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INTRODUCTION

Let X be a Banach space, #8(X) the algebra of bounded operators on X, and
F (X) the algebra of bounded operators on X with finite-dimensional range. An
algebra A of operators on X is ¢vveducible if the only closed A-invariant sub-
spaces of X are {0} and X (many authors use “transitive” in place of “irreduci-
ble”). In Section 1, we consider conditions on a subalgebra A of #(X) under which
F(X) C A. In particular, we show that if X is reflexive and A is a closed irreduci-
ble subalgebra of #(X) that contains a nonzero operator in #(X), then #(X) C A
(Theorem 2).

In Section 2, we prove some Stone-Weierstrass theorems in the setting where B
is an annihilator algebra and A is a closed subalgebra satisfying certain conditions
(Theorems 9, 10, and 11). The following is a special case of Theorem 10: If B is
an annihilator B*-algebra and A is a semisimple closed subalgebra of B with the
property that for each pair of distinct maximal left ideals M and N in B, A con-
tains an element in M but not in N, then A = B. In [7], I. Kaplansky proved a simi-
lar theorem with the stronger hypothesis that A is a closed *-subalgebra of B (see
[7, Theorem 2.2, p. 223]).

1. CONDITIONS IMPLYING THAT A SUBALGEBRA OF
#(X) CONTAINS #(X)

An algebra A is called semiprime if A has no nonzero nilpotent left or right
ideals. In fact, A is semiprime if it has no nonzero nilpotent left ideals. For in
this case, suppose that R is a nonzero right ideal of A such that R* = {0} and
Rr-1 # {0}, where n is an integer (n>1). Set N=R"-1, Then N # {0} and
N2 = {0}. Choose a € N (a # 0). Then (aAf c N%= {0}. Therefore
(Aa)3 = A(aA)%2a = {0}. By hypothesis, a belongs to the set {be A| Ab = {0}};
but this set is a nilpotent left ideal of A. This contradiction proves that A has no
nonzero nilpotent right ideals.

Throughout this paper, X denotes a Banach space of dimension greater than 1.

LEMMA 1. Let A be an ivveducible subalgebra of B(X). Then A is semi-
prime.

Proof. By the remarks preceding the lemma, it suffices to prove that A has no
nonzero nilpotent left ideal. Suppose A contains such a left ideal. Then there exists
T € A (T # 0) such that (AT)2 = {0}. The set

Y={XGX|Sx=0f0raIIS€A}
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is a proper, closed, A-invariant subspace of X, and therefore Y = {0}. But
TAT(X) C Y, so that TAT = {0}. Choose an x € X such that T(x) # 0. Then the A-
invariant subspace AT(x) is dense in X and is contained in the null space of T.
This contradiction proves the lemma.

Let 9(X) be the set consisting of the zero operator and all the operators in
#(X) with 1-dimensional range. Let X* be the normed dual space of X. If x € X
and f € X*, we can define T € @(X) by the condition T(y) = f(y) -x (y € X). We use
the notation (f | x) for this operator T. Conversely, it is easy to verify that if
T € @(X), then T = (f| x) for some x € X and some f € X*.

THEOREM 2. Let A be a subalgebva of B(X) with the properties
(i) A acts irreducibly on X,
(ii) 2(X) N A is closed in %B(X),
(iii) F(X) n A = {0}.
Then theve exists a closed subspace K C X* such that

(1) (g|y) € A whenever g € K and y € X,

(2) {y| e(y) =0 forall g e K} = {0}.
In particular, if X is veflexive, then F (X) C A.

Proof. First we prove that A contains a minimal idempotent. By (iii),
Z(X) N A is a nonzero ideal of A. Then, by Lemma 1, there exist T,S € #(X) N A
such that ST # 0. The algebra TAS is finite-dimensional. If there exists a positive
integer n such that (TAS)™ = {0}, then the ideal (AST)**1 = {0}. This contradicts
Lemma 1. It follows by Wedderburn Theory (see [6, pp. 38, 53, 54]) that TAS is not
a radical algebra, and consequently there exists a nonzero idempotent F € TAS,
Suppose that the finite-dimensional algebra FAF has a nonzero, nilpotent left ideal.
Then there exists T € FAF (T # 0) such that (FAFT)2 = {0}. Note that
T = FT = TF. Then, whenever Q, R, S ¢ A, we have the relation

QTRTST = Q(FTRF)T(FSF)T = {0}.

This implies that (AT)3 = {0}, a contradiction. It follows from Wedderburn Theory
that FAF is semisimple. Therefore there exists a projection E ¢ FAF (E # 0)
such that EFAFE = {AE| A complex}. Then, for each S € A, there exists a scalar
A such that ESE = EFSFE = AE. Thus E is a minimal idempotent of A.

Now let K= {g e X*| (g|y) € A for some y € X, y # 0}. The proof of [4,
Theorem 3] implies that K has properties (1) and (2).

When X is reflexive, then (2) implies that K = X*. By (1), it follows that
@(X) C A. Therefore, since #(X) is the linear span of @(X), we see that #(X) C A.

As a corollary of Theorem 2, we have a result of E. A. Nordgren, R. Radjavi,
and P. Rosenthal (see [9, Corollary 2, p. 177]).

COROLLARY 3. If A is an irveducible, weakly closed subalgebrva of B(X) and
FX)n A+ {0}, then A =28(X).

Proof. Theorem 2 applies to A, and therefore there exists a subspace K of xX*
with properties (1) and (2). Property (2) implies that K is dense in X* in the
X~-topology. Therefore, if g € X*, there exists a net {ga} C K such that
gqa(y) — gly) for every y € X. If x € X, the net of operators (gq | x) converges
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weakly to (g|x). By (1), {(g, | x)} C A, and therefore (g|x) € A. This implies
that 2 (X) C A. It follows that #(X) C A. It is easy to verify that #(X) is weakly
dense in #(X), and this proves the corollary.

We say that an algebra A C #B(X) sepavates the independent vectors of X pro-
vided to each pair of (linearly) independent vectors x, y € X there corresponds an
operator T € A suchthat Tx =0 and Ty # 0.

LEMMA 4. Suppose A is a semiprime subalgebva of B(X) that separates the
independent vectors of X, and E is a minimal idempotent of A; then E = (f | x) for
some x € X and some f € X*,

Pyoof. Suppose x and y are independent in X, and Ex = x and Ey =y. By
hypothesis, there exists T € A such that Tx=0 and Ty # 0. Clearly, TE # 0, and
it follows from [10, Corollary (2.1.19), p. 46] that ATE = AE. Therefore there
exists S € A such that STE = E. But then x = Ex = STx = 0. This contradiction
proves that E ¢ @(X), and this implies that E = (fI x) for some x € X, f € X*.

Let T* be the adjoint (or conjugate) operator of an operator T € #(X). When
xe X and f e X*, we sometimes use the notation <x, f> for f(x). In this notation,

<Tx, f> = <x, T*f> whenever x € X, f € X* and T € #(X). Corresponding to
subspaces § C X and & C X*, we write

j"‘

4

{tex*| (x,£) =0 forall xe J},

{x € X| <x,f>=0 for all f € A} .

THEOREM 5. Assume that X is rveflexive, and that A is a semipvime sub-
algebra of #B(X) such that

(i) FX) nA + {0},

(ii) A separates the independent vectors of X and A* = {T*| T € A} separates
the independent vectors of X*,

Then F(X) C A.

Pyoof. As in the proof of Theorem 2, A contains a minimal idempotent E. By
Lemma 4, E = (f | x) for some x € X, f € X*. Set # = {Tx| T € A} and
H = {T*f| T € A}. The subspace J is A-invariant, and & is A*-invariant.
Therefore *o¢ is A-invariant.

Next we prove that § N Lo = {0}. Because E2 = E, a simple computation
shows that f(x) = 1. Also, Ex = (f I x)x = f(x) *x = x. Now assume that y € 4 N LK.
Then y = Tx for some T € A, If ge X* and S € A, then

S*E*(g) = g(x)-S*(f) ¢ .

Since Tx € ‘o, { ESTEx, g » = {(Tx, S*E*g ) = 0. It follows that ESTEx = 0.
There exists a scalar A such that ESTE = AE. The relations Ax = AEx = ESTEx =0
imply that X = 0, so that ESTE = 0 for all S € A. But then {R € AE| EAR= {0}}
is a nilpotent left ideal of A and contains TE. Therefore y = Tx = TEx = 0. This
establishes that § N+ = {0}. Suppose y € *o¢ and y # 0. Then x+y and x - y
are independent vectors in X. But if T € A and T(x +y) = 0, then

T(x) = -T(y) e F 0 *ox = {0} .
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Thus Tx = T(y) = 0, so that T(x - y) = 0. This contradicts (ii). It follows that
Lo = {0}. Since X is reflexive, & = X*.

Both o and J* are A*-invariant. A proof similar to the one above estab-
lishes that # N g+ = {0}. Therefore 4+ = {0}, and consequently, 7 = X. Given
y € X and g € X*, we can choose {y,} C 4 and {g,} € & sothat y, — y and
g, — g. Then there exist sequences {T,}, {S,} C A suchthat T x=y, and
S*t =g, for all n. Note that (g, I Yn) = Ty(f | x)S, € A for all n, and
(g, | v,) — (g]| y) in the operator norm. Therefore (g| y) € A. This proves that
@(X) C A, and it follows that #(X) Cc A.

2. STONE-WEIERSTRASS THEOREMS FOR ANNIHILATOR ALGEBRAS

Let B be a semisimple annihilator Banach algebra. F. F. Bonsall and A. W,
Goldie proved in [5] that if e is a minimal idempotent of B, then Be is a reflexive
Banach space. They showed that eB can be identified with the dual space of Be, in
the sense that for each a € eB there exists a unique f, € (Be)* such that

abe = eabe = f,(be)-e  for all be € Be.

The map a — f, is a bicontinuous isomorphism of eB onto (Be)* (see [5, p. 161]
for details). Together with the reflexivity of Be, the identification of eB with (Be)*
leads to the following result.

LEMMA 6. Let B and e salisfy the hypotheses above. Then

(i) if H is a proper closed subspace of Be, theve exists b € eB (b # 0) such
that ba = 0 for all a € H;

(ii) ¢f H is a proper closed subspace of eB, theve exists b € Be (b # 0) such
that ab = 0 for all a € H.

Let A be a subalgebra of an algebra B. We say that A separates the maximal
left ideals of B if whenever M and N are distinct maximal left ideals of B, then
there exists an element of A in M that is not in N. In [7], Kaplansky uses this kind
of separation property in his generalization of the Stone-Weierstrass Theorem to
certain B*—algebras. Now we prove a proposition that is basic to the results of this
section.

PROPOSITION 7. Let B be a semisimple annihilator Banach algebra. Assume
that A is a closed semisimple subalgebva of B and that A separates the maximal
left ideals of B. If e is a minimal idempotent of A, then e is a minimal idempotent
of B, eA = eB, and Ae = Be.

Pyroof. Let e be a minimal idempotent of A. Then A(l - e) is a maximal left
ideal of A. We prove first that e is a minimal idempotent of B. For suppose it is
not. Then, by [3, Theorem 2.2, p. 497], there exist g and f, minimal idempotents of
B, such that fg = 0, ef = f, and eg = g. Therefore B(1 - f) and B(1 - g) are distinct
maximal left ideals of B, and

A(l-e)CANB(1-1f), A(l-e)cANB(l-g).

But then A(1 -e)=A NB(1-f)=ANB(1-g). This contradiction proves that e is
a minimal idempotent of B.
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The set J = {be| eAbe = {0}, b € B} is a subspace of Be, and it is closed
under left multiplication by elements in A. Therefore Ae N J is a left ideal of A
that does not contain e. Therefore AeNJ = {0} Corresponding to ¢ € Be (c # 0),
set M. = {b € B| bc = 0}. By [10, p. 45], cB = {B for some minimal idempotent f
of B. The set M = B(1 - f) is a maximal left ideal of B. Now suppose that a € J
and a # 0. Then M_,, and M., _, are distinct maximal left ideals of B. But if
be AN Mg,,,then be = -ba € Ae N J = {0}. Therefore b € AN M,_,. This con-
tradiction proves that J = {0}. Now it follows from Lemma 6 that eA = eB.

If a € A and ea # 0, then eaA = eA. Therefore
{ea] ea € A, eahe = {0}} ={0}.
Since eA = eB, it follows further that
{eb| eb € B, ebAe = {0}} = {0}.

By Lemma 6, Ae = Be.

COROLLARY 8. Let X be a veflexive Banach space. Assume that B is a
Banach algebra, that #(X) € B C B(X), and that F(X) is dense in B in the Banach
algebrva novm on B. If A is a closed semisimple subalgebra of B that sepavates
the independent vectors of X, then A = B,

Proof. By [10, pp. 102-104], B is an annihilator algebra. For each x € X, set
M, ={T ¢ Bl Tx = 0}. Every maximal left ideal of B is of the form M, for some
x € X (x # 0). Since A separates the independent vectors of X, A separates the
maximal left ideals of B. Furthermore, A contains a minimal idempotent E, by [2,
Theorem 2.2, p. 512]. Hence, BEB is a nonzero ideal in the topologically simple
algebra B. Therefore AEA = BEB is dense in B. Since A is closed, A = B.

We denote the socle of an algebra C by Sc.

THEOREM 9. Let B be a semisimple annihilator Banach algebrva. Assume that
A is a closed, semisimple subalgebra of B, that Sp is dense in A, and that A sepa-
rates the maximal left ideals of B. Then A = B.

Proof. The proof of [5, Theorem 5, p. 158] shows that AeA is a minimal (two-
sided) ideal of A whenever e is a minimal idempotent of A. Furthermore, the
proof of [5, Theorem 6, p. 158] shows that A is the closure of the sum of the mini-
mal ideals AeA. For each minimal idempotent e of A, AeA = BeB, by Proposition
7. Therefore A is a closed ideal of B. By [1, Proposition 3.2, p. 567], either
SB C A or there exists a minimal idempotent f ¢ B such that Af = {0}. But if
Af = {0}, then A is contained in the maximal left ideal B(1 - f). This is impossible
so that Sg C A. Since Sgy is dense in B, it follows that A = B.

’

It was assumed that Theorem 9 that S is dense in A. If B is topologically
simple, then this hypothesis is unnecessary. For in this case there is a faithful
representation of B as an algebra of operators on a reflexive Banach space having
the properties of the algebra B in the statement of Corollary 8 (see [10, pp. 102-
104]). Corollary 8 then yields the result without the assumption that S is dense in
A. We do not know whether this hypothesis can be dropped from Theorem 9 in gen-
eral. We shall now verify that if B is a B*—algebra., the hypothesis can be dropped.
Given a nonempty subset J of the algebra B, let Z[J] = {b e B| Jb= {0}}. If J is
a closed (two-sided) ideal of B, then #[J] is a closed ideal of B. Also, if B is an
annihilator B*-algebra, then B =J @ #[J], by [5, Theorem 3, p. 157].
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THEOREM 10. Let B be a semisimple annihilator Banach algebra with the
special property that B = J (D #[J]| whenever J is a closed ideal of B. If A is a
closed semisimple subalgebra of B that separvates the maximal left ideals of B,
then A = B.

Proof. A is a modular annihilator algebra, by [2, Corollary, p. 517]. We prove
that S, is dense in A, and then the theorem follows from Theorem 8. Let J be the
closure of the sum of the ideals of the form AeA, where e is a minimal idempotent
of A. Then J is the closure of S, and as in the proof of Theorem 8, J is a closed
ideal of B. By [1, Theorem 4.2 (2), p. 569], A N @[J] is contained in the radical of
A, which is {0}. By hypothesis, B =J @ #[J]. Then, given a € A, we see that
a=b+c,where be J, c € Z[J]. Butthen c € AN R[J] = {0}. Therefore A =J.

Now we present without formal proof an application of Theorem 10 to certain
rings of vector-valued functions (Naimark’s terminology [8]). Let £ be a nonempty
set considered with the discrete topology. Let &# be a Hilbert space, () the
algebra of all compact operators on &, and when T € s (), let |T| denote the
operator norm of T. We define B to be the algebra of all functions f: @ — A ()
that vanish at « on @ (that is, to each f and each € > 0 there corresponds a finite
subset Ty C © such that |f(a)| <& whenever a € \ I'y). B isa B*-algebra in
the norm

£l = sup {|f(@)| | @ € Q}.
Furthermore, B is an annihilator algebra. Given @ € © and ¢ € &, ¢ # 0, set
M(e, ¢) = {f € B| f(a)p = 0}.

The maximal left ideals of B are exactly the left ideals of the form M(c, ¢).
THEOREM 11. Assume that A is a closed subalgebra of B such that

(i) for each a € Q and each T € H(),there exists f € A such that
f(a) =T, and

(ii) for all o, B € Q and all ¢,y € # such that either a # B or ¢ and y are
linearly independent, theve exists f € A such that f(a)p =0 and {(B)y # 0.

Then A = B.

Using property (i), we can show that M(a, ¢) N A is a maximal modular left
ideal of A for each choice of @ € Q and ¢ € # (¢ # 0). It follows that A is semi-
simple. Property (ii) implies immediately that A separates the maximal left ideals
of B. Then the theorem follows from Theorem 10.

Theorem 11 generalizes [8, Theorem 6, p. 348] in the case where the underlying
space has the discrete topology.
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