MEROMORPHIC FUNCTIONS OF BOUNDED
BOUNDARY ROTATION

James Noonan

1. INTRODUCTION

For k > 2, let A, denote the class of functions {, given by
(1.1) f(z) = —+ao +a;z+ -

that are analytic in U = {z: |z| < 1} except for a simple pole at z = 0 and have an
integral representation of the form

27

(1.2) f'(z) = texp {S log (1 - ze‘it)dm(t)} ,
z 0

where m is a real-valued function of bounded variation on [0, 27] satisfying the
conditions

(1.3) 52” dm(t) = 2, SZW |am(t)| < k, SZW e-itdm(t) = 0.
0

0 0

Simple calculations show that the third of conditions (1.3) guarantees that the singu-
larity of £ at z = 0 is a simple pole with no logarithmic term.

The class Ay was introduced by J. Pfaltzgraff and B. Pinchuk in [5], where they
showed that f € Ay if and only if f maps the unit disc onto a domain containing in-
finity, with boundary rotation at most kn (for a definition of this concept, see [4]).
Hence the union of the classes A, is called the family of meromorphic functions of
bounded boundary rotation.

Let V). denote the class of functions g, given by
g(z) = 2z +byz2 + -+,

that are analytic in U, satisfy the condition g'(z) # 0 in U, and map U onto a domain
with boundary rotation at most kr. V. Paatero [4] showed that g € V) if and only if

2 .
(1.4) g'(z) = exp {S log (1 - ze‘”)'ldm(t)} ,

0
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where m is a real-valued function of bounded variation on [0, 27] and satisfies the
first two of the conditions in (1.3).

Let =* denote the class of functions of the form (1.1) that are univalent in U
and map U onto a domain whose complement is starlike with respect to the origin.
It is known (see [5, p. 5]) that ¢ € Z* if and only if there exists a nondecreasing

2T
function m on [0, 27] with dm(t) = 2 such that

0

1 2 ,
(1.5) o(z) = ~ €Xp { S log (1 - ze~'t)dm(t) } .
0

Finally, following Ch. Pommerenke [6, p. 267], we denote by K*(a) the class of
all functions h of the form

h(f) =€ +¢, +%1+

that are analytic in 1 < |¢| < « and for which there exists a function s, starlike in
|¢] > 1, such that

arg Cskz%()é’), <T.a.

(1.6)

In this paper, we derive some relations between Ax and the classes Vi, =¥,
and K*(a), and we use these relations to study the coefficient problem for A, . We
also prove a sharp distortion theorem for A, .

2. RELATIONS BETWEEN Aj; AND Vi, =* AND K*(a)

THEOREM 2.1. A function f belongs to Ay if and only if there exisis g € Vi
©0
of the form g(z) =z + En=2 b, z", with b, =0, such that

Proof. This theorem follows directly from the representation formulas (1.2)
and (1.4) and the formula

2m
2b, = | eitam().
0

Using either Theorem 3.1 of [1] in combination with our Theorem 2.1, or else
the representation formula (1.5), we are able to relate Ay to =%*.

THEOREM 2.2. A function f belongs to Ay if and only if theve exist functions
¢ and ¢, in T*, given by

(2.1) $12) =2+ 2 agz®, éy(z) = L+ O by 2",
z n=0 Z  nh=0
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such that ag = -llz——__-l_—g- by and
| [20y(2)] 20/

2.2 f'(z) = - — .
(2.2) (2) = - — [26,02) [ 272

Proof. Combine Theorem 3.1 of [1] with our Theorem 2.1, or else use formula
(1.5). The relations

k-2

27
_ -it _
ag = 79 Po and S e **dm(t) = 0

0

and equivalent. Note that if we use (1.5), we may find
27 2w
[Tamte) < k+22 and [ am© < - 272,
0 0

where m = m* - m- is the canonical decomposition of m. In this case, we obtain
(2.2) by noting that if ¢ € Z* and 0 <a < 1, then ¢; € Z* where
¢,(z) = 271 [z ¢(z)]2. The remainder of the proof is straightforward, and we omit it.

We shall now relate Ay to K¥@). If h € K¥@) and R > 1, then the image
under h of the circle l{'l =R is a closed curve. It is clear that (1.6) is a restric-
tion on the increase of the argument of the tangent vector to this curve. If f € Ay
and 0 <r <1, then the image under f of the circle ]z| =r is also a closed curve.
Since f € Ay, the total variation of the argument of the tangent vector to this curve
is at most krm (see [5, p. 5] for a proof). These facts furnish the basis for a geo-
metric proof of the following theorem.

THEOREM 2.3. Let f € Ay with 2 <k <4. For |¢| > 1, let f; be defined by
£,(8) = £(1/8). Then £; € K¥k/2 - 1).

Proof. For R> 1, let C(R) be the image under f; of the circle |¢| =R.
Choose w( and w; in C(R), and suppose that between wy and w; the tangent to
C(R) turns back on itself by an radians. Since the total increase of the argument of
the tangent vector is 27, from w; to wq the argument of the tangent vector in-
creases at least 27 + an radians. Thus the total variation of the argument of the
tangent vector is at least 27 +2an. Thus 27 +2aw < km, so that & <k/2 - 1.
Therefore f; € K¥k/2 - 1). This proof is essentially that of Theorem 2.2 in [1].

It is also possible to give an analytic proof that f; € K*k/2 - 1). Combining
our Theorem 2.1 with Theorem 2.2 in [1], we see that for any r (0 <r < 1) and any
6, and 0, with 6; < 6, we have the inequality

92 y s .
i@ " i@
S 9@{1+re'f.(;e )}d6<(k/2-1)17.
0, . f'(relt) -

Following the procedure of R. J. Libera and M. S. Robertson [3, pPp. 170—171], we

construct an F € Z* such that Iarg EFf‘T.(zE)zI < (k/2 - 1)n/2. I we now define F; for

|¢] > 1 by F(§) = - F(1/¢), we see that F; is starlike in [{| > 1 and that
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’ £1(5)

arg—FlT)— < (k/2 -1)m/2.

Thus f; € K¥k/2 - 1).

Before concluding this section, let us note that for k > 2, A, contains nonuni-
valent functions [5]. However, by using the same argument as in Theorem 2.1 of [1],
we see that Ay contains only f1n1te1y -valent functions. Specifically, if f € Ak as-
sumes some value p times, then p <k/2 + 1.

3. THE COEFFICIENT PROBLEM FOR Aj

For n > 1, consider the problem of finding

o0
max |a| f(z)——+EazJeAk -
3=0

By a normal-families argument, it is easy to see that this problem has a solution.
By using the theorems of Section 2, we can solve the problem for n =1, 2. These

theorems also enable us to give estimates on the rate of growth of the coefficients as
n — o,

THEOREM 3.1. Let f € Ay be given by {(z) =—i—+a0 +ajz+-. Then
la;| <k/2 and |ay| < k/6.

Both estimates ave sharp for all k.

Proof. By Theorem 2.1, there exists g € Vi, g(z) =z + E:lo:z bp 2", such that
b = 0 and
1
72 §'(z)

= g'(z).

By cross-multiplying and comparing coefficients of z, we see that
a) - 3b3 +4b5 = 0, a, +bya) +3b3b, - 2by = 0.
27 .
Since 2b; = S e"1tdm(t) = 0, we have the equations
0

a; = 3bs, a = 2by.

From a recursion formula of O. Lehto [2] for the coefficients of g € V., we see
that ,

1 2 1 27
by =5 SO e?tdm(t), by =5 SO e-3itdm(t).

Therefore
la;] = |3b3] <k/2 and |a,| = |2b,| < k/6.
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The function f € Ax given by
1 (1+ Z2)(k+2)/4
T 22 (1 - z2)(k-2)/4

f'(z) =

shows that the bound |a1| < k/2 is sharp, and the function given by

z2 (1 - Z3)(k—2)/6

f'(z) = -

shows that the bound |a,| < k/6 is sharp.

We have been unable to solve the coefficient problem in Ay for n > 3. The
major reason for this is that the constrained-optimization problems arising from the
coefficient problem become much more complicated as n increases. However,
Theorems 2.2 and 2.3 enable us to prove the following theorem on the rate of growth
of the coefficients.

1 ©0
THEOREM 3.2. Let f e Ay, f(z) =+ 27, _o0apz™. Then, for n> 1,

O(n-2) if k=2,

a_ = < on1) if 2<k<4,

n

O(nk/2-3)  if k > 4.

The exponents in the cases k =2 and k > 4 are best possible.

Proof. Suppose first that k = 2. Then f is meromorphic and convex, so that
F € =%, where F(z) = zf'(z). By a theorem of Ch. Pommerenke [7], we then have
the estimate

2

n Ianl S n -+ 1 ’
which proves a, = O(n'z).

If 2 <k < 4, it follows from Theorem 2.3 that f; € K*(k/2 - 1), where
£,(€) = £(1/€). If k = 4, then f; € K*(1), and therefore [6, p. 267] a, = O(n~!). K
2 <k < 4, then f; € K¥(a), with 0 < @ < 1, so that Theorem 4 of [6] yields the
estimate a, = o(n~!).

We now use a method of D. Brannan [1] to study the case k > 4. By Theorem
2.2, :

[z ¢, (z)] 420/ 4
[z ¢ ()] -2)/%”

where ¢y, ¢ € %*. Since the function 1/¢; belongs to the class $* of analytic
starlike functions, Ingl(z)] < 4. Similarly, 1/¢, € #*, so that

[2oa(z)] ™ < (1-2)72.

- z2f'(z) =

Therefore, if A > 0, we have the inequality
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2T 2m

1 1
do < de .
‘SO |z¢2(z)|}‘(k"2)/4 = _S;) ll _ zIMk‘Z)/Z

But Pommerenke [6] has shown that

SZTT L 40 1 1
o Troa@ T e &7

whenever a > 1. Letting A =1 and o = (k - 2)/2 (note that k > 4 implies a > 1),
we see that

2

T
2 ¢t __(ik_)_.___.
(3.1) SO |2 f'(z)| d6 < T
Now
2m o
(3.2) 2rnanr?tl = S zzf‘(z)e'l(n+1)9d9.

0

If r=1- 1/n, we combine (3.1) and (3.2) to obtain the estimate a, = O(nk/2-3). The
function f € Ay given by

(k+2)/4
2 _o k-2
f'(z)=-—1—(1+z 2zk+2)
7% (1 - z)(k-2)/2

shows that the exponent k/2 - 3 is best possible.

4. A DISTORTION THEOREM FOR Aj

It is easy to see that for each fixed nonzero z € U, the problems of finding

(4.1) max { |f'(z)|: f € Ay }
and
(4.2) min { If’(z)I: fe Ak}

have solutions. In [5, p. 40] it was shown that any solution of (4.1) or (4.2) must be
of the form

2
II (1-g2) J
(4.3) fi(z) = - =3
. ZZ Z n. ’
H (1 - ejZ) J
j=1

where Isjl = Iejl =1, p;20, n; 20, and
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2 2 2 2 2
27 p;- 2mn =2,  2(pj+my) <k, 2 pjej = 2J njej.

j=1 j=1 j=1 j=1 j=1

The authors state in [5] that they have been unable to find complete solutions to
(4.1) and (4.2), but they conjecture that for each z the solution is of the form

(k+2)/4
(1+sz_ 2+z2)
(4.4) (z) = - — k+2
: 2)=-,2 1+ 2)&272

In our next theorem we obtain solutions both to (4.1) and (4.2). We shall show that f
given by (4.4) is the solution to (4.1) for some values of z, but is never the solution
to (4.2). We first need a technical lemma, which we state without proof.

LEMMA 4.1, Let

2
H(x) = 1+x% (10 1+x

-1
7 l-x) Jor 0 <x<1.

Then 0 < H(x) < 1, H(x) is strictly increasing, and lim, _, o H(x) = 0,
limy _, ; H(x) = 1.

In our next lemma, we examine functions of the form (4.3). Let H(x) be defined
as in Lemma 4.1.

LEMMA 4.2, Let k > 2, and let {' be given by (4.3), where we assume p; > 0,

2 f
p2>0, n] >0, n, >0, and Ej=1 (pj + nj) =k. Let ryx denote the unique solution
of the equation H(x) = (k - 2)/(k +2). Then

. (k+2)/4 t2
M) |teei®)| < 5 [ —2E— - (725) T o<r<,
T T\ 1og 1= (1-r2)1 - -
1-r
wheve t| = k ; 2 and t, = kl—z H(r), and
(k+2)/ 4
; , (rer?-ar sl
(ii) |f'(re16)l _<__ ;-z (1 _ r)(k-Z)/Z (rks r < 1) .

.9' sch .
Proof., Let g = e'J and ej = e1¢J. Then

log |r2f'(rel?)| = S(r, p;, 95) - S(x, nj, ¢5),

where
2 X
S(r, x;, Yj) =2 iJlog(l +r2-2r cos (6 - yj))_
j=1 '
2 2
Since Z>_j=1 p;€; = Ej=1 n;e;, let

(4.5) N =n;cos(6 - ¢;) +n,cos(8 - ¢;) = pycos(6 - 6;) +pycos(d - 6,) .
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Fix p;, p2, n}, nz, and N. Then, by considering S(r, Pj, Gj) as a function of
cos(6 - 6;) and cos(6 - 6,), subject to the constraint (4.5), we see that

p;+p; ( 2 N )
Sr, Pj» 93)__<_ 3 logl1+r —2rm—p; .
Thus
s p, +p
2 f1(pelf P17 P2 ( 2 _ _1_) N
log [r2f'(re'”)| < —5—=1log (1+r" -2r . S(r, nj, ¢;).

Considering S(r, n;, ¢j) as a function of cos (6 - ¢;) and cos(6 - ¢7), subject
to constraint (4.5), we see by examining critical points that the minimum of
S(r, nj, ¢;) occurs when cos(6 - ¢1) is either 1, -1, (N +np)/n;, or (N - np)/n; .
(The Iatter two are considered only if they have modulus less than 1.)

We now examine these cases individually. If cos(6 - ¢;) = 1, then (4.5) yields
the relation cos(6 - ¢,) = (N - n;)/n,. Thus

log |r2f'(re?)]
(4.6) p + N -
1 7 P2 N nz 2 n
——%1o (1+r2—2r——)-—-10 (1+r - 2r )
- 2 & pl +p2 2 g nz

We now continue to fix n; and nj, but we allow N to vary. Since we assume that
cos (6 - ¢;) = 1, we must have the relations n; - n, < N < (k - 2)/2. It is now easy
to verify that the maximum in (4.6) occurs when N = (k - 2)/2 or N=n; - n;.

We proceed similarly in all four cases, and after a long but straightforward
computation we see that '

k+2

4n—k+2)
4

k+2

log [r2£'(rel?)| < max{ log ( 1+r2-2r

(4.7)

_nlog(]_—r)—(E%g-n) 10g(1+r)},

where the maximum is taken over 0 <n < (k - 2)/2. By differentiation, we see that
the unconstrained maximum occurs when

n = n(max) = E—‘;—g+l{—?‘;—2-H(r).

But in order to be feasible, n(max) must satisfy 0 < n(max) < (k - 2)/2. Using
Lemma 4.1, we see that 0 < n(max) is true for all r, and that n(max) < (k - 2)/2 is
true only for r < ry.

We also note that for n < n(max), the function in (4.7) increases with n. Thus,
if 0 <r < ry, the maximum in (4.7) occurs at the feasible value n(max). If
rr < r <1, the maximum in (4.7) occurs at n = (k - 2)/2. Putting these values of n
into (4.7) and taking exponential functions, we arrive at the conclusion of the lemma.

The following lemma, which we state without proof, will be used in the solution
of praoblem (4.2). The proof is similar to the proof of Lemma 4.2.

LEMMA 4.3. Let the hypothesis of Lemma 4.2 hold. Then
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. (k+2)/2-s,5 s

2 [/ 2r (k-2)/2 >
(1 1+r)
g 1-r

whevre
_k-21) 2r 2 k+2
s = o 1_'_r+1+r +2rk_2
10g1-r

We can now solve problems (4.1) and (4.2). In particular, we see that for each
problem, the extremal function depends on r.

THEOREM 4.1. Lelf e A, andlet vy, ty, ty, and s salisfy the conditions in
Lemmas 4.2 and 4.3. Then

t
Y 1/ ar \(t2)/4 4 1+r\ 2 .
(4.8) If(re )I Srz <10g1+r) (l_rz)tl(l‘r) fo<r<ry,

1-r

- (k+2)/4
i0 1 (1+r2'2r11:+§) :
' 1 - .
(4.9) |f(re )[ < 2 1 _r)(k—Z)/Z fr, <r<1,

_l.(l +n)(k+2)/2—s Q - I‘)S

2 or (k-2)/4
Io 1+r
g 1-r

All estimates are sharp.

Proof. We first establish (4.8) and (4.9). Let ret? pe fixed. By Theorem 6.1
in [5], the extremal function for problem (4.1) is of the form (4.3). Suppose that the

(4.10) |f'(reie)| > Jorall r (0<r <1).

27
integrator m is related to f by formula (1.2). Let S |dm(t)| =j. If j =k, then
0
(4.8) and (4.9) follow from Lemma 4.2. If j <k, then rj < ry, and we must consider
three cases.
First, suppose r > r;, > r;. By Lemma 4.2,
2_9pi-2
( 1+r 2r TE2
(1 - r)i§-2)/2

)(j+2)/4

(4.11) |'rel?)] < &
r
A straightforward computation shows that the right-hand side of (4.11) increases

with j, so that (4.9) is valid.
Next, suppose rj; <r <rp. Let

n) = L2+ 12 5.

By Lemma 4.1, n(j) < n(k). Also, since r; <r <ry, we have the inequalities
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2

l———<n(1)<n(k)<k2

A long computation shows that the function

j 2
A(j, n) =Jj1;§10g (1+r -2r4—]-—_I_-J—2+—2) -nlog(l -r)- (——2—-—n) log (1 +r)

increases with j, for each fixed n < (j - 2)/2. Thus A(j, n) < A(k, n). But in Lemma
4.2 we showed that A(k, n) increases with n, if k is fixed and n < n(k). Thus

A (j, ] ; 2 ) < A(k, n(k)). Combining this inequality with Lemma 4.2, we arrive at

the conclusion of the theorem.

Finally, suppose r < rj <rg. Then

n) <1532 and  n) <n) <EZ2.
As above, A ( is J—é—z) <A (k k_2_2 ) , and this implies the conclusion of the theo-

rem.

A similar argument, using Lemma 4.3 in place of Lemma 4.2, shows that (4.10)
holds. In order to show that all estimates are sharp, we merely re-examine
Lemmas 4.2 and 4.3 and pick out the values for p;, p,, n;, np, 6;, 6,, ¢;, and ¢,
at which the various maxima and minima are attained. It is then possible to con-
struct the extremal function for each r. This completes the proof of the theorem.
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