SCARCITY OF ORIENTATION-REVERSING PL INVOLUTIONS
OF LENS SPACES

Kyung Whan Kwun

1. INTRODUCTION

For convenience, we shall not consider the 3-sphere as a lens space. The fol-
lowing theorem justifies the title of this paper.

THEOREM. (i) No lens space other than the projective 3-space Pz admits an
ovientation-veversing involution. (ii) Up to PL-equivalences, there exists exactly
one ovientation-veversing PL involution of Psj.

Part (i) is not new, but we have included it for emphasis. It follows from [5,
Theorem V], and it is a special case of the result in [2]. We remark that the unique
involution of Part (ii) is the one induced by the reflection of S3 about the equator.
The fixed-point set is the disjoint union of a projective plane and a point. As a
corollary, we obtain the following result.

COROLLARY. Theve exists no PL action of Z, + Z» on S3 that leaves a four-
point set A invaviant (as a set) and acts freely off A.

By a four-point set, we mean a set consisting of four distinct points. The
corollary restricts PL actions of Z, + Z, on S°.

Henceforth, let h denote an orientation-reversing PL involution of P3 with
fixed-point set F. It is a consequence of the parity theorem and the Lefschetz fixed-
point formula that dim F=0 or dim F =2. We shall rule out the case dim F =0
in Section 2, establish the uniqueness for the case dim F =2 in Section 3, and prove
the corollary in Section 4.

2. THE CASE dim F=0

2.1. We shall prove that h fixes exactly two points. Suppose h fixes
X], X2, ***, X € P3 and no other point. It seems to be known (and it is fairly easy
to prove) that a PL involution of a finite simplicial complex becomes simplicial
after a suitable subdivision. Hence we may assume h is simplicial with vertices
X; . Further, we assume that the closed stars of x; are mutually disjoint. Let X be
obtained from P3; by removing open stars of the x;. Then h'=h | X is a free invo-
lution of X reversing the orientation of each boundary component of the 3-manifold
X.

The Lefschetz number of h' is

1i-0+(1-k)=2-k.
Hence k = 2.
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2.2. Let Y denote the orbit space of Zj-action on X generated by h'. We
prove that 7,(Y) is isomorphic to Z, + Z, rather thanto Z,. We let p: 8> — P3

be the usual double covering, and we lift h to h: 83 — §3.

Let p’l(xi) consist of y; and yi' (i =1, 2), and consider the diagram

h
(3, y,) —> (3, y,)

P p
h
(P3; xl) —> (P3’ Xl) .
Lift h to h as in the diagram. Since h-h covers h-h = identity, and since
h - H(yl) =y, it follows from the uniqueness of lifting that h is a PL involution of
S3 fixing y; and no other point near y; . Hence h fixes y; and y] and no other
point. Thus h(y,) =y5. '

Let a be a path from x; to x,. Lift o o(ha), where @ is the inverse path of
@, starting at xz. Since h(y1) =y1 and R(y2) = y5, the lifting of @ o(h@) ends at
yi. Hence a o(ha) represents the nontrivial element of 7,(P3). Later this fact will
play a crucial role. Let a denote the antipodal involution of S3. Because
afi(y;) = y] and ha(y;) =y}, it follows from the uniqueness of the lifting of h that
ah = ha. Let Q denote the space obtained from S3 by removing open stars of
Y1,Y1,52,and y5. (Assume S3 is so triangulated that p is simplicial.) Re-
strictions of a and h to Q generate a group, isomorphic to Z, + Z, and acting
freely on Q. The orbit space may be identified with Y. This proves our contention.

2.3. We are ready to rule out the case dim F = 0. Let q: X — Y be the orbit
map. Let z; (i =1, 2) be points on the boundaries B; of open stars of x; in P3.
Let o; be a path in B; from z; to h(z;). Since 7] Y is abelian, we shall not worry
about the base point. Now the qo; represent nontrivial elements of 77 Y. Let o be
a path in X from z; to z,. Since X C P3 induces an isomorphism for fundamental
groups, we can use a fact established in Section 2.2 to deduce that a ca o (ha)oa;
represents the nontrivial element of 71 X. Via q, we find that qa; and qa, repre-
sent different nontrivial elements of H;(Y:Z)~ Z, + Z,. Let Y denote the boundary
of the 3-manifold Y. Then Y is the disjoint union of the two projective planes. The
induced homomorphism H;(Y; Z,) — H1(Y; Z,) is an epimorphism, by the preceding
observation. Hence, by the homology sequence of (Y, Y) over Z;,

H,(Y, Y; Z,) ~ Z,.

By Poincaré duality over Z», H%(Y; Z3) ~ Z;, and therefore H(Y; Z,) ~ Z; by the
universal coefficient theorem (with Z, as ground ring). On the other hand, by-the
universal coefficient theorem with integers as ground ring, H,(Y; Z,) contains

Z, + Z, as a direct summand. This contradiction rules out the case dim F = 0.
(One may also bring about a contradiction by comparing Euler characteristics of Y

and Y.)
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3. THE CASE dim F=2

Let A be a 2-dimensional component of F.

3.1. We show that A is a projective plane. We continue to use p: S3 — P for
the usual double covering. Choose xy € A and yg € p-l(xp). Lift h to
i (83, yo) — (83, yo). Then h is again an involution fixing this time a 2-dimen-
sional set (therefore a 2-sphere) A'. Actually, A' is a whole component of p~!(A).
Hence, A is covered by a 2-sphere in two-to-one or one-to-one fashion. Therefore
A is a 2-sphere or a projective plane. But A cannot be a 2-sphere, because then
the complementary domains would be an open 3-cell and something that is not 1-
connected, and h could not interchange these complementary domains. Hence, A is
a projective plane. Assume that the triangulation of P3 is such that h is simplicial
and the simplicial neighborhood N of A is a regular neighborhood of A. Assume
furthermore that h I (N - A) is fixed-point-free.

3.2. In this section, we analyse h before we complete our proof in the next sub-
section. Note that A is one-sided in P3, because P3 is orientable and A is not.
Hence (N, A) is homeomorphic to (M, A), where M is the mapping cylinder of a
double covering S% — A. Since Pj is irreducible, N' = P3 - N is a 3-cell. There-
fore h | N' is fixed-point-free, and h | N' is essentially the cone over h|N'. (See
[4].) Hence the analysis of h reduces to that of h | N.

3.3. We now analyse h ] N. Let S be the orbit space and f: N — S the orbit
map. The space S is a compact 3-manifold with exactly two boundary components
f(N) and f(A). Let U be a regular neighborhood of f(A) in S, disjoint from f(N).
The set V =£"1(U) is a regular neighborhood of A in N, disjoint from N. Note that
N - V is homeomorphic to S% X [0, 1], and that h is free on this set. By a theorem
of Livesay [4], the orbit space of h| N - V is homeomorphic to P, x [0, 1], where
P, is the projective plane. Since U is a collar of f(A), it is homeomorphic to
P, x [0, 1]. Hence S itself is homeomorphic to P, X [0, 1], with P, X 0 and P, X 1
corresponding to f(A) and f(N), respectively. Thus h | N is equivalent to the follow-
ing construction: Take h [ N to be the nontrivial covering transformation g of some
PL double covering d: N — A. Regard N as a PL mapping cylinder of d. Let g
induce a PL involution on this mapping cylinder in the obvious way. Consider it as
h | N. Every two such involutions are PL-equivalent. That is, for every two such
PL involutions h; and h, of N, there exists a PL homeomorphism t: N — N such
that h; =t-lh,t. This can be seen as follows. Let q;, q,: N— P, x[0, 1] be
orbit maps corresponding to h; and h;, with P, X 0 corresponding to the fixed-
point set A. Since qi| (N - A) is a universal covering, there exists a PL homeo-
morphism t: N- A — N - A suchthat q; = q,t. This t can be uniquely extended to
a PL homeomorphism t: N — N such that q; = q,t. But th; =h,t, since t re-
spects covering translation. This is true on N - A, and by continuity also on N.
Hence h; =t-lh,t.

4. PROOF OF THE COROLLARY

Suppose there exists an action of Z, + Z,, free off a four-point set
A= {xl , X5, X3, X41. It is well known that Z,+ Z, cannot act freely on S3.
In fact, there exists no closed 3-manifold M with 7; M ~ Z, + Z, (for a proof of
this, see [1]). Hence at least one nontrivial element a € Z, + Z, must have a fixed
point, and therefore it must have exactly two fixed points. Suppose a fixes x; and
x,. If B € Z,+Z, is another nontrivial element, 8 cannot fix one of x; and x, and
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one of X3 and X4, because if it did, it would follow that a8 # Ba. Moreover, 8 can-
not fix x; and x», because if it did, ¢ #1 would fix all four points. Hence 8 is
either fixed-point-free or fixes x3 and x4, and in the first case, af will fix x3 and
X4. In any case, there exist two distinct, nontrivial elements @, B8 € Z; +Z, such
that o fixes x; and x,, B fixes x3 and x4, and af is fixed-point-free.

Now consider the free Z;-action generated by af. The orbit space is a PL
projective 3-space [3] on which the PL involutions induced by @ and B are identical
and have exactly two fixed points. This is the case ruled out in Section 2.

REFERENCES

1. D. B. A. Epstein, Finite presentations of groups and 3-manifolds. Quart. J.
Math. Oxford Ser. (2) 12 (1961), 205-212.

2. K. W. Kwun, Nonexistence of ovientation veversing involutions on some manifolds.
Proc. Amer. Math. Soc. (to appear).

3. G. R. Livesay, Fixed point free involutions on the 3-spheve. Ann. of Math. (2)
72 (1960), 603-611.

, Involutions with two fixed points on the thrvee-spheve. Ann. of Math. (2)
78 (1963), 582-593.

5. P. Olum, Mappings of manifolds and the notion of degree. Ann. of Math. (2) 58
(1953), 458-480.

Michigan State University
East Lansing, Michigan 48823



