QUASI-p-REGULARITY OF SYMMETRIC SPACES

Mamoru Mimura

INTRODUCTION

If X and Y are CW-complexes, we say that Y is p-equivalent to X (notation: $X \simeq Y$) if there exists a map $f: X \to Y$ such that

$$_{,}f^{*}: H^{*}(Y; Z_{p}) \cong H^{*}(X; Z_{p}).$$

Following [10], we say that X is p-regular if it is p-equivalent to a product of spheres. We call X quasi-p-regular if X is p-equivalent to a product of spheres and spaces $B_n(p)$ satisfying the condition

$$H^*(B_n(p); Z_p) \cong \Lambda(x_{2n+1}, \mathfrak{P}^1 x_{2n+1}).$$

In [7], P. G. Kumpel discussed the p-regularity of irreducible symmetric spaces. The purpose of this paper is to extend the study to the quasi-p-regularity of irredicible symmetric spaces.

Let G be a compact, connected, simply connected Lie group with an involution σ : $G \to G$. Let K be the identity component of the fixed-point set of σ , and assume that K is totally nonhomologous to zero in G with real coefficients. Then the irreducible symmetric spaces G/K satisfying the hypotheses above are

- (i) $(K \times K)/K$,
- (ii) SU(2n + 1)/SO(2n + 1),
- (iii) SU(2n)/Sp(n),
- (iv) Spin(2n)/Spin(2n 1),
- (v) E_6/F_4 .

As is well known, $(K \times K)/K$ is isomorphic to K. The quasi-p-regularity of the Lie groups was discussed in [8]. Since

$$Spin(2n)/Spin(2n - 1) = S^{2n-1}$$

the space (iv) is quasi-p-regular. Therefore it is sufficient to study the quasi-p-regularity of (ii), (iii), and (v). Our results (Theorems 4.2, 4.3, and 4.4) are as follows.

SU(2n)/Sp(n) is quasi-p-regular if and only if $p \ge n$.

SU(2n+1)/SO(2n+1) is quasi-p-regular if and only if $p \ge n+1$.

 E_6/F_4 is quasi-p-regular if and only if $p \ge 5$.

Corollary 4.5 answers negatively a question of Kumpel [7].

Received September 22, 1969.

This research was partially supported by NSF Grant GP 9637.

Michigan Math. J. 18 (1971).

In the first section we recall the cohomology groups of G/K and study the \mathfrak{P}^1 -operation on them. In Section 2 we give further information, due to B. Harris [4], on $H^*(G/K; \mathbf{Z}_p)$. The space $B_n(p)$ is constructed in Section 3. In Section 4, we prove our main results.

Throughout this paper, p denotes an odd prime (unless it is otherwise stated), ${}^p\pi_i(X)$ stands for the p-primary component of $\pi_i(X)$, and $K^{(n)}$ is the n-skeleton of a complex K.

1. THE COHOMOLOGY OF G/K AND THE \$1-OPERATION

It is known that

(1.1)
$$H^*(SU(2n+1)/SO(2n+1); Z_p) \cong \Lambda(x_5, x_9, \dots, x_{4n+1}),$$

(1.2)
$$H^*(SU(2n)/Sp(n); Z_p) \cong \Lambda(x_5, x_9, \dots, x_{4n-3}),$$

(1.3)
$$H^*(E_6/F_4; Z_p) \cong \Lambda(x_9, x_{17}).$$

PROPOSITION 1.1. In (1.1) and (1.2), $\mathfrak{P}^1 \times_{4i+1} = 0$ if and only if $p \mid i$. For the proof, see [7], for example.

PROPOSITION 1.2. In (1.3),

$$\mathfrak{P}_{p}^{1}x_{9} = \begin{cases} x_{17} & if \ p = 5, \\ 0 & otherwise. \end{cases}$$

Proof. Let q: $E_6 \to E_6/F_4$ be the projection. Let y_9 and y_{17} be the elements of $H^*(E_6; Z_p)$ such that

$$q^* x_i = y_i$$
 (i = 9, 17).

By Theorem 1.1 of [8], $\mathfrak{P}_5^1 y_9 = y_{17}$. Therefore

$$x_{17} = q^*y_{17} = q^{*} \mathfrak{P}_5^1 y_9 = \mathfrak{P}_5^1 q^* y_9 = \mathfrak{P}_1^1 x_9.$$

For dimensional reasons, $\mathfrak{P}_p^1 x_9 = 0$ if $p \neq 5$.

2. THE MULTIPLICATION IN G/K

The material in this section is due to Harris [4].

Let G and K have the same meaning as in the Introduction. Let i: $K \to G$ and ℓ : $G \to G/K$ be the inclusion and the projection. Let q: $G/K \to G$ be the map defined by

$$q(gK) = g \cdot \sigma(g)^{-1}$$
.

PROPOSITION 2.1 (Harris). Let U be the subalgebra generated by the elements x_i left fixed by σ^* , and let V be the subalgebra generated by the other elements x_i . Then

- (a) $H^*(G; Z_p) \cong U \otimes V$ as algebras;
- (b) i^* maps U isomorphically onto $H^*(K; \mathbb{Z}_p)$ and is zero on the positive-dimensional elements of V;
- (c) q^* maps V isomorphically onto $H^*(G/K; \mathbf{Z}_p)$ and is zero on the positive-dimensional elements of U;
- (d) ℓ^*q^* : $H^*(G; Z_p) \to H^*(G; Z_p)$ is given by the formula $\ell^*q^*(x) = x \sigma^*(x)$ if x is primitive;
- (e) $H^*(G/K;\,Z_p)$ has generators $y_1\,,\,\cdots,\,y_t$ such that $\sigma^*(y_i)$ = y_i and $q^*\,\ell^*(y_i)$ = $2y_i$ (i = 1, $\cdots,\,t$).

We define a mapping w: $G/K \times G/K \rightarrow G/K$ by the equation

$$w(g_1 K, g_2 K) = g_1 \cdot \sigma(g_1)^{-1} \cdot g_2 K$$
.

Then w(eK, gK) = gK, $w(gK, eK) = \ell q(gK)$, and $w(gK, \sigma(gK)) = gK$. The product map w induces the mapping

w*:
$$H^*(G/K; Z_p) \rightarrow H^*(G/K; Z_p) \otimes H^*(G/K; Z_p)$$

given by the equation

$$w^*(x) = q^* \ell^*(x) \otimes 1 + \sum a_i \otimes b_i + 1 \otimes x.$$

In particular, if yi is a generator (as in (e) of Proposition 2.1), then

(2.1)
$$w^*(y_i) = 2y_i \otimes 1 + 1 \otimes y_i + d_i$$
,

where d_i involves only the generators y_1 , \cdots , y_{i-1} . Now we define the map

$$\phi_j \colon \underbrace{G/K \times \cdots \times G/K}_{j} \xrightarrow{W \times 1} G/K \times \cdots \times G/K \xrightarrow{} \cdots \xrightarrow{} G/K \times G/K \xrightarrow{W} G/K \ .$$

It follows from (2.1) that the induced homomorphism

$$\phi_{j}^{*}$$
: $H^{*}(G/K; Z_{p}) \rightarrow H^{*}(G/K; Z_{p}) \otimes \cdots \otimes H^{*}(G/K; Z_{p})$

is given by

(2.2)
$$\phi_{j}^{*}(y_{i}) = 2^{j-1} y_{i} \otimes 1 \otimes \cdots \otimes 1 + 2^{j-2} \cdot 1 \otimes y_{i} \otimes 1 \otimes \cdots \otimes 1 + \cdots + 1 \otimes \cdots \otimes 1 \otimes y_{i} + D_{i},$$

where D_i involves only y_1, \dots, y_{i-1} .

3. The construction of $\boldsymbol{B}_{\!n}(\boldsymbol{p})$

Denote by $V_{2n+3,2}$ the Stiefel manifold SO(2n+3)/SO(2n+1), which is an S^{2n+1} -bundle over S^{2n+2} . Then $B_n(p)$ is the bundle induced by the element $\frac{1}{2} \alpha_1(2n+2)$ from $V_{2n+3,2}$, where $\alpha_1(2n+2)$ is a generator of the p-component

of $\pi_{2n+1+2(p-1)}(S^{2n+2})$, and we have the diagram

As is well known, $H^*(B_n(p); Z_p) \cong \Lambda(x_{2n+1}, \mathfrak{P}^1 x_{2n+1})$, and $B_n(p)$ has the cell structure

$$B_n(p) \simeq S^{2n+1} \underset{\alpha_1(2n+1)}{\cup} e^{2n+1+2(p-1)} \cup e^{4n+2+2(p-1)}.$$

Let q be a prime with (q, p) = 1. Since the characteristic element of the bundle $B_n(p)$ is of order p, we have the isomorphism

$$q_{\pi_i}(B_n(p)) \cong q_{\pi_i}(S^{2n+1} \times S^{2n+1+2(p-1)}).$$

The p-primary components of $\pi_i(B_n(p))$ are extensively calculated in [9].

4. QUASI-p-REGULARITY

In [7], Kumpel showed that

$$(4.1) S5 \times S9 \times \cdots \times S4n-3 \approx SU(2n)/Sp(n) for n < \frac{p+1}{2}.$$

In fact, for $1 \le i \le \frac{p-1}{2}$ there exist maps

$$g_i: S^{4i+1} \rightarrow SU(p+1)/Sp\left(\frac{p+1}{2}\right)$$

such that the induced homomorphisms

$$g_{i}^{*}: H^{*}\left(SU(p+1)/Sp\left(\frac{p+1}{2}\right); Z_{p}\right) \to H^{*}(S^{4i+1}; Z_{p})$$

are epimorphic. We put

$$\bar{g}_i \colon S^{4i+1} \xrightarrow{g_i} SU(p+1)/Sp\left(\frac{p+1}{2}\right) \longrightarrow SU(p+1+2i)/Sp\left(\frac{p+1}{2}+i\right)$$

$$(1 < i < (p-1)/2),$$

where the second map is the natural one:

$$SU(p+1)/Sp\left(\frac{p+1}{2}\right) \; \subseteq \; SU(p+1+2i)/Sp\left(\frac{p+1}{2}\right) \; \rightarrow \; SU(p+1+2i)/Sp\left(\frac{p+1}{2}+i\right) \; .$$

We shall extend \bar{g}_i to

$$f_i$$
: $B_{2i}(p) \rightarrow SU(p+1+2i)/Sp\left(\frac{p+1}{2}\right)$,

where $B_{2i}(p) \simeq S^{4i+1} \cup e^{4i+1+2(p-1)} \cup e^{8i+2p}$. The mapping \bar{g}_i is extendable to $S^{4i+1} \cup e^{4i+1+2(p-1)}$, since α_1

$$\pi_{4i+2(p-1)}\left(SU(p+1+2i)/Sp\left(\frac{p+1}{2}+i\right)\right) = 0.$$

By [5], $P_{\pi_{8i+1+2(p-1)}}(SU(p+1+2i)) = 0$. Hence

$$p_{\pi_{8i+1+2(p-1)}} \left(SU(p+1+2i) / Sp \left(\frac{p+1}{2} + i \right) \right) = 0$$
,

by (1) of [3]. Let ε_i be the attaching element of e^{8i+2p} in $B_{2i}(p)$, and let x_i be the order of $\pi_{8i+1+2(p-1)}\Big(SU(p+1+2i)/Sp\Big(\frac{p+1}{2}+i\Big)\Big)$. Then $(x_i, p) = 1$. Therefore \bar{g}_i is extendable to

$$B'_{2i}(p) = S^{4i+1} \cup e^{4i+1+2(p-1)} \cup e^{8i+2p}.$$

$$\alpha_1 \quad x_i \varepsilon_i$$

Obviously, $B_{2i}(p) = B'_{2i}(p)$. Therefore the desired map is obtained as the composition

$$f_i \hbox{:} \ B_{2i}(p) \ \rightarrow \ B_{2i(p)}' \ \rightarrow \ SU(p+1+2i)/Sp\left(\frac{p+1}{2}+i \ \right).$$

With the notation a = (p - 1)/2, consider the composition

$$A_i = \phi_a \circ (f_1 \times \cdots \times f_i \times g_{i+1} \times \cdots \times g_a);$$

it gives the mapping

$$A_{\mathbf{i}} : \prod_{\ell=1}^{\mathbf{i}} B_{2\ell}(\mathbf{p}) \times \prod_{\mathbf{m}=\mathbf{i}+1}^{\mathbf{a}} S^{4\mathbf{m}+1} \longrightarrow \underbrace{G/K \times \cdots \times G/K}_{\mathbf{a}} \xrightarrow{\phi_{\mathbf{a}}} G/K ,$$

where G = SU(p + 1 + 2i) and $K = Sp(\frac{p+1}{2} + i)$. Further,

$$A_{i}^{*}: H^{*}(G/K; Z_{p}) \rightarrow H^{*}\left(\prod_{\ell=1}^{i} B_{2\ell}(p) \times \prod_{m=i+1}^{a} S^{4m+1}; Z_{p}\right).$$

From (2.2) it follows that

$$A_{i}^{*}(x_{4j+1}) \equiv \begin{cases} f_{j}^{*}(2^{\ell-j} x_{4j+1}) & \text{if } j \leq i, \\ g_{j}^{*}(2^{\ell-j} x_{4j+1}) & \text{if } j \geq i+1, \end{cases}$$

modulo $(f_1 \times \cdots \times f_i \times g_{i+1} \times \cdots \times g_a)^*(D_j)$. By Lemma 2 of [7], the A_i^* are isomorphisms. Thus we have shown that for $1 \le i \le a = \frac{p-1}{2}$,

(4.2)
$$\prod_{\ell=1}^{1} B_{2\ell}(p) \times \prod_{m=i+1}^{a} S^{4m+1} \simeq SU(p+1+2i)/Sp\left(\frac{p+1}{2}+i\right).$$

Together with (4.1), this implies that SU(2n)/Sp(n) is quasi-p-regular if $n \le p$.

Next we shall prove the converse: SU(2n)/Sp(n) is not quasi-p-regular if n > p.

PROPOSITION 4.1. Each of the following two statements implies that G/K is not quasi-p-regular:

- (a) $\pi_j(G/K)$ and $\pi_j\Big(\prod_{\ell} B_{2\ell}(p) \times \prod_n S^n\Big)$ do not have isomorphic p-primary components.
 - (b) $\Re^2 x \neq 0$ for some primitive element x of $H^*(G/K; Z_p)$.

The proof is obvious. We first show that SU(2n)/Sp(n) is not quasi-2-regular for $n \geq 3$. In fact, $\pi_8(SU(2n)/Sp(n)) \cong \pi_{10}(SO) = 0$. On the other hand, the 2-component of $\pi_8 \left(\prod_{B_2\ell}(p) \times \prod_{S^n} \right)$ is Z_8 . Hence SU(2n)/Sp(n) is not quasi-2-regular, by (a) of Proposition 4.1.

Remark. The proof in [7] that the prime 2 is irregular for SU(2n)/Sp(n) is incorrect. Actually, for $n \ge 3$,

$$\pi_5(SU(2n)/Sp(n)) \cong \pi_7(SO) \cong Z \cong \pi_5(S^5 \times \cdots \times S^{4n-3})$$
.

Suppose n > p. Then $\mathfrak{P}^2 x_5 \neq 0$ in $H^*(SU(2n)/Sp(n); Z_p)$, by Proposition 1.1. Hence SU(2n)/Sp(n) is not quasi-p-regular. Therefore we have proved the following result.

THEOREM 4.2. SU(2n)/Sp(n) is quasi-p-regular if and only if $p \ge n$.

By a similar method one can show that

(4.3)
$$\prod_{\ell=1}^{i} B_{2\ell}(p) \times \prod_{m=i+1}^{a} S^{4m+1} \simeq SU(2i+p)/SO(2i+p) \quad \text{for } 1 \leq i \leq a = \frac{p-1}{2}.$$

Hence we get the following result.

THEOREM 4.3. SU(2n+1)/SO(2n+1) is quasi-p-regular if and only if $p \ge n+1$.

Next we consider the symmetric space E_6/F_4 .

THEOREM 4.4. E_6/F_4 is quasi-p-regular if and only if $p \ge 5$.

Proof. Necessity. By (1.4) of [2], $\pi_{16}(E_6/F_4) = 0$. On the other hand,

$$\pi_{16}(S^9 \times S^{17}) \cong Z_{240}$$
 and $\pi_{16}(B_4(5)) \cong Z_{48}$,

by [8]. Therefore E_6/F_4 is not quasi-p-regular for p=2 and p=3.

Sufficiency. First we show that

(4.4)
$$B_4(5) \simeq E_6/F_4$$
.

Recall (see [1]) that E_6/F_4 has the cell structure

$$E_6/F_4 \simeq S^9 \cup e^{17} \cup e^{26}$$
,

where $\alpha \in \pi_{16}(S^9)$ is the suspension of the homotopy class of the Hopf map. Let i: $S^9 \to E_6/F_4$ be the inclusion. By (1.4) of [2], $\pi_{16}(E_6/F_4) = 0$, and hence i can be extended to the mapping

$$\bar{i}: S^9 \cup_{\alpha_1} e^{17} = (B_4(5))^{(17)} \to E_6/F_4.$$

Now ${}^{5}\pi_{25}(E_{6}/F_{4}) = 0$, since

$$^{5}\pi_{25}(E_{6}) \cong ^{5}\pi_{25}(E_{6}/F_{4}) \oplus ^{5}\pi_{25}(F_{4})$$

by (1.3) of [6], and ${}^5\pi_{25}(E_6) = 0$, by [8]. Let ε be the attaching element of e^{26} in $B_4(5)$, and let x be the order of $\pi_{25}(E_6/F_4)$. Then (x, p) = 1. We put

$$B'_{4}(5) = (S^{9} \cup_{\alpha_{1}} e^{17}) \cup_{x \in \mathcal{E}} e^{26}.$$

Obviously, $B_4(5)$ is 5-equivalent to $B_4(5)$. The mapping \overline{i} is now extended to $B_4(5)$. The desired map is obtained as the composition

$$B_4(5) \to B_4'(5) \to E_6/F_4$$
,

which induces the isomorphisms of $H^*(; Z_5)$.

Next we show that for every prime $p \ge 7$,

(4.5)
$$S^9 \times S^{17} \simeq E_6/F_4$$
.

Let $\beta \in \pi_{25}((E_6/F_4)^{(17)})$ be the attaching element of e^{26} in

$$E_6/F_4 = S^9 \cup e^{17} \cup e^{26}$$
.

Let

p:
$$(E_6/F_4)^{(17)} = S^9 \cup e^{17} \rightarrow S^{17}$$

by the map shrinking S^9 to a point. Then $p^*(2\beta) = 0$, since $\pi_{25}(S^{17}) \simeq Z_2 \oplus Z_2$. Hence p can be extended to a mapping

P:
$$X = (E_6/F_4)^{(17)} \cup_{2\beta} e^{26} \rightarrow S^{17}$$
.

Clearly, for every odd prime p,

$$(4.6) X \simeq E_6/F_4.$$

We may regard P as a fibre map. Let Y be its fibre. It is easy to see that Y is homotopy-equivalent to S^9 . Thus we get the exact sequence

$$\longrightarrow \pi_{\mathbf{i}}(\mathbf{Y}) \xrightarrow{\mathbf{i}^*} \pi_{\mathbf{i}}(\mathbf{X}) \xrightarrow{\mathbf{P}^*} \pi_{\mathbf{i}}(\mathbf{S}^{17}) \xrightarrow{\Delta} \pi_{\mathbf{i}-1}(\mathbf{Y}) \longrightarrow$$

$$\downarrow \cong \qquad \qquad \downarrow \Xi$$

$$\pi_{\mathbf{i}}(\mathbf{S}^9) \qquad \qquad \pi_{\mathbf{i}-1}(\mathbf{S}^9) .$$

The element $\Delta\iota_{17}$ is in $\pi_{16}(Y)\cong\pi_{16}(S^9)\cong Z_{240}$. Therefore there exists a map $f\colon S^{17}\to X$ such that the P_* -image of the homotopy class $\{f\}$ is 240 ι_7 . Since $240=2^4\cdot 3\cdot 5$, the induced homomorphism

$$f^*: H^*(X; Z_p) \to H^*(S^{17}; Z_p)$$

is epimorphic for every prime $p \ge 7$. The composite

A:
$$S^9 \times S^{17} \longrightarrow Y \times S^{17} \xrightarrow{i \times f} X \times X \longrightarrow (E_6/F_4) \times (E_6/F_4) \xrightarrow{w} E_6/F_4$$

of the maps induces the isomorphisms

$$A^*: H^*(E_6/F_4; Z_p) \cong H^*(S^9 \times S^{17}; Z_p)$$
 for $p \ge 7$.

From the proof of Theorem 4.4, we also obtain the following result.

COROLLARY 4.5. E_6/F_4 is p-regular for every prime $p \ge 7$.

Kumpel [7, Theorem 2] proved that if G is a classical group and G/K is an irreducible symmetric space different from a sphere, then each prime $p < (n_{\ell} + 1)/2$ is irregular for G/K. Corollary 4.5 shows that we cannot extend this to exceptional Lie groups, and it thus settles a question raised in Section 4 of [7].

REFERENCES

- 1. L. Conlon, On the topology of EIII and EIV. Proc. Amer. Math. Soc. 16 (1965), 575-581.
- 2. ——, An application of the Bott suspension map to the topology of EIV. Pacific J. of Math. 19 (1966), 411-428.
- 3. B. Harris, On the homotopy groups of the classical groups. Ann. of Math. (2) 74 (1961), 407-413.
- 4. ——, Suspensions and characteristic maps for symmetric spaces. Ann. of Math. (2) 76 (1962), 295-305.

- 5. H. Imanishi, Unstable homotopy groups of classical groups (odd primary components). J. Math. Kyoto Univ. 7 (1967), 221-243.
- 6. P. G. Kumpel, Jr., On the homotopy groups of the exceptional Lie groups. Trans. Amer. Math. Soc. 120 (1965), 481-498.
- 7. ——, Symmetric spaces and products of spheres. Michigan Math. J. 15 (1968), 97-104.
- 8. M. Mimura and H. Toda, Cohomology operations and the homotopy of compact Lie groups, I. Topology (to appear).
- 9. S. Oka, On the homotopy groups of sphere bundles over spheres. J. Sci. Hiroshima Univ. Ser. A-I Math. 33 (1969), 161-195.
- 10. J-P. Serre, Groupes d'homotopie et classes de groupes abéliens. Ann. of Math. (2) 58 (1953), 258-294.

Kyoto University
Kyoto, Japan
and
Michigan State University
East Lansing, Michigan
and
Northwestern University
Evanston, Illinois