QUASI-p-REGULARITY OF SYMMETRIC SPACES
Mamoru Mimura

INTRODUCTION

If X and Y are CW-complexes, we say that Y is p-equivalent to X (notation:
X ~ Y) if there exists a map f: X — Y such that
P

% HNY; Z,) = HYX; Z,).

Following [10], we say that X is p-regular if it is p-equivalent to a product of
spheres. We call X quasi-p-rvegulay if X is p-equivalent to a product of spheres
and spaces Bp(p) satisfying the condition

1
H*(B,(p); Zp) = Axany1, P X2n+)) -

In [7], P. G. Kumpel discussed the p-regularity of irreducible symmetric
spaces. The purpose of this paper is to extend the study to the quasi-p-regulavity
of irredicible symmetric spaces.

Let G be a compact, connected, simply connected Lie group with an involution
0: G — G. Let K be the identity component of the fixed-point set of 0, and assume
that K is totally nonhomologous to zero in G with real coefficients. Then the ir-
reducible symmetric spaces G/K satisfying the hypotheses above are

(i) (K x K)/K,
(ii) SU(2n + 1)/SO(2n + 1),
(iii) SU(2n)/Sp(n),
(iv) Spin(2n)/Spin(2n - 1),
(v) E¢/Fy.
As is well known, (K X K)/K is isomorphic to K. The quasi-p-regularity of the
Lie groups was discussed in [8]. since

Spin (2n)/Spin (2n - 1) = s%7-1,

the space (iv) is quasi-p-regular. Therefore it is sufficient to study the quasi-p-
regularity of (ii), (iii), and (v). Our results (Theorems 4.2, 4.3, and 4.4) are as
follows.

SU(2n)/Sp(n) is quasi-p-regular if and only if p > n.
SU(2n + 1)/SO(2n + 1) is quasi-p-regulay if and only if p>n+1.
E¢/F4 is quasi-p-regulay if and only if p > 5.

Corollary 4.5 answers negatively a question of Kumpel [7].
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In the first section we recall the cohomology groups of G/K and study the pl-
operation on them. In Section 2 we give further information, due to B. Harris [4] on
H¥G/K; Z p)- The space By(p) is constructed in Section 3. In Section 4, we prove
our main results

Throughout this paper, p denotes an odd prime (unless it is otherwise stated),
P7;(X) stands for the p-primary component of 7;(X), and K(n) is the n-skeleton of
a complex K.

1. THE COHOMOLOGY OF G/K AND THE %!-OPERATION
It is known that
(1.1)  HYSU(2n +1)/S0(2n +1); Z,) = Alxs, X9, ", X4nt1),
(1.2)  HX(SU(2n)/Sp(n); Z,) = A(xs, X9, ", X45-9),
(1.3)  HNE/Fy; Z,) = Alxg, x17).

PROPOSITION 1.1. In (1.1)and (1.2), $1x4,, =0 if and only if p | i.
For the proof, see [7], for example.
PROPOSITION 1.2. In (1.3),

) X17 ¥ p=5,
PpXg =
0 otherwise.

Proof. Let a: Eg — E¢/F4 be the projection. Let yg9 and y)7 be the ele-
ments of H*(E¢ ; Zp) such that

a*x; =y; (1=9,17).
By Theorem 1.1 of [8], ipéyg =y,;. Therefore
X177 Q*Y17 q 5353’9 "3501 Yo = ‘3 X9.

For dimensional reasons, %éxg =0 if p #5.

2. THE MULTIPLICATION IN G/K

The material in this section is due to Harris [4].

Let G and K have the same meaning as in the Introduction. Let i: K — G and
2: G — G/K be the inclusion ard the projection. Let q: G/K — G be the map defined
by

aeK) = g-o(gt.

PROPOSITION 2.1 (Harris). Let U be the subalgebra genevated by the elements
x; left fixed by o*, and let V be the subalgebra genevated by the other elements x; .

Then
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(a) H¥G; Zo) = U XV as algebras;

(b) i* maps U isomorphically onto H¥(K; Zp) and is zevo on the positive-
dimensional elements of V,;

(c) q* maps V isomorphically onto H¥(G/K; Zp) and is zevo on the positive-
dimensional elements of U;

(d) €*q™: HXG; Zp) — HNG; Z,,) is given by the formula ¥ q*(x) = x - 0*(x) if
X iSs primitive;

(e) HXG/K; Zy) has genevators yy, -+, y¢ such that c*(y;) = -y; and
* ok 4
q L(y;)=2y; (i=1, -, t).

We define a mapping w: G/K X G/K — G/K by the equation

wig K, g,K) = g, -0(g;) g, K.

Then w(eK, gK) = gK, w(gK, eK) = £q(gK), and w(gK, o(gK)) = gK. The product map
w induces the mapping

w* H¥(G/K; Zp) — H¥G/K; Zp) Q@ H*(G/K; Zp)
given by the equation
w¥x) = ¥R ®1+ 28, @b, +1® x.
In particular, if y; is a generator (as in (e) of Proposition 2.1), then
(2.1) w¥y) = 2y; Q1 +1Qy; +d;,
where d; involves only the generators y;, **, y;_;. Now we define the map
¢j: G/KX -+ XG/K —> G/KX " XxG/K —> * —> G/KXG/K —> G/K .
R Ve 4 | W
j
It follows from (2.1) that the induced homomorphism

¢3: HY(G/K; Z) — H¥(G/K; 2,) @ -~ @ H¥(G/K; 2)

is given by
2.2) $y) =21y RI® - ®1+22 1Ry, ®1@ @1+ -
2.2
+1® - ®1®7y; +D;,
where D; involves only y;, =**, yi.] .

3. THE CONSTRUCTION OF B,(p)

Denote by V;,,3,, the Stiefel manifold SO(2n + 3)/SO(2n + 1), which is an
S22+l _pundle over S$2°t2, Then By(p) is the bundle induced by the element

—;— @;(2n +2) from V,,,3 5, where a;(2n + 2) is a generator of the p-component
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of Tpn4142(p-1)(S***%), and we have the diagram

1
SZn+l —_— SZn-I-l

l l

Bn(p) —_—> V2ni+3,2

l l

"é' 0!1(2n+2)

As is well known, H*(B(p); Z,) = A(Xzn+1, B’ X2n+1), and By(p) has the cell struc-
ture

Bn(p) ~ SZn+1 U e2n~l—l+2(p—1) U e4n+2+2(p-1).
ozl(2n+1)

Let q be a prime with (q, p) = 1. Since the characteristic element of the bundle
B,(p) is of order p, we have the isomorphism

qﬂi(Bn(p)) ~ q,”i(SZn+l X SZn+1+2(p-l)) )

The p-primary components of 7;(B,(p)) are extensively calculated in [9].

4. QUASI-p-REGULARITY

In [7], Kumpel showed that

(4.1) S5x 89 % --- x8%-3 ~ SU@n)/Sp(n) for n< P—izr—l .
p

In fact, for 1 <i < R—;——l there exist maps
g;: SH*L s sU(p +1)/8p (pTH)
such that the induced homomorphisms
gf: 1 (sup+ /s (B2 )52, ) — HA(sHYL ;7))

are epimorphic. We put

g;: sHH —> sUpp + 1)/Sp(.-1—’—'2t—1) —> SU(p + 1 + 2i)/Sp (-9—'2*—1 + i)
gi

1<LiL(p-1)/2),

where the second map is the natural one:
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SU(p +1)/Sp (E—zﬂ) C SU(p +1+2i)/Sp (R;;—l) — SU(p +1 + 2i)/Sp (P——;——l— +i) .
We shall extend g; to
B Byylp) — SUG + 1+ 20/sp (B12),

where B,.(p) ~ sS4+l y e4itl+2(p-1) y ¢8i+2P, The mapping g; is extendable to

a
S4l+l U e41+1+2(p—1), since

!
ﬂ4i+2(p_1)(SU(p+1+21)/Sp(£iz_—1-+i )) =0.

By [5], Prg;i142(p-1)(SU( + 1 +21)) = 0. Hence

p“81+1+2(p-1)(SU(P +1 +2i)/sp(gg—l+i)) =0,

by (1) of [3]. Let £; be the attaching element of e31*2P in B,;(p), and let x; be the

order of 1181+1+2(p_1)(SU(p +1 +21)/Sp( P ; L +i)) . Then (x;, p) = 1. Therefore

gi is extendable to

Bj:(p) = g4+l |y e4itl+2(p-1) |y g8it2p
@1 Xi€j

Obviously, B,;(p) ~ Bj;(p). Therefore the desired map is obtained as the composi-
P

tion

' . +1 .
fi: le(p) hand BZi(p) — SU(p+ 1 +21)/Sp (2_2—+1) .

With the notation a = (p - 1)/2, consider the composition
Ap = g 0(f) X e X5 X gyyy X0 X gy) 5

it gives the mapping

a

i
¢
A II By x II g*mtl 5 G/Kx - x G/K —2> G/K,
£2=1

m=i+l ™
a

p+1
2

i a

Al BHYNG/K; z,) — BF 1T Byy(p) x I s4m+1;zp\).
£=1 m=i+l

where G = SU(p+1 +2i) and K = Sp( + i) . Further,
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From (2.2) it follows that

s . fFet i xygy) i i<i,
Ai(xgge) = 0-; o
g (@7 xq54)) M j>1I+1,

modulo (7 X = X f; X gi41 X *** X g,)*(D;). By Lemma 2 of [7], the A} are iso-

morphisms. Thus we have shown that for 1 <i<a = P é . ’

a

i
(4.2) II Bfp) x II s%m*1 ~ Su(p+1+2i)/Sp (p . 1 +i) .
£=1 m=i+1 P

Together with (4.1), this implies that SU(2n)/Sp(n) is quasi-p-regular if n < p.
Next we shall prove the converse: SU(2n)/Sp(n) is not quasi-p-regular if n > p.
PROPOSITION 4.1. Each of the following two statements implies that G/K is
not quasi-p-regulay:

(a) 'Hj(G/K) and T j( HBzﬂ_(p) x I Sn) do not have isomorphic p-primary
{ n

components.,
(b) P2x # 0 for some primitive element x of H(G/K; Zy).

The proof is obvious. We first show that SU(2n)/Sp(n) is not quasi-2-regular
for n> 3. In fact, 7g(SU(2n)/Sp(n)) =~ 714(SO) = 0. On the other hand, the 2-compon-~-

ent of 178( HBzﬂ(p) X HS“) is Zg. Hence SU(2n)/Sp(n) is not quasi-2-regular, by
(a) of Proposition 4.1.

Remark. The proof in [7] that the prime 2 is irregular for SU(2n)/Sp(n) is in-
correct. Actually, for n > 3,
75(SU(2n)/Sp(n)) ~ 7(SO) ~ Z ~ w5(85 x --- x g4n-3)

Suppose n > p. Then P2xs # 0 in H¥(SU(2n)/Sp(n); Z), by Proposition 1.1.
Hence SU(2n)/Sp(n) is not quasi-p-regular. Therefore we have proved the following
result.

THEOREM 4.2. SU(2n)/Sp(n) is quasi-p-vegular if and only if p > n.

By a similar method one can show that

i a
@.3) Il Byg(p)x II s*m*1 ~ SU@2i+p)/sO@i+p) for 1<i<a = -1%1-,
£=1 m=i+1 )

Hence we get the following result.

THEOREM 4.3. SU(2n + 1)/S0(2n + 1) is quasi-p-regular if and only if
p>n+1.

Next we consider the symmetric space E4/Fy.
THEOREM 4.4. Eg /F4 is quasi-p-vegulay if and only if p > 5.
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Proof. Necessity. By (1.4) of [2], m1¢(E¢/F4) = 0. On the other hand,
11687 X 817) = Zp40  and  m1e(B4(5)) = Zas,
by [8]. Therefore E¢/F,4 is not quasi-p-regular for p =2 and p = 3.
Sufficiency. First we show that

(4.4) B 4(5) _;_ E¢/Fy.

Recall (see [1]) that E¢/F4 has the cell structure
E¢/Fa~ S’ uel’u e,
a

where a € m14(S% is the suspension of the homotopy class of the Hopf map. Let
i: 89 —» E;/F,4 be the inclusion. By (1.4) of [2], 7, ((E¢/F4) =0, and hence i can be
extended to the mapping

187 uel”=By6)IT - E(/F,.
o,

Now 57125(E6/F4) = 0, since
5
*T,5(Bg) = “Mps(Be/Fy) @ “mps(Fy

by (1.3) of [6], and >m,(E¢) = 0, by [8]. Let &£ be the attaching element of e26 in
By(5), and let x be the order of 7,5(E¢/F4). Then (x, p) = 1. We put

By(5) = (s? U el?) U 26,
g xE

Obviously, B4(5) is 5-equivalent to B4(5). The mapping 1 is now extended to B4(5).
The desired map is obtained as the composition

B4(5) — By(5) — Eg/Fy,

which induces the isomorphisms of H*( ; Zs).

Next we show that for every prime p > 7,
(4.5) s?xs'?" ~ B/ /F,.

P
Let 8 € 75((E¢/F4){!7)) be the attaching element of e2® in
E¢/Fy = s? uel” ue?®.
Let
p: <(E6/F4)(17) = 8%7u el” 5 gl7

by the map shrinking s? toa point. Then p*(2B) = 0, since 1r25(Sl7) ~Z,DZ,.
Hence p can be extended to a mapping
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P: X = (Eg /F)17T) u 26 — 817,
2B

Clearly, for every odd prime p,

(4.6) X ~ Eg/F,.
P

We may regard P as a fibre map. Let Y be its fibre. It is easy to see that Y is
homotopy-equivalent to S?. Thus we get the exact sequence

i*

— () > @ T w6 > @) —

| |

m,(S%) 7, (87) .

The element At;; isin 7¢(Y) = 7,4(S%) = Z,40. Therefore there exists a map
f: 817 — X such that the P,-image of the homotopy class {f} is 240t,. Since
240 = 24 .3 .5, the induced homomorphism

*: HY(X; 2,) — H*(8'7; Z)
is epimorphic for every prime p > 7. The composite

A: S7x 87T —> Y x 81T —> XXX —> (E(/Fy) X (E¢/Fy) —> E¢/Fy
iXf W

of the maps induces the isomorphisms
A* HYEq/Fy; 2,) =~ HXS?x 817, Z,)  for p> 7.

From the proof of Theorem 4.4, we also obtain the following result.
COROLLARY 4.5. Ey/F4 is p-regular for every prime p 2> 1.

Kumpel [7, Theorem 2] proved that if G isa classical group and G/K is an
irrveducible symmetric space different from a spheve, then each prime
p < (ng +1)/2 is irregular for G/K. Corollary 4.5 shows that we cannot extend this
to exceptional Lie groups, and it thus settles a question raised in Section 4 of [7].
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