{K} = \{0\}$. Since X is reflexive, $\mathcal{K} = X^*$.

Both \mathscr{K} and \mathscr{J}^{\perp} are A*-invariant. A proof similar to the one above establishes that $\mathscr{K} \cap \mathscr{J}^{\perp} = \{0\}$. Therefore $\mathscr{J}^{\perp} = \{0\}$, and consequently, $\overline{\mathscr{J}} = X$. Given $y \in X$ and $g \in X^*$, we can choose $\{y_n\} \subset \mathscr{J}$ and $\{g_n\} \subset \mathscr{K}$ so that $y_n \to y$ and $g_n \to g$. Then there exist sequences $\{T_n\}$, $\{S_n\} \subset A$ such that $T_n x = y_n$ and $S_n^* f = g_n$ for all n. Note that $(g_n \mid y_n) = T_n(f \mid x)S_n \in A$ for all n, and $(g_n \mid y_n) \to (g \mid y)$ in the operator norm. Therefore $(g \mid y) \in \overline{A}$. This proves that $\mathscr{D}(X) \subset \overline{A}$, and it follows that $\mathscr{F}(X) \subset \overline{A}$.

2. STONE-WEIERSTRASS THEOREMS FOR ANNIHILATOR ALGEBRAS

Let B be a semisimple annihilator Banach algebra. F. F. Bonsall and A. W. Goldie proved in [5] that if e is a minimal idempotent of B, then Be is a reflexive Banach space. They showed that eB can be identified with the dual space of Be, in the sense that for each a ϵ eB there exists a unique f_a ϵ (Be)* such that

abe = eabe =
$$f_a(be) \cdot e$$
 for all be ϵ Be.

The map $a \to f_a$ is a bicontinuous isomorphism of eB onto (Be)* (see [5, p. 161] for details). Together with the reflexivity of Be, the identification of eB with (Be)* leads to the following result.

LEMMA 6. Let B and e satisfy the hypotheses above. Then

- (i) if H is a proper closed subspace of Be, there exists b ϵ eB (b \neq 0) such that ba = 0 for all a ϵ H;
- (ii) if H is a proper closed subspace of eB, there exists b ϵ Be (b \neq 0) such that ab = 0 for all a ϵ H.

Let A be a subalgebra of an algebra B. We say that A separates the maximal left ideals of B if whenever M and N are distinct maximal left ideals of B, then there exists an element of A in M that is not in N. In [7], Kaplansky uses this kind of separation property in his generalization of the Stone-Weierstrass Theorem to certain B^* -algebras. Now we prove a proposition that is basic to the results of this section.

PROPOSITION 7. Let B be a semisimple annihilator Banach algebra. Assume that A is a closed semisimple subalgebra of B and that A separates the maximal left ideals of B. If e is a minimal idempotent of A, then e is a minimal idempotent of B, eA = eB, and Ae = Be.

Proof. Let e be a minimal idempotent of A. Then A(1 - e) is a maximal left ideal of A. We prove first that e is a minimal idempotent of B. For suppose it is not. Then, by [3, Theorem 2.2, p. 497], there exist g and f, minimal idempotents of B, such that fg = 0, ef = f, and eg = g. Therefore B(1 - f) and B(1 - g) are distinct maximal left ideals of B, and

$$A(1 - e) \subset A \cap B(1 - f)$$
, $A(1 - e) \subset A \cap B(1 - g)$.

But then $A(1 - e) = A \cap B(1 - f) = A \cap B(1 - g)$. This contradiction proves that e is a minimal idempotent of B.

The set $J = \{be \mid eAbe = \{0\}, b \in B\}$ is a subspace of Be, and it is closed under left multiplication by elements in A. Therefore $Ae \cap J$ is a left ideal of A that does not contain e. Therefore $Ae \cap J = \{0\}$. Corresponding to $c \in Be$ ($c \neq 0$), set $M_c = \{b \in B \mid bc = 0\}$. By [10, p. 45], cB = fB for some minimal idempotent f of B. The set $M_c = B(1 - f)$ is a maximal left ideal of B. Now suppose that $a \in J$ and $a \neq 0$. Then M_{e+a} and M_{e-a} are distinct maximal left ideals of B. But if $b \in A \cap M_{e+a}$, then $be = -ba \in Ae \cap J = \{0\}$. Therefore $b \in A \cap M_{e-a}$. This contradiction proves that $J = \{0\}$. Now it follows from Lemma 6 that eA = eB.

If $a \in A$ and $ea \neq 0$, then eaA = eA. Therefore

$$\{ea \mid ea \in A, eaAe = \{0\}\} = \{0\}.$$

Since eA = eB, it follows further that

$$\{eb \mid eb \in B, ebAe = \{0\}\} = \{0\}.$$

By Lemma 6, Ae = Be.

COROLLARY 8. Let X be a reflexive Banach space. Assume that B is a Banach algebra, that $\mathscr{F}(X) \subset B \subset \mathscr{B}(X)$, and that $\mathscr{F}(X)$ is dense in B in the Banach algebra norm on B. If A is a closed semisimple subalgebra of B that separates the independent vectors of X, then A = B.

Proof. By [10, pp. 102-104], B is an annihilator algebra. For each $x \in X$, set $M_x = \{T \in B \mid Tx = 0\}$. Every maximal left ideal of B is of the form M_x , for some $x \in X$ ($x \neq 0$). Since A separates the independent vectors of X, A separates the maximal left ideals of B. Furthermore, A contains a minimal idempotent E, by [2, Theorem 2.2, p. 512]. Hence, BEB is a nonzero ideal in the topologically simple algebra B. Therefore AEA = BEB is dense in B. Since A is closed, A = B.

We denote the socle of an algebra C by S_C .

THEOREM 9. Let B be a semisimple annihilator Banach algebra. Assume that A is a closed, semisimple subalgebra of B, that S_A is dense in A, and that A separates the maximal left ideals of B. Then A = B.

Proof. The proof of [5, Theorem 5, p. 158] shows that AeA is a minimal (two-sided) ideal of A whenever e is a minimal idempotent of A. Furthermore, the proof of [5, Theorem 6, p. 158] shows that A is the closure of the sum of the minimal ideals AeA. For each minimal idempotent e of A, AeA = BeB, by Proposition 7. Therefore A is a closed ideal of B. By [1, Proposition 3.2, p. 567], either $S_B \subset A$ or there exists a minimal idempotent $f \in B$ such that $Af = \{0\}$. But if $Af = \{0\}$, then A is contained in the maximal left ideal B(1 - f). This is impossible, so that $S_B \subset A$. Since S_B is dense in B, it follows that A = B.

It was assumed that Theorem 9 that S_A is dense in A. If B is topologically simple, then this hypothesis is unnecessary. For in this case there is a faithful representation of B as an algebra of operators on a reflexive Banach space having the properties of the algebra B in the statement of Corollary 8 (see [10, pp. 102-104]). Corollary 8 then yields the result without the assumption that S_A is dense in A. We do not know whether this hypothesis can be dropped from Theorem 9 in general. We shall now verify that if B is a B*-algebra, the hypothesis can be dropped. Given a nonempty subset J of the algebra B, let $\mathscr{R}[J] = \{b \in B | Jb = \{0\}\}$. If J is a closed (two-sided) ideal of B, then $\mathscr{R}[J]$ is a closed ideal of B. Also, if B is an annihilator B*-algebra, then $B = J \oplus \mathscr{R}[J]$, by [5, Theorem 3, p. 157].

THEOREM 10. Let B be a semisimple annihilator Banach algebra with the special property that $B = J \oplus \mathcal{R}[J]$ whenever J is a closed ideal of B. If A is a closed semisimple subalgebra of B that separates the maximal left ideals of B, then A = B.

Proof. A is a modular annihilator algebra, by [2, Corollary, p. 517]. We prove that S_A is dense in A, and then the theorem follows from Theorem 8. Let J be the closure of the sum of the ideals of the form AeA, where e is a minimal idempotent of A. Then J is the closure of S_A , and as in the proof of Theorem 8, J is a closed ideal of B. By [1, Theorem 4.2 (2), p. 569], $A \cap \mathcal{R}[J]$ is contained in the radical of A, which is $\{0\}$. By hypothesis, $B = J \oplus \mathcal{R}[J]$. Then, given a ϵ A, we see that a = b + c, where $b \in J$, $c \in \mathcal{R}[J]$. But then $c \in A \cap \mathcal{R}[J] = \{0\}$. Therefore A = J.

Now we present without formal proof an application of Theorem 10 to certain rings of vector-valued functions (Naimark's terminology [8]). Let Ω be a nonempty set considered with the discrete topology. Let $\mathscr H$ be a Hilbert space, $\mathscr K(\mathscr H)$ the algebra of all compact operators on $\mathscr H$, and when $T \in \mathscr K(\mathscr H)$, let |T| denote the operator norm of T. We define B to be the algebra of all functions $f: \Omega \to \mathscr K(\mathscr H)$ that vanish at ∞ on Ω (that is, to each f and each $\epsilon > 0$ there corresponds a finite subset $\Gamma_{\mathcal E} \subset \Omega$ such that $|f(\alpha)| < \epsilon$ whenever $\alpha \in \Omega \setminus \Gamma_{\mathcal E}$). B is a B^* -algebra in the norm

$$\|\mathbf{f}\| = \sup\{|\mathbf{f}(\alpha)| \mid \alpha \in \Omega\}.$$

Furthermore, B is an annihilator algebra. Given $\alpha \in \Omega$ and $\phi \in \mathcal{H}$, $\phi \neq 0$, set

$$M(\alpha, \phi) = \{f \in B | f(\alpha)\phi = 0\}.$$

The maximal left ideals of B are exactly the left ideals of the form $M(\alpha, \phi)$.

THEOREM 11. Assume that A is a closed subalgebra of B such that

- (i) for each $\alpha \in \Omega$ and each $T \in \mathcal{K}(\mathcal{H})$, there exists $f \in A$ such that $f(\alpha) = T$, and
- (ii) for all $\alpha, \beta \in \Omega$ and all $\phi, \psi \in \mathcal{H}$ such that either $\alpha \neq \beta$ or ϕ and ψ are linearly independent, there exists $f \in A$ such that $f(\alpha)\phi = 0$ and $f(\beta)\psi \neq 0$.

Then A = B.

Using property (i), we can show that $M(\alpha, \phi) \cap A$ is a maximal modular left ideal of A for each choice of $\alpha \in \Omega$ and $\phi \in \mathscr{H}$ ($\phi \neq 0$). It follows that A is semisimple. Property (ii) implies immediately that A separates the maximal left ideals of B. Then the theorem follows from Theorem 10.

Theorem 11 generalizes [8, Theorem 6, p. 348] in the case where the underlying space has the discrete topology.

REFERENCES

- 1. B. A. Barnes, *Modular annihilator algebras*. Canad. J. Math. 18 (1966), 566-578.
- 2. ——, On the existence of minimal ideals in a Banach algebra. Trans. Amer. Math. Soc. 133 (1968), 511-517.
- 3. ——, A generalized Fredholm theory for certain maps in the regular representations of an algebra. Canad. J. Math. 20 (1968), 495-504.

- 4. B. A. Barnes, Irreducible algebras of operators which contain a minimal idempotent. Proc. Amer. Math. Soc. 30 (1971), 337-342.
- 5. F. F. Bonsall and A. W. Goldie, *Annihilator algebras*. Proc. London Math. Soc. (3) 4 (1954), 154-167.
- 6. N. Jacobson, Structure of rings. Amer. Math. Soc. Colloquium Publ., vol. 37. Amer. Math. Soc., Providence, R.I., 1956.
- 7. I. Kaplansky, The structure of certain operator algebras. Trans. Amer. Math. Soc. 70 (1951), 219-255.
- 8. M. A. Naimark, *Normed rings*. Gosudarstv. Izdat. Tehn.-Teor. Lit., Moscow, 1956. English translation, Noordhoff, Groningen, 1959.
- 9. E. A. Nordgren, H. Radjavi, and P. Rosenthal, On density of transitive algebras. Acta Sci. Math. (Szeged) 30 (1969), 175-179.
- 10. C. E. Rickart, General theory of Banach algebras. Van Nostrand, Princeton, N.J., 1960.

The University of Oregon Eugene, Oregon 97403