BEHAVIOR OF NORMAL MEROMORPHIC FUNCTIONS
ON THE MAXIMAL IDEAL SPACE OF H”™

Leon Brown and P. M. Gauthier

Many theorems about bounded holomorphic functions hold also in the larger
class of normal meromorphic functions. We recall that bounded holomorphic func-
tions can be extended continuously to the maximal ideal space M of H”. The main
purpose of this paper is to point out that a (meromorphic) function is normal if and
only if it admits a continuous extension to the set G of “regular points” of M. In
fact, it turns out that if f is meromorphic, then such extensions are actually mero-
morphic on G. This result is sharp; we present an example of a normal meromor-
phic function f that cannot be extended continuously to any nonregular point. An
examination of this function f yields a new proof that the nonregular points are rare
in the sense that they constitute a closed, nowhere dense set [11, p. 102].

K. Stroyan has pointed out to us that the extendibility mentioned above can be
established by means of the nonstandard characterization of the Gleason parts of M
obtained by M. F. Behrens (unpublished).

1. PRELIMINARIES

We shall consider functions that are defined in the unit disc D with the non-
Euclidean hyperbolic metric p, and that take their values on the Riemann sphere
endowed with the chordal metric x. The hyperbolic distance p(z, z') and the
pseudohyperbolic distance y(z, z') are defined by

Wz, 2) = |22 | = tanh[o(z, 2)].

LEMMA 1 (Pick; see [9, p. 239]). Suppose f is holomorphic and bounded by 1
in D. Then

p(f(z), £(z')) < p(z, z'),

Jovall z,z' € D.
For subsets S and T of D, we define the three pseudometrics
a) Hy(S, T) = inf {e:sc{z:p(z, TV <&}, Tc {z:p(z, 8) <e}},
b) o(S, T) = nrapr(s Nn{lz| >r}, T {|z| >r}),

¢) A8, T) = inf p(s N {|z| >r}, T 0 {|z] >r};

the first is called the non-Euclidean Hausdorff pseudometric.
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A function f in D is said to be normal if the family {f OL}, where L ranges
over the conformal mappings of D onto itself, is a normal family in the sense of
Montel. For a brief discussion of normal meromorphic functions, see [7, p. 86]. P.
Lappan [15, Theorem 1, p. 155] has given the following characterization of normal
functions.

LEMMA 2. A function is novmal if and only if it is uniformly (p, X)-continuous.
Another way of stating Lemma 2 is as follows.

LEMMA 3. A function f is not novmal if and only if theve exist two sequences
{zn}, {zh} such that p(z,, z.) — 0 and x(f(z,), #(z))) is bounded away from zevo.

Let H® denote the algebra of holomorphic functions bounded in D, and let M be
the maximal ideal space of H” . For a discussion of the properties of M, see [10,
Chapter 10], [11], [8], and [12]. M is a compact Hausdorff space, and by Carleson’s
corona theorem [5] it contains D as a dense open subset. Furthermore, each f € H
can be extended to a continuous function f on M, and each pair of points in M can be
separated by one of the functions f. Let =M \ D denote the ideal boundary of D,
and if S C D, write B(S) =S\ D, where S denotes the closure of S in M. The set
B(S) is the (closed) subset that S generates on the boundary 8.

c0

If m € 8 and f is meromorphic on D, we define the cluster set C(f, m) of f at
m to be the set of all values w on the Riemann sphere £ for which there exists a
net {z)} (z) € D, zy — m) such that {f(z))} converges to w (for convenience, our
notation for nets omits all reference to the directed set). It is easily verified that

ct, m) = (1Tv D),

where the intersection is over all neighborhoods V of m. Similarly, the vange of f
at m is defined as the set of values w € § for which there is a net {z)} in D con-
verging to m with f(z)) = w for each X. Thus, the range is the set of values as-
sumed infinitely often by f in each neighborhood of m, and

"R, m) = (v np),

where the intersection is over all neighborhoods V of m,

We recall that M is contained in the unit ball of the dual space of H”. Two
points m; , mp € M are said to be in the same Gleason part [4]if |m; - m,| < 2.
Gleason has shown that this is an equivalence relation, and we denote by P(m) the
Gleason part of a point m € M. Furthermore, if S C D, we write

Z(S) = U {P(m): m € 8(S)}

for the set of Gleason parts generated by S.
LEMMA 4 (see [2, p. 128]). Let m;, mp, € M. Then m, € P(m;) if and only if

sup {|f(m,)|: £ e B®, |lf]| < 1, f(m;) =0} < 1.

Each Gleason part P(m) is either a singleton or an analytic disc. We call m a
regular point if P(m) is an analytic disc, and we denote by G the set of all regular
points in M.

An interpolating sequence is a Blaschke sequence {zn} in D such that
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Zk = Zpn
1- ZnZk

I

k #n

>8>0 @m=1,2, ).
We give a partial statement of a theorem of K. Hoffman [11, p. 75].
LEMMA 5. Let m € M. The following conditions are equivalent,
a) The point m is vegular.
b) P(m) contains at least two points.

c) The point m lies in the closure of an interpolating sequence.

2. PRINCIPAL RESULTS

We begin this section with a series of geometric theorems.

LEMMA 6. If {zh} is a net converging to m € M, and if {"57\} is a net such
that p(zy , &) — O, then {&\} also converges to m.

Proof. If {£)} does not converge to m, then it has a subnet (which we continue
to denote by {3;‘;\}) that converges to a point mq different from m. I f € H®, then
f is normal, and by Lemma 2, f is uniformly (p, X)-continuous. Thus
X (£(zy), #(£))) — 0, and therefore f(m) = f{mg). Since this holds for every f € H®,
m = mg, and we arrive at a contradiction.

THEOREM 1. Let S, T Cc D. Then B(S) = B(T) if and only if o(S, T) = 0.

Proof. Suppose o(S, T) =0 and m € B(S). Let {xh} be any net in S that con-
verges to m. Choose y, € T so that

p(xx, ya) < 2p(x), T).

Since |x)| — 1 and o(S, T) = 0, it follows that p(xy , y») — 0. By Lemma 6, {y}
converges to m, and we see that B(S) € B(T). Similarly, the opposite inclusion holds,
and therefore B(S) = 8(T).

Conversely, suppose o(S, T) > 0. Then we may choose an interpolating sequence
{z,} (z,, € 8) such that p(z,, T) > 6> 0 for all n. Let B be the Blaschke product
associated with {z,}. It follows from [6, p. 796] and [13, p. 532] that B is bounded
away from zero on T; thus B(m) # 0 for each m € B(T). Since {zn} C S, there is a
point m € S(S) such that B(m) = 0, and thus B(S) # B(T); this completes the proof.

THEOREM 2. The thvee conditions
#(S) = #(T), o(S, T) <o, Hp(S, T) < =

are equivalent,
Proof. 1t is sufficient to show that #(S) = #(T) 'if and only if Hp(S, T) < o,

Suppose Hp(S, T) <M < . We choose m € 8(S) and x, € S so that x, — m.
For each A, choose y) € T so that p(x,, y)) <M. By taking subnets if necessary,
we may assume y) — mg. We now show that m and mg are in the same Gleason
part. Indeed, if f(m) =0 and [[f]| < 1, then, by Pick’s Lemma,

P(f(x;\), f(YA)) __<_ P(X)U Y;t) <M,
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and this implies that p(0, f(mg)) < M. Thus |f(m0)| <K<1, and by Lemma 4, m

and mg are in the same part. Thus £(S) Cc #(T), and by symmetry, #(S) = &#(T).
Conversely, let Hp(S, T) = ., Then there exists an interpolating sequence

{z,}, say in 8, such that p(z,, T) — «. In other words, {z,} satisfies the condi-

tion

(1) Y(T,z,) 1 asn—ow,

Moreover, we may assume that {zn} satisfies the condition

Zn - Zk
1- inzk

(S}
(2) lim 1I
k Do0on=1

n+k

=1.

Let B be the Blaschke product associated with the sequence {zn} . A. Kerr-Lawson
has shown [13, p. 533] that (2) implies that for each 6p < 1, there exists an € > 0
such that IB(z) > 69 whenever Y(z, z,) > ¢ for all n. From (1) it follows that
|l§(m)| =1 for all m € B(T). On the other hand, if mg € B({z,}), then B(mg) = 0.
Hence, by Lemma 4, no m in S8(T) is in the same Gleason part as mg . Since

mg € B(S), the theorem follows.

The following is an immediate consequence of Theorem 2.
COROLLARY. If S and T are two subsets of D such that Hy(S, T) < «, then

BB\ G = B(T)\ G.

We present one more geometric theorem.,

THEOREM 3. If S and T are subsets of D, then G N B(S) N B(T) # @ if and
only if AM(S, T) = 0.

Proof. Suppose A(S, T) = 0. We choose the points zrl1 € S and z,z1 € T such that
p(zl, z2) < 1/n and {zl} is an interpolating sequence. Let m; be in B({zl}). We
choose a subnet of {z}]}, say {z%l(;\)}, that converges to m; .

Since n(A) — =, p(zrll(h) , 2121(}\)) — 0, and by Lemma 6, {Zrzl(x)} converges to m.
Moreover, by Lemma 5, m is in G, and therefore G N B(S) N B(T) # P.

The converse is simply a rephrasing of the statement that Hoffman’s condition
(1) implies his condition (4) (see [11, p. 75]).

We are now in a position to state our main results.

THEOREM 4. A function f is normal in D if and only if £ admits a (sphevi-
cally) continuous extension to the set G of regulay points of M.

Proof. First we shall show that if m € G, then C(f, m) is a singleton. Suppose,
to obtain a contradiction, that w; and w, are in C(f, m) and ¢ = x(w; , wy) > 0.
For each neighborhood V of m, we choose two points z}, and zs in D NV such that

x(f(zd), w;) <e/3  (1=1,2).

Let S = {z‘l,} and T = {z‘z,} Then m € B(S) N B(T) N G, and Theorem 3 implies
that A(S, T) = 0. By the uniform continuity of f, we can choose z; € S and z, € T
so that p(z;, z,) < 6, where 6 is chosen so small that x(f(z;), f(z,)) <&/3. We now
arrive at a contradiction:
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e = x(w,, w,) < xlwy, f(z))) +x(f(z)), (z,)) + x(£(z,), w,) < €.

Thus C(f, m) is a singleton for m € G, and we set f(m) = C({, m).

If f is not continuous at m, then for some € > 0, each relative neighborhood
V N G of m contains a point m, such that x(f(m,), f(m)) > €. We can choose
z, € VN D so that x(f(z,), f(mv)) < g/2. The net {zv} converges to m, but
x (f(z,), f(m)) > £/2, and this is a contradiction.

Conversely, if f is a nonnormal function, then by Lemma 3 there exist two
sequences {zl} and {22} and a positive £ such that p(z), zZ) — 0 but
x(f(z,ll), f(zlzl)) >¢ (n=1,2, ). Clearly, we may assume that {zrll} is an inter-
polating sequence, and by Lemma 5 it follows that B({zrll}) C G. Since
p(zrll, zrzl) — 0, we see that o({zrll}, {zrzl}) = 0, and Theorem 1 implies that

p({z:}) = p({zZ}) c G.

Suppose m € B({lel}), and let {zi(;\)} be a subnet converging to m. By Lemma 6,
{z;zl(;\)} also converges to m, and since x(f(z}l(}\)), f(zrzl(;\))) > ¢, the cluster set
C(f, m) is not a singleton; this completes the proof.

By Theorem 4, every normal meromorphic function has a continuous extension
to a dense open subset of the boundary f. We recall that for each m € G, the Glea-
son part P(m) is nontrivial; indeed it is an analytic disc. We shall show that on
such parts the extension f is actually meromorphic (or identically infinite).

THEOREM 5. If { is a novmal mevomorphic (holomorphic) function in D and f
is the extension of f to the set G of regular points of M, then on each nontvivial
Gleason part, § is eithey mevomorphic (holomovphic) ov identically infinite.

Proof. Let m € G. We recall that the analytic structure on P(m) is obtained
as follows [11, p. 75]. If @ € D converges to m, then

z+
La(z) =135,

converges pointwise to L,,, a one-to-one mapping of D onto P(m). We shall show
that f oL,, is a meromorphic (holomorphic) function. Fix zy € D, and suppose first
that foL,(zo) is finite. We may assume that @ lies in D and in some neighborhood
of m for which foLgy is uniformly bounded. We claim that foLy is uniformly
bounded in some neighborhood of zg. If it is not, there exist sequences {zn} and
{an} such that z, — zg and

(3) foLg (2,) — -

But {f oL, } is a normal family of functions (f being normal); consequently one of
n

its subsequences converges uniformly on compact subsets, either to a function g
meromorphic on the unit disc, or to «. From (3) it follows that g(zp) is infinite; but
since the family {foL,} is uniformly bounded at zg, we have a contradiction. The
family {foLy} converges to foL__ pointwise, and since {foLgy} is uniformly
bounded in a neighborhood of z(, we see that foL, is holomorphic in a neighbor-
hood of zg.

If foL (zg) = *, we consider the family {1/foLy}. The family {foLqy} is
normal, and hence spherically equicontinuous. Since the spherical metric is invari-
ant with respect to the taking of reciprocals, the family {1/foLy} of reciprocals is
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equicontinuous and thus normal. Now 1/fo L, (zg) is zero, and the argument for the
finite case shows that 1/foL  is holomorphic in a neighborhood of zy. Thus, for
each point z € D, foL,  is either meromorphic (holomorphic) at z or identically
infinite in a neighborhood of z. Hence fol,, is either meromorphic (holomorphic)
on D or identically infinite. The proof is complete.

3. EXAMPLES

We exhibit a normal meromorphic function f, such that for each m € M \ G,
C(f, m) = R(f, m) = Q. '

Let f be a Schwarz triangle function [3, Part 7, pp. 173-194] whose initial tri-
angle is strictly interior to the unit disc. It is well known that f is a normal mero-
morphic function (for example, f is easily seen to be uniformly (p, x)-continuous).
Let a be any value on the Riemann sphere £, and let {zn} consist of the a-points
of f. Since each triangle has the same finite p-diameter, there exists an € > 0 such
that an e-neighborhood (in the metric p) of {z,} covers the disc. By a result of
K. Hoffman [12, Corollary, p. 84], or by the Corollary to Theorem 2,

B({z,}) D M\ G.

Therefore a is in R(f, m) for each m € M \ G. Thus this example has the required
property.

From the example above we obtain anew Hoffman’s result [11, p. 89] that M \ G
is closed, so that it must be a nowhere dense subset of the boundary 8. For we have
shown that ’

B @) N BE (D) D M\ G.

But Theorem 3 implies the opposite inclusion. Thus M \ G is closed, and it follows
easily from Lemma 5 that 8 N G is dense.

Consider now the class of holomorphic triangle functions (for example, the el-
liptic-modular functions). These functions are known to be normal; see [1, p. 5] and
[14, Theorem 16, p. 54]. At least one of the cusps of the initial triangle lies on the
circumference of D; this implies that each triangle is of infinite hyperbolic diame-
ter.

Let A denote the set of values omitted by f (A consists of © and at most two
finite points). We show that if m € M, then

(4) C(f, m)\ A = R(f, m).

Clearly, R(f, m) is contained in C(f, m) \ A. Suppose w € C(f, m) \ A, and let

z) — m with f(z)) - w. Let Q be a fundamental quadrilateral for f, and for each
zy , let &) € Q be equivalent to z, (so that f(z)) = f(£,)). Since w does not corre-
spond to a cusp of Q, and since f(&l) — w, the sequence {‘57\} converges to a value
¢ in Q with f(§) = w. For each A, we choose a point a) equivalent to £ such that
p(ay , zx) = p(§, &). Since p(a, , z)) — 0, it follows from Lemma 6 that ay — m, and
thus w € R(f, m).

We note that if a and b are not in A, then H,{f 1(a), £~1(b)} < »; by the Corol-
lary to Theorem 2, this implies that if m € M\ £ and a € C(f, m) \ A, then

b € R(f, m). Thus, for all m € M \ G, either C(f, m) is a subset of A or

R(f, m) = \ A and C(f, m) = Q.
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We do not know whether the latter case occurs, but we strongly suspect that it is

actually typical; that is, we conjecture that for m € M \ G, the cluster set is always
total. If this is true, it implies that Theorem 4 is sharp also for holomorphic func-
tions.
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