COMPACT, CONTRACTIBLE n-MANIFOLDS
AND THEIR BOUNDARIES

T. M. Price

The purpose of this paper is to show that for n > 6 the function, assigning M
to @M, from the set of compact, contractible n-manifolds to the set of homology
(n - 1)-spheres is a bijection. (A similar result has been announced by M. Kato,
see [5].) We also show that for M as above, the group of concordance classes of
homeomorphisms of M onto itself is isomorphic to the group of concordance
classes of homeomorphisms of 9M onto itself.

We consider both PL and topological manifolds and maps in this paper. The
term manifold allows the possibility that the boundary is not empty. We use dM to
denote the boundary of a manifold M and int M to denote the interior of M. We use
D? and S” to denote the standard n-cell and n-sphere. By the term disk we mean a
2-cell. We use A *B to denote the join of spaces A and B. If M is a manifold and
P a subpolyhedron of M, then N(P, M) denotes a regular neighborhood of P in M,
see J. F. P. Hudson and E. C. Zeeman [4]. Finally, if M and N are manifolds and
h: 9M — 3N is a homeomorphism, we denote by M Uy N the manifold obtained by
identifying x € aM with h(x) € aN. We let pp; and py denote the inclusions of M
and N, respectively, into M U;, N. Hence

Py °Py | 8M = h.

Furthermore, if C C M and C' C N, then C Uy, C' denotes pp(C) U pn(C'). Al-
though C and C' may also be manifolds with boundary, no confusion should arise
between the two uses of the notation U, . We shall also not distinguish between
A C M and ppH{A) €M Uy N when no confusion can arise.

LEMMA 1. Let M and N be contractible PL n-manifolds (n >5). Let
h: oM — 8N be a homeomorphism,J C oM a simple closed curve, D C M a disk
such that D N oM = J. Suppose T is a vegular neighborhood of J in oM, and let C
be a regular neighborhood of D U T in M, relative to c{ (@M - T). Moreover, D'
denotes a disk in N such that D' N 3N = h(J), and C' denotes a regular neighbor-
hood of D' U h(T) in N, velative fo cL(dN - h(T)). Then there exists a PL homeo-
movphism

f: (C U, C', T, D U, D) — (82 xD""2, sl xD"-2 87,

where C U C' and D U, D' ave subsets of M Uy, N.

Proof. Consider S =M Uy, N. By Van Kampen’s theorem, S is simply con-
nected. By the Mayer-Vietoris sequence, S has the same homology groups as oM.
From the Lefschetz duality theorem [2], we obtain the following diagram:
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——> 1% YMm, oM) ——— H M) ——— HIY(oM) ——> HYM, 5M) —>

Y~ lN l~ l"'
—> H, ¢ (M) —> H__.,,(M, 8M) —> H__ (M) —> H__ (M) —>

Since

0 ifi+#0, . 0 ifi=#0,
Hi(M) = and HI(M) =
Z ifi=0 Z ifi=0,

we see that S has the same homology groups as S™. Hence, by the generalized
Poincaré theorem (see J. B. Wagoner [9, Theorem 5.1] for a PL version) or
the h-cobordism theorem (see J. Milnor [7] or J. F. P. Hudson [3]), there
exists a PL homeomorphism ¢:S —»S*, Let K =D U,D'. Then K = s2 , and
by Zeeman’s unknotting theorem [10], we can assume that ¢(D) = v *S! and

¢(D') =w*S! where S2= {v, w} *S!. Furthermore, we assume that S = §2 *gn-3
and that S2 X D™-2 ig canonically embedded in this join structure. Since ¢(C) is a
regular neighborhood of ¢(D) = v *S! (mod w %xS1), there exists a homeomorphism
Y: ST — S™ such that ¢ | S2 is the identity and

Yo¢(C) = (vxS!) xpn-2,

Since Y o¢(T) is a regular neighborhood in a((v *S1) X D-2) of Yo ¢(J) = S!, there
exists a homeomorphism 6 of 3((v *S!) X D2-2) onto itself, taking ¥ o ¢(T) onto

Sl xDn-2 guch that 6| S! is the identity. Extend 6 to all of S®, keeping it fixed
on S%. We now see that #o Y o¢ is a homeomorphism taking (C, T) onto

((v*S!) x -2 sl x Dn-2) apd that 6 oy od(D') = w*S!. Since 6o yo ¢(C') is a
regular neighborhood in S™ of

fo yo¢(D' U h(T)) = w+*S! U Sl xD2-2 (mod 6 oy o¢(@N - h(T))

and hence a regular neighborhood in S™ - (v *Sl) x D1-2 of

(w*Sl) U sl xD™2 (mod 3((v *S!) x D2-2 - gl x pn-2))

there exists a homeomorphism 7 of S® onto itself taking 6 oy o¢(C') onto
(w *S1) x Dn-2 such that 7 is fixed on w *S! U (v *S!) x D2-2, Hence
nofoyog¢|C Uy C' is the required homeomorphism. #

THEOREM 1. Let M and N denote compact, conlvactible PL n-manifolds
(n>5). Let h be a PL homeomorphism of dM onto dN. Then theve exist neigh-
borhoods W and Y of oM and oN, respectively, and a PL. homeomorphism
H: W — Y such that

i) W is 1-connected, and

ii) H| oM = h.

Pyroof. Let U~ (3M) x [0, 1] and V = (3N) X [0, 1] be collars of aM and 8N,
respectively. Extend h to take U onto V. Let J;, J2, **+, J be a collection of
loops in (0M) X 1 such that [J;], [J2], -+, [Jx] generate 71(dM X 1). Since n > 5,

we can assume that each J; is a simple closed curve and that the J; are pairwise
disjoint. Since closure (M - U) is homeomorphic to M, each J; can be shrunk to a
point in closure (M - U). Since n > 5, we can assume that each J; bounds a disk D;
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such that D; N U =J; and the D; are pairwise disjoint. The neighborhood W is ob-

tained by thickening up the D; and adding them to U; that is, W=U U U?:I Ci,
where C; = N(D;, c£ (M - U)) is a regular neighborhood of D; in cf(M - U) that in-
tersects (0M) X 1 in a regular neighborhood of 9D; = J; . Now repeat the same
process in N, use the curves h(J;) to obtain disks E; such that E; N V = h(J;), and
thicken up the E; to F; = N(E;, cf(N - V)), a regular neighborhood of E; in

k
cg (N - V) that intersects (3N) x 1 in h(C; N (M x 1)). Let Y=v u U, ;.

We consider C; Uy F; as a subset of c¢(M - U) U, c¢ (N - V). By Lemma 1,
there exists a homeomorphism

g C; U, F; — 8% xpn-2

taking C; onto (v xs1) XDn'Z, F; onto (w*S!) xD™-2 and C; N F; onto
Sl xDn-2 | Let 6: S2 — S2 be a homeomorphism with the properties that

0|8l =id, o(vxs!)=wxs!, and O(wxsl) = vxsl.

Let ¢: 82 X D=2 — 82 x D®-2 be defined by ¢ = 6 X id. Then gi"l ogpog; is a
homeomorphism of C; U, F; onto itself, which is the identity on

CinFi = ClﬂaMX]. = FiﬂaNXI,
and g.l"l o¢og. takes C; onto F;. We extend h: U -V to H: W — Y by the relation

h(x) if xe U,
H(x) = j
PN ogil odogiopy(x) if x € Cy,

where p); and py are the inclusions of c¢(M - U) and cf (N - V), respectively,
into c4(M - U) Uy ca(N-V). #

LEMMA 2. Let N be a contractible, open PL n-manifold (n > 5), and let S be
a PL bicollared (n - 1)-sphere in N. Then the closed intevior of S is a PL n-cell.

Proof. Since S is PL bicollared, it follows that C, the closed interior of S, is
a PL n-manifold. By Van Kampen’s theorem, the Mayer-Vietoris sequence, and the
Hurewicz theorem, C has the homotopy groups of an n-cell. Hence it follows from
the generalized Poincaré theorem that C is a PL n-cell.

THEOREM 2. Let M and N be compact, contractible PL n-manifolds (n > 5).
Let U and V be neighbovhoods of oM and 9N, vespectively, such that U and V ave
1-connected. Suppose furthev that h: U — V is a PL homeomorphism with
h(oM) = aN. Then theve exists a PL homeomorphism H: M — N such that
H|M-C=h|M - C, for some n-cell C C int M. (In particular, H|3dM =h|aM.)

Pyoof. Let T' be a triangulation of M. Let T be a triangulation of int M ob-
tained from T' by subdivision and having the property that for every ¢ € T, the in-
equality dia 0 < p(o, 9M) holds. Let T2 denote the 2-skeleton of T.

Since M is contractible and U is 1-connected, 1t follows from the homotopy
exact sequence for a pair that (M, U) is 2-connected. Furthermore, the dimension
of T2 is 2, and T2 - U is compact. Therefore we can apply Stalling’s Engulfing
Theorem [8] to obtain a compact set F < int M and a homeomorphism g;: M - M
such that g, is the identity except on F and such that T2 ¢ g,(U).
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Let S be the polyhedron obtained by adding to T2 all closed simplexes of T
that intersect neither M - U nor F. Then S C g;(U). Let S' be the complementary
skeleton to S (that is, S' is the union of all simplexes of the first barycentric sub-
division of T that do not intersect S). Then S' is a compact polyhedron whose di-
mension is at most n - 3.

Let C be a piecewise-linear n-cell in int M, and let int C denote the interior
of C. Since both int M and int C are contractible, the homotopy exact sequence for
a pair says that the pair (int M, int C) is (n - 3)-connected. Applying the Engulfing
Theorem again, we obtain a homeomorphism g;: int M — int M, which is the identity
except on a compact set contained in int M, and for which S'C g,(int C).

Since S and S' are complementary skeletons, we can apply a theorem like
Theorem 8.1 of [8] to get 2 homeomorphism g3: int M — int M such that

int M C g;(U) U g3og,(int C) .

Hence int M C U U gil °g3 OgZ(C), and the boundary of C is a piecewise-linearly
bicollared (n - 1)-sphere in U. Thus h(Bd C) is a piecewise-linearly bicollared
(n - 1)-sphere in V € N, and by Lemma 2 the closed interior of h(Bd C) is an n-
cell D. Since h takes the closed exterior of C onto the closed exterior of D,

h | M - int C can be extended to a homeomorphism H, taking M onto N. #

The referee has pointed out that the triangulation theorems due to R. C. Kirby
and L. C. Siebenmann [6] imply that any homology n-sphere (n > 5) and any com-
pact, contractible n-manifold (n > 6) [if we assume the boundary has a unique PL
structure, n > 5 is enough]| has a unique PL structure. Hence the assumption of a
PL structure in the results above is generally redundant. We shall continue to as-
sume explicitly a PL structure in the statements of lemmas, but in the statements
of the major results we shall state what can be proved using the above-mentioned
triangulation theorems.

COROLLARY 2.1. Let M and N be compact, contvactible PL n-manifolds
(n>5). If oM and oN are PL homeomorphic, then M and N arve PL homeo-
movphic. In fact, if h: oM — 0N is a PL homeomorphism, then h exiends to a PL
homeomorphism H: M — N. Furthevmore, if n > 6, we need not assume the PL
structure on M and N, and it follows that any homeomorphism h: 9M — 9N, not nec-
essarily PL, extends to a homeomovphism H: M — N.

Pyoof. If h: oM — 9N is PL, then, by Theorem 1, h extends to h': W —» Y,
where W is a 1-connected neighborhood of dM. By Theorem 2, there exists a PL
homeomorphism H: M — N that agrees with h' near oM. If n > 6, then M and N
have unique PL structures [6], and furthermore h: 9M — 9N is isotopic to a PL
homeomorphism g: oM — dN. Let U and V be closed PL collar neighborhoods of
dM and 9N in M and N, respectively. Use the isotopy between h and g to extend h
to H' from U onto V such that H' is PL on the inner boundary component of U.
Now apply the first part of the corollary to closure M - U and closure N - V. #

COROLLARY 2.2. Let M be a compact, contractible topological n-manifold,
locally flatly embedded in S™ (n > 5) (if n =5, we assume further that M is a PL
manifold and is PL embedded in S™. If N = closure (S™ - M) is simply connected,
then N is homeomorphic to M.

Pyoof. By the Mayer-Vietoris sequence, N has the homology of a point. Since
we assumed N was simply connected, it has the homotopy of a point and hence is con-
tractible. Since N is a manifold and since aM = 9N, Corollary 2.1 implies that M is
homeomorphic to N. #
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Let Hrop(M) denote the group of topological homeomorphisms of M onto it-
self, and let Hpg (M) denote the subgroup of PL homeomorphisms of M onto itself.
Let CTop(M) denote the group of concordance classes of topological homeomor-
phisms of M onto itself and Cpr,(M) denote the group of PL concordance classes
of PLL homeomorphisms of M onto itself.

COROLLARY 2.3. Let M be a compact, contractible n-manifold. Let
¢: H;(M) — H;(3M) (i = TOP o7 i = PL) be the vestviction-induced homomorphism,
that is, ¢(h) =h|aM. Ifn>5 and if M is a PL manifold, then

is onto, and if n > 6, then ¢: HTOP(M) — HTOP(BM) is onfo.

Pyroof. If g: oM — oM is a homeomorphism, apply Corollary 2.1 to get a home-
omorphism G: M — M extending g. #

Clearly, ¢ will not be one-to-one, in other words, the extension of g is not
unique; but it is unique up to concordance, as the next corollary shows.

COROLLARY 2.4. Let M be a compact, contractible n-manifold. Let
Y: C;(M) — C;(dM) (i = TOP or i = PL) be the resitriction-induced homomovrphism,
that is, Y([h]) =[h|aM]. If n>5 and if M is a PL manifold, then
Y: Cpr,(M) — Cpr,(0M)

is an isomovphism. If n > 6, then each of the homomovrphisms in the following dia-
gram is an tsomovphism:

Cp,(M) 2N Cp1,(3M)
=T
CropM) —¥> Crop@M)

Proof. Tt follows from Corollary 2.3 that ¢ is onto. To show that y is one-to-
one, let h: M — M be a homeomorphism. If h|aM is PL concordant to the identity,
then there exists a PL homeomorphism G: (6M) XI — (dM) X I such that

G| (@M) X {0} = identity and G|(@M) x {1} =h]|oM.
It follows from the Generalized Poincaré Theorem that M X I ~ Il  Of course,
dMxI) = Mx {0} UuMx {1} U (3M) XI.
Hence we can define H': 9(M X I) — 9(M X I) by the conditions
H' | Mx {0} = identity, H'Mx{1})=h, and H'|(@M)XI=G.

Since M XI ~ I™1 H' extends to H: M XI — M X I, and therefore h is concordant
to identity. Hence y: Cpr,(M) — Cpg,(@M) is one-to-one.

If n > 6, then M has a unique PL structure [6]. Furthermore, if h is a homeo-
morphism from either M onto M or aM onto 9M, then h is isotopic to a PL ho-

C C
meomorphism [6]. Hence Cpy,(M) = Cpop(M) and Cpp,(0M) = Cypop(@M) are
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both onto. Again appealing to [6], we see that if H: (M) X I — (dM) X I is a concord-
ance and H|9M x {0, 1} is a PL homeomorphism, then H is isotopic, staying
C

fixed on M x {0, 1}, to a PL homeomorphism. Hence Cpr (3M) — Crop(dM) is
one-to-one. This last statement, together with commutativity, implies that

C
Cpr(M) = Crop(M) is also one-to-one. Hence all the homomorphisms are iso-
morphisms. #

One interpretation of Corollary 2.1 is that each homology n-sphere (n > 4)
bounds at most one contractible (n + 1)-manifold. We show next (Theorem 3) that
each homology n-sphere (n > 5) bounds at least one contractible (n + 1)-manifold.
To do this, we need some facts about regular neighborhoods of 2-manifolds. The
following results are included in an unpublished paper of this author. More elegant
proofs will appear in R. Dieffenbach’s dissertation [1].

THEOREM. Let T be a compact, ovientable 2-manifold, PL embedded in an
ovientable PL n-manifold (n > 5). Let R be a regulay neighbovhood of T velative
to oT.

1) If 3T # @, then (R, T) is PL homeomorphic to (T X D% T x0).
2) If 8T = @, then theve are exactly two possibilities:

a) (R, T) is PL homeomorphic to (T XxD* % T x0), or

b) (R, T) is PL homeomorphic to

(T; xD"™%, T} X 0) U, (T, xD*"2, T, x0),

wheve T and T, ave submanifolds of T with T, U T, =T, where
Ty NT, =38T; =0T, is a simple closed curve, and where

y: (T)) X D*™% = (3T,) xD*™2
is the homeomovrphism genevated by the nontvivial element of
WI(SO(H - 2)) = ZZ .

Since the two possibilities in case b) are distinct and since the regular neigh-
borhoods of T in S™ must be a product, we obtain the following corollary.

COROLLARY. Let S and T be compact, ovientable 2-manifolds, PL. properly
embedded in D™ (n > 5), that is, 8S C D™ and int S C int D®. Suppose that 98 = 9T
is a simple closed curve. Let h: (0S) X D"-2 — D" be a PL embedding. Then h
extends to H: S X D™-2 — D" if and only if h extends to G: T X DR-2 — Dn |

LEMMA 3. LetM be a PL n-manifold (n>5) such that n;(M) = 1. Suppose
T is a closed, orientable PL 2-manifold contained in M with a product neighborhood
N; that is, theve exists a PL homeomorphism h: (T XxD™~2 T x {0}) — (N, T) with
the property that h(t, 0) =t for every t € T. Under these hypotheses there exists a
PL 2-spheve S C M such that

i) S ¢s homologous to T, and
ii) a vegular neighborhood of S is PL homeomorphic to S x D-2

Proof. The proof is by induction on x(T), the Euler characteristic of T. If
X (T) = 2, we are done. If x(T) < 2, we show that we can find a surface T' satisfy-
ing the hypothesis of the lemma and the inequality x(T') > x(T).
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Suppose X(T) < 2. There exists a simple closed curve J; on T such that J;
does not separate T. Hence there exists a simple closed curve J, on T such that
J; N J, is a single point p and J; and J, cross at p. Since 7;(M) =1 and since
the dimension of M is at least 5, there exist disks D; and D, such that

oD, =J;, 9D, =J;, D;ND, =p, DNT =J;, and D, NT = J,.

Since D; N D, = p, it follows that D; U D, is collapsible. Let R be a regular
neighborhood of D) U D, that intersects T in a regular neighborhood of J; U J, .
We assume further that R N N = h((R N T) X D"~2), In particular, we have that

R NT is a punctured torus and h(3(R N T) X D®-%) c 3R. Of course, R is an n-cell.
Let D be a disk in R such that 82D =D NdR =3(R N T). Since h I (R N T) x Dn-2
extends to (R N T) x D2 , it follows from the above-mentioned corollary that
h|8(R N T) x D% extends to take D x D®-2 into R also. Hence the desired 2-
manifold is T' = (T - (RN T)) UD. Clearly, T' is a closed, orientable 2-manifold
in M, and if N' is a regular neighborhood of T', then (T' XDR-2 T X 0) is homeo-
morphic to (N', T!). Finally, since T and T' differ only inside the cell R, it follows
that T is homologous to T'. #

LEMMA 4. Let M be a PL n-manifold with the homology groups of S* (n > 5).
Let 3y, «--, Jx be disjoint PL simple closed curves in M X {1} c M x [0, 1] whose
homotopy classes genevate m (M X {1}). Then we can add 2-handles hy,,hy to
M x [0, 1] along J,, ***, I, vespectively, so that if

M'=Mx[0,1]Uh; U " Uh, and K =23M'-Mx{0},

then
a) m(M') = m;(K) =~ 1,
b) Hy(M', Z) ~ 0 (i# 0, 2, n) and Hy(M', Z) ~ H_(M', Z) = Z,
c) H,(M', Z) = Z@ @D Z (k times), and

d) theve exist disjoint PL 2-spheves S;, ***, Sy in K with the propevties that
the homology classes of the S; genevate Hy(M', Z) and each S; has a neighbovhood
U; such that (U, S;) = (S; xD*2, 8, x {0}).

Proof. Since H;(M, Z) = 0, there exist pairwise disjoint, connected, orientable
surfaces Ty, Tp, **, Ty in M X {1} such that 8T; =J; (1 <i<k). Let N; be a
regular neighborhood of T; in M X {1} relative to T;. Then, by the theorem on
regular neighborhoods of 2-manifolds, there exists a homeomorphism

. -2 —
g;: (T; xDI"2 | T, x 0) — (N, , T;)

such that g;(t, 0) =t for every t € T;. Let D; be a 2-disk, and let W; be the closed,
orientable 2-manifold obtained by identifying 9D; with J; = 9T;. Let h; denote the
2-handle D; X D"-1 with attaching homeomorphism g; | J; xDn-1 | Then, clearly, g;
can be extended to an embedding

Gi: Wy xD*™! - N, Uh; cM x[0,1]Uby.

Let Mg =M X [0, 1], and let M; =My Uh; U -+ Uh; (1 <i<Kk).

It follows easily from Van Kampen’s theorem that 7,(M;) = 1. Furthermore, if
y is a loop in K = (0My) - M X {0}, then y is trivial in M, and hence in
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MX {1} Uh; U+ Uhy. Butthe h; are 2-handles of dimension n+ 1 > 6; hence,
by general position, y is trivial missing the cores of the h; (that is, missing
G;(D; X {0}) € h;). But h; - G;(D; X {0}) deformation retracts to

hi - Gi(Dl X int Dnﬁl) .
Hence y is trivial in
Mx {1} U(h; - G (D; X int D*"1)) U **+ U (hy - G(Dy x int D*1)) = K,

that is, 7;(K) = 1.

The Mayer-Vietoris sequence shows that H;(My , Z) =0 if i #0, 2, n and that
Ho(My , Z) =~ H (My, Z) = Z. Furthermore, it follows from the Mayer-Vietoris se-
quence that H,(M; , Z) is generated by the homology classes of the surfaces W,

(1 <i<k). Since each W; has a product neighborhood in K, it follows from Lemma
3 that there exist 2-spheres S;, -+, Sx in K such that the homology classes of the
S; generate Hz(M, Z) and such that each S; has a product neighborhood. Hence

M' = M, is the desired manifold. #

THEOREM 3. Let M be a topological n-manifold with the homology groups of
S™ (n > 5). Then theve exists a compact, contvactible (n + 1)-manifold N such that
ON = M.

Proof. By [6], M has a unique PL structure. We start with M X I, add 2-
handles along M X {1} to kill the fundamental group, then add 3-handles along the
altered M x {1} to kill the second homotopy group. It now follows that the boundary
component obtained from M X {1} is an n-sphere; therefore we can complete the
construction by attaching an (n + 1)-cell.

Let J;, ---, Jx denote pairwise disjoint, PL simple closed curves in M X {1}
whose homotopy classes generate 7;(M X {1}). We add handles d;,dy, =, dy to
M X I to obtain an (n + 1)-manifold M' with the properties stated in Lemma 4. By
conclusion d) of Lemma 4, there exist pairwise disjoint 2-spheres S;, S, , ***, S in
K=3(M') - M x {0} whose homology classes generate H,(M', Z) and that have
product neighborhoods. Hence we can attach 3-handles C; , C,, -*-, C to M' along
S;, '+, Sy to obtain an (n + 1)-manifold M". Let No=M"' and N;=N;_; U C;

(0 <i <Kk). Then M" = N.. We can use the Mayer-Vietoris sequence to show that,
for 1 <i<k,

0 if j#0,2,n,
H;(Nj, Z) ~ { Z if j=0or j=n,
ZAZO®P2Z (k-itimes) if j=2.

Furthermore, Van Kampen’s theorem shows that 7(N;) =1 for 1 <i <k. We now
have that

0 if j#0,n,
H{M", Z) =~
Z if j=0or j=n.

By the Universal Coefficient Theorem for cohomology, we have the relations
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. 0 if j#0,n,
HM", Z) =
Z if j=0or j=n.

Hence from the Lefschetz Duality theorem [2] we get the diagram

—> w4 Ywm", z) —> B3 oM", 2)— HYWM", aM", Z) —> HYM", Z) —>

> Hp_q42(M",8M", Z) = Hy,_q41 (0M", Z) > Hy_q4 1 (M", Z) > Hy oy (M",0M", Z) > .

Thus
0 is j #0,n,
Hj(BM",Z) =
Z@HZ ifj=0or j=n.

Finally the Mayer-Vietoris sequence, applied to oM", gives us the relations

0 if j#0,n,
H;(@M" - M X {0}, 2) =
Z if j=0or j=n.

Thus 8M" - M X {0} is a homology sphere. To show that dM" - M x {0} is a ho-
motopy sphere, we need only prove that m(dM" - M x {0}) = 1. Recall that
K=9M' - Mx {0} and that m(K) = 1. Furthermore,

k k ‘
aM" - Mx {0} =| kul ac; |- U int(c; nK).

i=1 i=1

k
It follows from Van Kampen’s theorem that 71‘1'( KU Ui=1 Ci) = 1; and since
each C; is a cell of dimension at least 6 and since it is a 3-handle, it follows from
general position arguments that every loop in 9M" - M X {0} can be shrunk in

k
KU U ;=1 Cj, missing the core of each C;. Since C; minus its core deformation
retracts to C; - int (C; N K), it follows that 73 @GM" - M x {0}) = 1.

Thus aM" - M x {0} isa homotopy sphere, and by the generalized Poincaré
theorem, it is a sphere. Hence we complete the construction of the manifold N by
attaching an (n + 1)-ball to M" along oM" - M X {0} (so that N=M" U B**1), van
Kampen’s theorem shows that N is simply connected. The Mayer-Vietoris sequence
shows that N is a homology cell. The Hurewicz theorem says that N is a homotopy
cell, and hence N is contractible. #

COROLLARY 3.1. Let M be a homology n-spheve. If n> 5, then M bounds a
unique contractible (n+ 1)-manifold. If n =4, then M bounds at most one contract-
ible (n + 1)-manifold.

COROLLARY 3.2, Let M be a homology n-spheve (n>5). Then M can be
embedded in S*t1 so that the complement of the image will be simply connected.

Pyroof. By Theorem 3, there exists a contractible (n + 1)-manifold N such that
M =~ 3N. Since N Ugy N =~ 8™*! | the result follows.
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Contractible open manifolds do not seem to submit so easily to the techniques of
this paper. In view of Corollary 2.1, it seems reasonable to conjecture that if X and
Y are contractible open manifolds that have homeomorphic neighborhoods of «, then
X and Y are homeomorphic. The following partial solution of this conjecture was
suggested by the referee.

THEOREM 4. Let X and Y be contractible, open, PL n-manifolds (n > 6). Let
g denote the end of X. Suppose that m, is stable at €, 1,(g) is finitely presented,
H,(e) =0, and ¢ is tame (that is, theve exists a connected open neighbovhood U of ¢
such that U is dominated by a finite CW complex and the natural map
i: my(€) — 7,(U) has a left inverse). If WC X and V C Y ave closed neighborhoods
of the ends of X and Y, respectively, and zf h: W — V is a PL. homeomovrphism,
then for some nezghboafkood Wi cWofeg, h l W, extends to a PL homeomovphism
H:X-Y.

Proof. By Theorem 4.5 of L. C. Siebenmann’s thesis, there exists a neighbor-
hood Wy of € such that Wy C W, WO is a connected PL n-manifold, 7,(¢) = 771(W0)
and 7,(W,, d3Wy) =0 for 0<1<n—

In particular, 7, (0 W) S 1(Wp) is an isomorphism; hence, by Van Kampen’s
theorem, 7(X - int Wy) =~ 7;(X) ~ 1. Similarly,

1T1(Y h(1nt Wo)) WI(Y)

We now proceed as in the proof of Theorem 1. Let J;,Jd2, ***, Jx be simple
closed curves in 9W, whose homotopy classes generate m;(dWy) = m;(Wy). Since
n > 6 and since 7;(X - int W) = 1, the J; bound pairwise disjoint disks D; with
int D; € X - Wy. Let C; be a regular neighborhood of D; in X - int Wy such that
C; N dW, is a regular neighborhood of J; in Wy . Let E; be a disk in
Y - h(int W) bounded by h(J;), and let int E; C Y - h(Wy). Finally, let F; be a
regular neighborhood of E;, in Y - h(int W), with F; N h(aW,) = h(C, N aW,).

k
We now extend h I Wy to take Wy U Ui:l C; homeomorphically onto
k
h(W,) U Ui:l F;. To accomplish this, we need a result analogous to Lemma 1. Let

and let S; =D; UE; & Z. Then S; is a 2-sphere, and h I Wp will extend to take Cj
onto F; 1f and only 1f C; U ¥y 1s homeomorphic to S; x D2-2, This will be the case
if S, is contained in an n-cell in Z, and we can engulf S; with an n-cell if 2 is
2-connected. Since

7 (X - int Wg) = 7;(Y - h(int Wy)) =
Van Kampen’s theorem implies 7;(Z) ~ 1. Hence, to prove that m,(Z) ~ 0, it suffices
to prove H,(Z) ~ 0. Since 7;(Wg, 3Wg) = 0 for i < n - 3, we see that
H;(Wy, 9Wg) = 0 for i < n - 3. Since n > 6, we obtain the relations
0= H3(W0 ’ BWO) - Hz(aWO) hnd HZ(WO) — Hz(Wo ’ BWO) = 0.

The fact that H,(3Wg) — H,(Wj) is an isomorphism implies the relations

~ H3(X) — Hp(8Wp) — Ha(X - int Wo) D Hx(Wg) — Hy(X) =
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and hence Hp(X - int Wy) ~ 0. Similarly H,(Y - h(int Wy)) = 0. Thus we see from
0 ~ Hy(X - int Wg) @ H,(Y - h(int Wg)) — Hy(Z) — H,(8Wy)
— H (X - int Wy) @ H (Y - h(int Wy)) =~ 0
that H,(Z) ~ H;(3W,). But the map m (W) — m, (W,) shows that
H,(0W() ~ H;(Wg).

Since m; (Wq) = m (€) and since H;(¢) = 0, we obtain H;(dWg) ~ 0. Hence Z is 2-

connected and h I W, extends to W, U Ulle C;. The proof now concludes exactly

as the proof of Theorem 2, because we have shown that X and Y have homeomorphic
1-connected neighborhoods of «.
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