SCARCITY OF ORIENTATION-REVERSING PL INVOLUTIONS OF LENS SPACES

Kyung Whan Kwun

1. INTRODUCTION

For convenience, we shall not consider the 3-sphere as a lens space. The following theorem justifies the title of this paper.

THEOREM. (i) No lens space other than the projective 3-space P_3 admits an orientation-reversing involution. (ii) Up to PL-equivalences, there exists exactly one orientation-reversing PL involution of P_3 .

Part (i) is not new, but we have included it for emphasis. It follows from [5, Theorem V], and it is a special case of the result in [2]. We remark that the unique involution of Part (ii) is the one induced by the reflection of S^3 about the equator. The fixed-point set is the disjoint union of a projective plane and a point. As a corollary, we obtain the following result.

COROLLARY. There exists no PL action of $Z_2 + Z_2$ on S^3 that leaves a four-point set A invariant (as a set) and acts freely off A.

By a four-point set, we mean a set consisting of four distinct points. The corollary restricts PL actions of $Z_2 + Z_2$ on S^3 .

Henceforth, let h denote an orientation-reversing PL involution of P_3 with fixed-point set F. It is a consequence of the parity theorem and the Lefschetz fixed-point formula that dim F=0 or dim F=2. We shall rule out the case dim F=0 in Section 2, establish the uniqueness for the case dim F=2 in Section 3, and prove the corollary in Section 4.

2. THE CASE dim F = 0

2.1. We shall prove that h fixes exactly two points. Suppose h fixes x_1 , x_2 , \cdots , $x_k \in P_3$ and no other point. It seems to be known (and it is fairly easy to prove) that a PL involution of a finite simplicial complex becomes simplicial after a suitable subdivision. Hence we may assume h is simplicial with vertices x_i . Further, we assume that the closed stars of x_i are mutually disjoint. Let X be obtained from P_3 by removing open stars of the x_i . Then $h' = h \mid X$ is a free involution of X reversing the orientation of each boundary component of the 3-manifold X.

The Lefschetz number of h' is

$$1 - 0 + (1 - k) = 2 - k$$
.

Hence k = 2.

Michigan Math. J. 17 (1970).

Received September 18, 1969.

This research was supported in part by NSF Grant GP-8962.

2.2. Let Y denote the orbit space of Z_2 -action on X generated by h'. We prove that $\pi_1(Y)$ is isomorphic to $Z_2 + Z_2$ rather than to Z_4 . We let p: $S^3 \to P_3$ be the usual double covering, and we lift h to \widetilde{h} : $S^3 \to S^3$.

Let $p^{-1}(x_i)$ consist of y_i and y'_i (i = 1, 2), and consider the diagram

$$(S^{3}, y_{1}) \xrightarrow{\tilde{h}} (S^{3}, y_{1})$$

$$\downarrow p \qquad \qquad \downarrow p$$

$$(P_{3}, x_{1}) \xrightarrow{h} (P_{3}, x_{1}) .$$

Lift h to \widetilde{h} as in the diagram. Since $\widetilde{h} \cdot \widetilde{h}$ covers $h \cdot h = identity$, and since $\widetilde{h} \cdot \widetilde{h}(y_1) = y_1$, it follows from the uniqueness of lifting that \widetilde{h} is a PL involution of S^3 fixing y_1 and no other point near y_1 . Hence \widetilde{h} fixes y_1 and y_1' and no other point. Thus $\widetilde{h}(y_2) = y_2'$.

Let α be a path from x_1 to x_2 . Lift $\alpha \circ (h\overline{\alpha})$, where $\overline{\alpha}$ is the inverse path of α , starting at x_2 . Since $\widetilde{h}(y_1) = y_1$ and $\widetilde{h}(y_2) = y_2'$, the lifting of $\alpha \circ (h\overline{\alpha})$ ends at y_1' . Hence $\alpha \circ (h\overline{\alpha})$ represents the nontrivial element of $\pi_1(P_3)$. Later this fact will play a crucial role. Let a denote the antipodal involution of S^3 . Because $a\widetilde{h}(y_1) = y_1'$ and $\widetilde{h}a(y_1) = y_1'$, it follows from the uniqueness of the lifting of n that n is an invariant open stars of n is so triangulated that n is simplicial.) Restrictions of n and n to n generate a group, isomorphic to n is proves our contention.

2.3. We are ready to rule out the case dim F=0. Let $q\colon X\to Y$ be the orbit map. Let z_i (i=1,2) be points on the boundaries B_i of open stars of x_i in P_3 . Let α_i be a path in B_i from z_i to $h(z_i)$. Since $\pi_1 Y$ is abelian, we shall not worry about the base point. Now the $q\alpha_i$ represent nontrivial elements of $\pi_1 Y$. Let α be a path in X from z_1 to z_2 . Since $X\subset P_3$ induces an isomorphism for fundamental groups, we can use a fact established in Section 2.2 to deduce that $\alpha\circ\alpha_2\circ(h\overline{\alpha})\circ\overline{\alpha}_1$ represents the nontrivial element of $\pi_1 X$. Via q, we find that $q\alpha_1$ and $q\alpha_2$ represent different nontrivial elements of $H_1(Y:Z) \cong Z_2 + Z_2$. Let \dot{Y} denote the boundary of the 3-manifold Y. Then \dot{Y} is the disjoint union of the two projective planes. The induced homomorphism $H_1(\dot{Y};Z_2)\to H_1(Y;Z_2)$ is an epimorphism, by the preceding observation. Hence, by the homology sequence of (Y,\dot{Y}) over Z_2 ,

$$H_1(Y, \dot{Y}; Z_2) \simeq Z_2$$
.

By Poincaré duality over Z_2 , $H^2(Y;Z_2) \simeq Z_2$, and therefore $H_2(Y;Z_2) \simeq Z_2$ by the universal coefficient theorem (with Z_2 as ground ring). On the other hand, by the universal coefficient theorem with integers as ground ring, $H_2(Y;Z_2)$ contains $Z_2 + Z_2$ as a direct summand. This contradiction rules out the case dim F = 0. (One may also bring about a contradiction by comparing Euler characteristics of Y and \dot{Y} .)

3. THE CASE dim F = 2

Let A be a 2-dimensional component of F.

- 3.1. We show that A is a projective plane. We continue to use p: $S^3 \to P_3$ for the usual double covering. Choose $x_0 \in A$ and $y_0 \in p^{-1}(x_0)$. Lift h to \widetilde{h} : $(S^3, y_0) \to (S^3, y_0)$. Then \widetilde{h} is again an involution fixing this time a 2-dimensional set (therefore a 2-sphere) A'. Actually, A' is a whole component of $p^{-1}(A)$. Hence, A is covered by a 2-sphere in two-to-one or one-to-one fashion. Therefore A is a 2-sphere or a projective plane. But A cannot be a 2-sphere, because then the complementary domains would be an open 3-cell and something that is not 1-connected, and h could not interchange these complementary domains. Hence, A is a projective plane. Assume that the triangulation of P_3 is such that h is simplicial and the simplicial neighborhood N of A is a regular neighborhood of A. Assume furthermore that h | (N A) is fixed-point-free.
- 3.2. In this section, we analyse h before we complete our proof in the next subsection. Note that A is one-sided in P_3 , because P_3 is orientable and A is not. Hence (N,A) is homeomorphic to (M,A), where M is the mapping cylinder of a double covering $S^2 \to A$. Since P_3 is irreducible, $N' = \overline{P_3 N}$ is a 3-cell. Therefore h $|\dot{N}'|$ is fixed-point-free, and h $|\dot{N}'|$ is essentially the cone over h $|\dot{N}'|$. (See [4].) Hence the analysis of h reduces to that of h $|\dot{N}|$.
- 3.3. We now analyse h | N. Let S be the orbit space and f: N \rightarrow S the orbit map. The space S is a compact 3-manifold with exactly two boundary components f(N) and f(A). Let U be a regular neighborhood of f(A) in S, disjoint from f(N). The set $V = f^{-1}(U)$ is a regular neighborhood of A in N, disjoint from \dot{N} . Note that $\overline{N} - \overline{V}$ is homeomorphic to $S^2 \times [0, 1]$, and that h is free on this set. By a theorem of Livesay [4], the orbit space of h $|\overline{N} - \overline{V}|$ is homeomorphic to $P_2 \times [0, 1]$, where P_2 is the projective plane. Since U is a collar of f(A), it is homeomorphic to $P_2 \times [0, 1]$. Hence S itself is homeomorphic to $P_2 \times [0, 1]$, with $P_2 \times 0$ and $P_2 \times 1$ corresponding to f(A) and f(N), respectively. Thus $h \mid N$ is equivalent to the following construction: Take h | N to be the nontrivial covering transformation g of some PL double covering d: $N \rightarrow A$. Regard N as a PL mapping cylinder of d. Let g induce a PL involution on this mapping cylinder in the obvious way. Consider it as h N. Every two such involutions are PL-equivalent. That is, for every two such PL involutions h_1 and h_2 of N, there exists a PL homeomorphism t: $N \to N$ such that $h_1 = t^{-1} h_2 t$. This can be seen as follows. Let $q_1, q_2 : N \to P_2 \times [0, 1]$ be orbit maps corresponding to h_1 and h_2 , with $P_2 \times 0$ corresponding to the fixedpoint set A. Since $q_i \mid (N - A)$ is a universal covering, there exists a PL homeomorphism t: $N - A \rightarrow N - A$ such that $q_1 = q_2 t$. This t can be uniquely extended to a PL homeomorphism t: $N \rightarrow N$ such that $q_1 = q_2 t$. But $th_1 = h_2 t$, since t respects covering translation. This is true on N - A, and by continuity also on N. Hence $h_1 = t^{-1}h_2t$.

4. PROOF OF THE COROLLARY

Suppose there exists an action of Z_2+Z_2 , free off a four-point set $A=\{x_1,x_2,x_3,x_4\}$. It is well known that Z_2+Z_2 cannot act freely on S^3 . In fact, there exists no closed 3-manifold M with $\pi_1 \, M \simeq Z_2+Z_2$ (for a proof of this, see [1]). Hence at least one nontrivial element $\alpha \in Z_2+Z_2$ must have a fixed point, and therefore it must have exactly two fixed points. Suppose α fixes x_1 and x_2 . If $\beta \in Z_2+Z_2$ is another nontrivial element, β cannot fix one of x_1 and x_2 and

one of x_3 and x_4 , because if it did, it would follow that $\alpha\beta \neq \beta\alpha$. Moreover, β cannot fix x_1 and x_2 , because if it did, $\alpha\beta \neq 1$ would fix all four points. Hence β is either fixed-point-free or fixes x_3 and x_4 , and in the first case, $\alpha\beta$ will fix x_3 and x_4 . In any case, there exist two distinct, nontrivial elements α , $\beta \in Z_2 + Z_2$ such that α fixes x_1 and x_2 , β fixes x_3 and x_4 , and $\alpha\beta$ is fixed-point-free.

Now consider the free Z_2 -action generated by $\alpha\beta$. The orbit space is a PL projective 3-space [3] on which the PL involutions induced by α and β are identical and have exactly two fixed points. This is the case ruled out in Section 2.

REFERENCES

- 1. D. B. A. Epstein, Finite presentations of groups and 3-manifolds. Quart. J. Math. Oxford Ser. (2) 12 (1961), 205-212.
- 2. K. W. Kwun, Nonexistence of orientation reversing involutions on some manifolds. Proc. Amer. Math. Soc. (to appear).
- 3. G. R. Livesay, Fixed point free involutions on the 3-sphere. Ann. of Math. (2) 72 (1960), 603-611.
- 4. ——, Involutions with two fixed points on the three-sphere. Ann. of Math. (2) 78 (1963), 582-593.
- 5. P. Olum, Mappings of manifolds and the notion of degree. Ann. of Math. (2) 58 (1953), 458-480.

Michigan State University East Lansing, Michigan 48823