LOCALLY COMPACT LATTICES WITH SMALL LATTICES
Tae Ho Choe

In (4], L. Anderson asked whether each locally compact, connected topological
lattice has a base consisting of open sublattices. We shall show that this question
has a negative answer even in a compact, connected, metrizable distributive lattice.
However, we shall see that if a lattice has finite dimension (either codimension of
H. Cohen [9] or inductive dimension of Urysohn and Menger), then it has such a base.
The following natural question arises: What is a necessary and sufficient condition
for a lattice to have such a base? In the first section, we shall answer this question.
We shall then prove that no locally compact, connected, complemented lattice has a
base consisting of open sublattices. This implies that each locally compact, rela-
tively complemented lattice that is either finite-dimensional or has a base of open
sublattices is totally disconnected. J. Lawson [11] studied the parallel problem for a
semilattice. He proved that locally compact, locally connected, finite-dimensional
semilattices have small semilattices.

The following theorem was conjectured by A. D. Wallace [14], and it was proved
in {2] and [7]: ¥ L is a compact, connected lattice of codimension at most n, then
the number of elements in its center, denoted by Card(Cen (L)), is at most 2. In
the second section, we shall see that this theorem also holds in a locally compact,
connected lattice with 0 and 1. Furthermore, if the lattice is not compact, then
Card (Cen(L)) < 2n-1

For a pair of subsets A and B of a topological lattice L, we use A/A B and
A V B to denote the sets

{aAblaeAandbeB} and {aVblaeAandbeB},

respectively. For a subset A of L, we let A* A°, and F(A) = A*\ A° denote the
closure, the interior, and the boundary of A, respectively. All other terms and
definitions used in this paper are the same as in [3] and [7]. It is known ([1], [3],
and [5]) that every locally compact, connected lattice is chain-wise connected,
locally convex, and locally connected.

1. LATTICES WITH SMALL LATTICES

A topological lattice that has a base consisting of open sublattices is called a
lattice with small lattices. Recently, J. Lawson [12] gave an example of a compact,
connected, metrizable, distributive lattice L that admits no nontrivial lattice-
homomorphism into the unit interval I with the usual order, that is, every lattice-
homomorphism of L into I is a constant mapping. We show that this lattice has no
base consisting of open sublattices. Suppose that the lattice L has such a base.
Then, by [13, Theorem 5], the topology of L. must be the interval topology of L. By
[13, Theorem 6], L. admits enough lattice-homomorphisms to separate points of L.
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It is known that every finite-dimensional, compact, connected, distributive lattice
admits enough lattice-homomorphisms to separate points. Therefore, the lattice in
the example is infinite-dimensional.

For a finite-dimensional lattice, we have the following result.

THEOREM 1. If L is a finite-codimensional, locally compact, connected lal-
tice, then L has small lattices.

Proof. It is known that the breadth is at most equal to the codimension in every
locally compact, connected lattice. For a neighborhood U of a point x in L, there
exist two elements y and z in L and a neighborhood V of x such that
v cly, z] € U [8, Theorem 1]. Since L is locally compact, we may assume that
M =y, z] is compact. By [8, Corollary 1], the relative topology M in L must be
the interval topology of M. Again by [13, Theorem 5], M has small lattices. Hence
there exists an open sublattice W in M such that x € WC V. Clearly, W is an
open sublattice in L. The proof is now complete.

Finite dimensionality is clearly not a necessary condition for L to have small
lattices. Therefore it may not be easy to obtain a necessary and sufficient condition
in terms of dimension for L to have small lattices.

E. B. Davies [10] has given several necessary and sufficient conditions for a
compact lattice to have small lattices.

In the following theorem, we give analogous conditions for locally compact,
connected lattices.

THEOREM 2. Let L be a locally compact, connected lattice. Then the follow-
ing conditions ave equivalent.

(i) L has small lattices.

(ii) If x 2y in L, then theve exists an element z in L such that x € (z N\ L)°
and z by, and dually.

(iii) L kas a base consisting of closed intevvals of L.

Proof. (i) — (ii). Let x %2y, and let U be a neighborhood of x such that u %2y
for all u € U. Choose a neighborhood V of x such that V is an open sublattice of
L, V* is compact (and hence a sublattice), and V* C U. Let z denote the maximal
element of V¥. Then x e-(z A L)° and z %y, and the dual statement also holds.

(ii) — (iii). Let W be a neighborhood of x. Choose open neighborhoods U; and
U, of x such that U, is convex, U} is compact, and Uy c U, Cc U3 c W. Let

A=U3n(L\(LAUY).

Then A is a compact subset of L. Let P be the set of all y € L such that

x € (y AL)°. By (ii), P is clearly not empty. We show first that there exists b € P
such that (b A L)N A is empty. Suppose that (y A L) N A is nonempty for each

y € P. Then it is easy to see that the family of sets of the form (y A L) N A, where
y € P, has the finite-intersection property. Since A is compact, there exists an
element

ue n yAL)NA,

vyeP
and y > u for all y € P. On the other hand, we see that x % u, because
AN(xAL)=0 and u € A. By (ii), it follows that there exists z € L such that
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x € (zAL)° and z £ u, and hence z € P. This is a contradiction. Now we show
that b € U;. Suppose that b ¢ U;. Then either b € A or b € L\ U}, because

b ¢ L AU;. The first case is clearly impossible. Thus b € L\ U’g . Let C bea
connected chain from x to b. Clearly, C N F(Uy) # 0. Every element p of

C N F(U,) belongs to (b AL) N U%. But p ¢ L AU;, because x < p, U} C Uz, and
U, is convex. It follows that C N F(U,) C (b AL) N A. Hence the other case is also
impossible. Dually, there exists an element a in U; such that x € (a\Vv L)°. Hence
xe(@vL)NMmAL®=[a, b]°cla, bjcU, cW.

(iii) — (i). Let W be a neighborhood of x. Choose a closed interval M = [a, b]
and an open subset V in L such that x € VC M C W (note that M is compact). The
relative topology of M in L has a base of closed intervals, since L has such a base.
Thus, by a result of Davies [10], M has a small lattice. Therefore, V contains a sub-
lattice of L that is open in L.

LEMMA 1. No nonrdegenevate, locally compact, connected, complemented lat-
tice has swall lattices.

Proof. Suppose that such a lattice L has a small lattice. Take an open sub-
lattice U containing the zero 0 of L, such that U* is compact and 1 ¢ U, where 1
is the unit of L. Now choose an open convex sublattice V (such a V always exists
if L has a small lattice and is locally convex) such that 0 € V C V* c U. Then
V* c b A L for the maximal element b of V*. Let z be a complement of b. Then
z £ b, because b #1. By [1, Lemma 6], we have the inclusion

bA[L\ (bAL)] CcFbAL).

Hence 0 € F(b A L). This is a contradiction.
The following corollary follows immediately from Theorem 1.

COROLLARY 1. Every nondegenerate, locally con.pact, connected, comple-
mented lattice has infinite codimension.

THEOREM 3. Ewvery locally compact, relatively complemented lattice that is
either finite-dimensional or has small lattices is tolally disconnected.

Proof. Suppose that such a lattice L is not totally disconnected. Then there
exists some x in L whose connected component C contains an element other than
x. Therefore C is a nondegenerate, locally compact, connected sublattice under its
relative topology. Since L has finite dimension or small lattices, the lattice C it-
self has small lattices. By Theorem 2, there exists a closed interval [a, b] of C
that constitutes a neighborhood of x in C and is therefore nondegenerate. Since C
is convex in L, [a, b] is also a closed interval in L, which is complemented. By
Lemma 1, this is a contradiction, because [a, b] itself has small lattices.

COROLLARY 2. Every locally compact, orvthomodulay lattice that has finite
codimension ov small lattices is totally disconnected.

2. DIMENSION AND CENTERS

An element c of a lattice L is said to be neufral if each triple c, x, y of ele-
ments in L generates a distributive sublattice. An element of a lattice with 0 and 1
is called a center element if it is a neutral element and is complemented. It is well
known that the set of all center elements in a lattice with 0 and 1 forms a Boolean
algebra with the same 0 and 1.
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THEOREM 4. Let L be a locally compact, connected lattice with 0 and 1. If
the codimension of L is n, then Card(Cen(L)) < 2",

Proof. Let C be the set of all center elements of I.. We show first that
Card (Cen(L)) must be finite. Suppose that it is infinite. It is known [6, Theorem 4,
p. 59] that a Boolean algebra of finite length is finite. Therefore we can choose a
chain 0.=cp <c; <cp <+ <cpy; =1 of (n+2) elements in C. Let
Xy_]=Cr_; V C, where ¢, is the complement of ¢y in C (k=1,2, ---, n+1).
Clearly, xiV xj=1 (k #j). Furthermore, the meet xgA --* A x, is not a meet of a
subset of n of the xj, because if Xg A\ A X, =XgA " AX AR A AKX,
then by distributivity x; = 1, from which it follows that ¢;_; = ¢;. This implies that
C has breadth greater than n. It is known [2] that in such a lattice the breadth is
less than or equal to the codimension. This is a contradiction. Hence C is a finite
Boolean algebra.

Let Card (C) = 2™, where m is a positive integer. Suppose that m > n. Let
the atoms of C be a;, -+, a,,. Consider a compact, connected chain X; in L from
0toa; (i=1,2, -, m). Let f be the mapping from X; X --- XX _ into L defined
by the relation

f(y;, , ¥m) =Y1VY2V " Vy...

Let g be the mapping from (X X --- X X)) into X; X -*- XX defined by the rela-
tion g(x) = (x Aa;, xAa,, -, xAay). Then f and g are both continuous, and
furthermore, g = f-1 because a;, ***, a,, are neutral elements in L. Since X; is
nondegenerate, the codimension of X; X -+ XX,,, is m [7]. This is a contradiction.
Hence the proof is now complete.

LEMMA 2. Let L be a locally compact, connected lattice with 0 and 1, and let
Ca(L) denote the number of all the atoms of the center of L. Then L is iseomorphic
with a cartesian product of n nondegenevate, compact, connected chains if and only if
Ca(L) = cd(L) = n, where cd (L) denotes the codimension of L.

Proof. Suppose L is iseomorphic with a cartesian product J; X :-- X J, of n
nondegenerate, compact, connected chains. Let 0; and 1; be the zero and the unit of
Ji (i=1, 2, ---, n), respectively. Clearly,

(11, 02: Tty On)s (011 12: 03’ ) On)’ Ty (01: 027 ) 1n)

are all atoms of the center of J; X --- XJ,. Conversely, let ¢;, ***, ¢, denote all
the atoms of the center of L. Consider the mapping

f: L—=(c; AL)X -+ X(c, AL) defined by f£(x) = (c; Nx, -+, c, Ax)
and the mapping
g: (c; AL) X+ X(cy, AL) - L defined by g(xq, =", %) = 31V " Vx,.

Then f and g are both continuous, and furthermore g =f-1. By [7, Lemma 2.7],
cd(eg AL)=1 (i=1,2, ---, n). Therefore c¢; AL is a locally compact, connected
chain, and hence it is compact.

COROLLARY 2. If L satisfies the conditions in Theorem 4 and is not coni-
pact, then Card(Cen(L)) < 2n-1 |

The following example shows that in some respect the result above is the best
possible.
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Example. In Euclidean 3-space, let

= {x,y,2] 0<%, y,2<1} u{(0,0,2)| 0<z<1} U {(1, 1,2)] 0<=z<1} .

Then L is a locally compact, connected lattice with 0 and 1 under the order of
cardinal product and the usual topology of Euclidean 3-space, and it is not compact.
The center of L is {(0, 0, 0), (0, 0, 1), (1, 1, 0), (1, 1, 1)}.
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