PIECEWISE-LINEAR CLASSIFICATION OF SOME
FREE Z,-ACTIONS ON S#k+3

Ronnie Lee

Let S28*l denote the unit (2n + 1)-sphere. Represent each of its points by a

sequence (cq, **+, c,) of complex numbers with 27 le; |‘2 = 1. Let (S1, §27*2) de-
note the S!-action on S2nt! given by the formula

C.(co s ---, cn) = (cco’ -.., ccn).

Let p be an odd prime, and let Z; be the subgroup of S 1 generated by exp (27i/p).
Then (S1, $2n+1) induces a Zj-action on s2ntl | Jis orbit space

L%(p) = géntl /Zp

is the (2n + 1)-dimensional lens space. The purpose of this note is to study the
piecewise-linear classification of all free Zp-actions on S#k*3 (4k +3 > 17) for
which the orbit space is of the same simple homotopy type as L2ktl(p). Our main
results follow.

THEOREM 1. Let %4t (L2kt1(p)) denote the set of equivalence classes of simple
homotopy triangulations of 12X 1(p). If 4k +3 > 1, there exists an exact sequence
of pointed sets

0 — Lya(Z,)” — 942 (L) — [L2?(p); 6/PL] — o,

wheve [L2¥t1(p); G/PL] is the subgroup of G/PL-bundles on L2T1(p) and
L4k+4(2’,p)” is the veduced surgery obstruction group of C. T. C. Wall.

THEOREM II. There exists a one-to-one covrvespondence between the set

Jat (L2KH (p)) x {0, 1, -, %1}

and the set of equivalence classes of free piecewise-linear Zp-actions on g4k+3

whose orbit space has the same simple homotopy type as L2k+1(p).

In the first section, we recapitulate some generalities about nonsimply-con-
nected surgary, part of which has become folklore. We then carry out, in the second
section, an elementary computation of the group [L2k*1(p); G/PL]. Results of Sulli-
van are used in the proof of (2.1). Section 3 completes the proof of Theorem I. Sec-
tion 4 is mainly a study of the homotopy classes of piecewise-linear homeomor-
phisms of a homotopy lens space. In the last section, we complete the proof of
Theorem II.
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1. NONSIMPLY-CONNECTED SURGERY

In this section, we give a brief outline of the Browder-Novikov theorem from the
point of view of nonsimply-connected surgery.

For a closed, piecewise-linear manifold M, Sullivan defines a simple homotopy
triangulation of M to be a simple homotopy equivalence f: L, — M, where L is
another closed, piecewise-linear manifold. Two homotopy triangulations (Lg, fg)
and (L;, f;) are equivalent if there exists a piecewise-linear homeomorphism
h: Ly = L; such that the diagram

%
]

L, 1
commutes, up to homotopy. We denote the set of equivalence classes of simple
homotopy triangulations of M by %4¢ (M).

Let G/PL be the fibre of the natural map Bp;, @ Bg. A map g: X — G/PL
consists of a piecewise-linear n-disk bundle E — X and an F-trivialization t. That
is, we have the diagram

where t induces a homotopy equivalence of each fibre pair (p-!(x), 9p-1(x)) (x € X)
with (DN, 9DN). Two G/PL-bundles (£, to) and (£, t1) are equivalent if there
exist a G/PL-bundle (£, t) over X X I and bundle isomorphisms f: éj ~ & | X Xj
(=0, 1) such that tf; ~ t;.

Suppose that X = MK is a manifold. By making t: E(§) — DN transverse regular
to 0 € DN we may assume that there is a framed submanifold Lk x RN E(£) such

that
tlLxR: LExRN — pN = gN

is a projection onto the second factor and t(E(§)\L XR) = oDN  and such that the
map 7: LK — MK induced by the projection m: E(§) — MX, is a map of degree one.
If (¢, t) and (£, t') are equivalent to each other, then the framed manifolds

L xRN C E(¢) and L' x RN C E(¢), given by (£, t) and (', t'), are framed cobordant
to each other. Thus for each LXK X RN in E(£), we can do framed surgery on

Lk x RN in E(£) and try to make 7 LX — MX a simple homotopy equivalence. Ac-
cording to the theory of nonsimply-connected surgery developed by Wall (see [7]),
there is an obstruction in the group Ly(m; M). This gives us the following maps:

s: [M; G/PL] — Ly(7) M);

st [MXI, MxaIl; G/PL*] — Ly, (m;M).
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Next, for a prescribed simple homotopy triangulation f: Lk — Mk, let £ denote
the piecewise-linear bundle stably equivalent to * T1, - TM over M, where 73, and

7y are the tangent bundles and f is a homotopy inverse of f. Deform f to an em-
bedding of Lk into the total space E(£) of £&. One sees by an easy computation that
LK has a trivial normal bundle in £. The choice of a framing LX x RN c E(£) de-
termines a map 6(LX, f): MK — G/PL (see [6]). The notion of equivalence of G/PL-
bundles guarantees that the homotopy class of G(Lk, f) is independent of all the
choices made. Thus we have constructed a sequence

o
Fhe (M5 > [MX, 6/PL] S LG, M),

which is exact as a sequence of pointed sets.

Finally, there exists an action of Ly (73 M) on F4t (MX) defined as follows:
choose (LK, f) € %%¢(MK) and an element x € Ljyyi(7; M); then there exists a triple
(W, ¢, F), where ¢ is a map of degree one of the triads (W, 9W) —» (M X I, M X 91),
(3, W, ¢|2,W)= (L, f), | 9_W is a simple homotopy equivalence, F is a stable
framing for v o*T M, and the surgery obstruction satisfies the condition
6(W, ¢, F) = x. Define the action of x on (LX, f) to be (3_ W, c,bl 9. W). Combining
this with the sequence above, we have the following exact sequence of sets

0
L, (M) 5 gue@n) S [M;6/PL] S Ly(r M)

Bl e

[Mx1I, MxaI; G/PL, *] .

For further information and references about nonsimply-connected surgery, see
Wall [7].

2. THE GROUP [L"(p); G/PL]

In this section we shall prove the following proposition.

PROPOSITION (2.1). The map s: [L™(p); G/PL] — Ly, 1 (Zy) is always zero,
provided that n is odd.

First, consider the S!-action (S!, $2°"1) on S?°*! defined by the condition
c-{cg, *, cy) = (ccg, ***, ccy). Since L”(p) is the orbit space of the action of the

Z.,-subgroup in Sl there exists an S!-fibration
7: L™(p) — CP(n).
Suppose we have a homotopy triangulation (M, f) of complex projective space CP™.
Pull back this S!-fibration by f to get a simple homotopy triangulation of L™(p).
Denote this by #!(M, f). Clearly this yields a well-defined map
71: $ht(CP(n)) — F4e(L(p)).

Moreover, the diagram
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Fht (L)) —2 s [L"(p); G/PL]

Tm T

94t (CP(n)) ——> [CP(); G/PL]

is commutative.

Next, let L™(p)y be L™(p) with a disk D°®"! removed. It is easy to see that
L™(p)o /Ln'l(p)o is of the same homotopy type as S%7~1 Up e?™ where p denotes
a map of degree p from 9e2™ to S2"-1. The exact sequence

[s?"-1; a/pL] « [s2"°; G/PL] « [L™(p)o /L™ (p)o; G/PL]
— [s?"; G/PL] — [S*®; G/PL] «

implies that

Z, ifn=0 (mod 2) ,

-1
[L™(p)y /L" " "(p)y; G/PL] =
0 if n=1 (mod 2) .
The same sequence also shows that [Ln(p)0 /Ln'l(p)o; Bg/ pil is always zero.
LEMMA (2.2). For every n, [L™p)g; G/PL] is a p-group.

Proof. Consider the exact sequence
= [Lp)o /L (p)o; Ba/prl — [L*'(p)o; G/PL]
— [LP(p)g; G/PL] — [L™(p)g/L™ '(p)g; G/PL] «— -

Since [L"(p)o /L™ 1(p)o; Bg/pLl is always zero, the group [L™(p)o; G/PL] is
either isomorphic to [L?~!(p)y; G/PL] or to an extension of [L™~1(p),; G/PL] by a
cyclic p-group. Lemma (2.2) follows immediately from induction on n.

LEMMA (2.3). [L™(p); G/PL] = [L™(p)g; G/PL].

Proof. There exists an exact sequence

— [82%*2; G/PL] — [L™(p)y; G/PL] — [L™'(p); a/PL]

2n+1

— [s ; G/PL] « -,

Since [Szn+2; G/PL] is p-torsion free, the homomorphism on the left-hand side of
the sequence above is always zero. On the other hand, [S2n+1 ; G/PL] £0. Lemma
(2.3) follows.

LEMMA (2.4). =* [CP(n); G/PL] — [L™p)y; G/PL] is a surjection.
Proof. First, we observe that CP(n)/CP(n - 1) is of the homotopy type of S27,
The projection map

7 L™(p)y /L™ L (p)g — CP(@)/CP( - 1)

induced by m: L™(p)o — CP(n) is homotopic to the map that collapses S2%~! in
s22-1 yy e2® (~ LP(p)o /L™ }(p)y) to a point. From this, it follows that
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7* [CP@)/CP - 1); G/PL] — [L (), /L" " (p)y; G/PL]

is always a surjective map.

Now, we assume by induction that

% [CP(n - 1); G/PL] — [L""!(p),; G/PL]
is a surjective map. Chasing the following commutative diagram
—— [L2(p), /1"  (p)y; G/PL] —> [L"(p)y; G/PL] —> [L”"'(p)y; G/PL] —>

e b I
—> [CP(n)/CP(n - 1); G/PL] —> [CP(n); G/PL] —> [CP(n - 1); G/PL] ——>,
we see that
7*: [CP(n); G/PL] — [L"(p),; G/PL]

is a surjective map. This proves Lemma (2.4).
LEMMA (2.5) (Sullivan). Fov a simply-connected manifold M of dimension
4k + 2, the map
s: [M™2; g/PL] - L,,,(1) € Z,)
is a group homomorphism. In particular, for n =1 (mod 2), the map

s: [CP(n); G/PL] — L,,(1)

is a group homomorphism,
Proof. There exists a cohomology class K € H4*+2(G/PL; Z,) such that if
f: M — G/PL is an element of [M; G/PL], then
s(f) = {WM) U £*K); [M]) € Z,,
where W(M) is the total Wu class. Lemma (2.5) follows immediately from the fact
that K is a primitive class (see [6]).
Now, we are in a position to prove (2.1).

Proof of (2.1). Consider the commutative diagram

Fht (LMp)) —5—> [L%"H(p); G/PL] ——> Ly, 3(2;)

f e

¥4t (CP(n)) —5—> [CP(n); G/PL] —— Z,

Let g be an element of [L2K*!(p); G/PL]. Then by (2.2), (2.3), and (2.4), there

exists an element g' of [CP(n); G/PL] such that 7%(2g') = g. But since

s: [CP(n); G/PL] — Z, is a homomorphism, we have that s(2g') = 0. Therefore
2g' can be represented by a simple homotopy triangulation of CP(n). It follows
from the diagram above that s(g) = 0. The proof of (2.1) is complete.
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3. PROOF OF THEOREM I

Let L (1) denote the obstruction group of simply-connected surgery. General
arguments show that L,(1) is a direct summand of L(Zp). The reduced surgery
obstruction group Ln(Zp)~ in Theorem I is defined to be the kernel of the projection
map Ln(Zp) — L,(1).

PROPOSITION (3.1).
(1) [L™p) X I, L™(p) X 31; G/PL, *] ~ 7, ,(G/PL) = L, . »(1).
(2) Let

s': [L™(p) x I, L™(p) X 81; G/PL, *] — Ly 2(Zp)

be defined as in Section 1. Then Im s' = L, ,,(1) C L2n+2(Zp).
~ Proof. Let ¢ (LXI LXJ3I)— (D2n+2, 9D) be a map of degree one. Since
HYL X I, L X 8I; 7i(G/PL)) = 0 for i #2n + 2, the group [L X I, L. x 3I; G/PL, *] is
generated by the image of the map
¢* [D, 8aD; G/PL, *] — [L X I, L xaI; G/PL, *].
As is well known, the group [D?"*2 3D; G/PL, *] is determined by the formula

- /A if n =1 (mod 2),
[D“""“ 9D; G/PL, *] = 7, ,,(G/PL) =
Z, if n=0 (mod2).

Represent an element x € [D, 9D; G/PL, *] (~ Z or ~ Z;) by a Kervaire-Milnor
manifold (M, ¢, F), where x is the corresponding index or Arf-invariant. Ks image
¢*(x) in [L X I, L X 8I; G/PL, *] can be represented by the connected sum of
(M, ¢, F) with the trivial cobordism (W, ¢, F), where W=L X1, ¢ =id: W — L X I,
and F is the natural framing of 7w (P ¢™ v,«;. Obviously,
s'((W, ¢, F) # (M, ¢, F)) = s(M, ¢, F) = x.

Hence [L X I, L X 8I; G/PL, *] is isomorphic to Lj,:2(1) under the map

s': [L X I, Lx3I; G/PL, *] — L,p:2(1) C LpnpyaZy).

This completes the proof of (3.1).
Now Theorem I is an immediate consequence of Propositions (2.1) and (3.1).
Proof of Theorem 1. Recall that we have the exact sequence of pointed sets
k 6 s
Laxia(Zp) —2—> 942 (L7 (p)) —— [LZ*1(p); G/PL] —— Ly 3(Z,)
s 1
[L XI, L xaI; G/PL, *]

Since (2.1) shows that the map s on the right-hand side of the sequence is always
zero, and since (3.1) shows that Im s' = Lgi+4(1), we have the exact sequence
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~ X 6
0 = Ly y(Z)” = F4eL?*p) = [L'(p); G/PL] - 0.

This proves Theorem I.

Remark (3.2). It follows from the results of D. Sullivan (see [6]) that
[Ln(p); G/PL] is isomorphic to the multiplicative subgroup of the virtual line bun-
dles of KO(L"(p)), modulo 2-torsions. This multiplicative structure has been com-
pletely determined by T. Kambe in [1].

Remark (3.3). To determine the group L 4y44(Zp)~, Wall has shown that there
exist a number of invariants that can detect a nonzero element of L4t 4(Z p)"‘ . Re-
cent results of T. Petrie show that such invariants can be realized and that

~ ~ -1
L+ a(Z )™ = I:Pz—] z .

4., HOMEOMORPHISMS

Throughout this section, a (4k + 3)-manifold is called a homotopy lens space if
it has the simple homotopy type of LZk“(p). In this section, we study the homotopy
classes of piecewise-linear homeomorphisms of a homotopy lens space.

First, we need the following well-known facts.

LEMMA (4.1). Let f and g be maps of L2XY(p) into itself. If f and g induce
the same map on the fundamental group and on the top homology group of LKt1(p),
in other wovds, if

f

o = 8y (LAY — 7 (L&) and

f, = 84 HyqaL2p)) - Hyy a2 ),

then f is homotopic to g.
For proof, see E. H. Spanier [5, p. 451, Theorem 10].

LEMMA (4.2). If a #+1 (mod p), then there exists no simiple homotopy equiva-
lence of L2¥t1(p) to itself such that the map induced on the fundamental group sends
t fo t2.

Proof of (4.2). Denote by A the torsion of L2k+1(p), and let N C QZ, denote
the kernel of the canonical homomorphism QZp — Q that carries the generator t of
Z, to +1. It is well known (see Milnor [3]) that

2k+1

A=(t-1) € U(N)/Zp

and that A is preserved by simple homotopy equivalence. Suppose there exists a
simple homotopy equivalence y: L2kt!(p) — 12k*1(p) such that

74t) = t%,

where a #+1 (mod p). Since YA = A, we have the relation

(t - 1)2k+l - (ta _ 1)2k+l
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This, of course, contradicts the Franz Independence Lemma (see Milnor [3]).
Lemma (4.2) follows.

Let c: L2k (p) = 1,2kt () pe the diffeomorphism defined by conjugation of
complex coordinates. Then

cy = -id: m (LA L(p)) — 7 (L2F1(p)) .

By (4.2) and (4.1), every piecewise-linear homeomorphism of L2kt (p) is homotopic
to either the identity or c.

Next we prove that a piecewise-linear homeomorphism similar to
c: Lektl(p) — 1.2kt (p) always exists for a homotopy lens space.

THEOREM (4.3). Every homotopy lens space L admits a piecewise-linear
homeomovrphism y: L = L such that
(4.4) '}/*='id: WIL""HIL.

This result is essentially equivalent to the following theorem.

THEOREM (4.5). Let c: L2kt(p) = 12K+ (p) pe the piecewise-linear homeo-
movphism defined as befove. Define c,: st (L2kt1(p)) — F4¢(L2Kt1(p)) by the
Jormula

e (L, ) = (L, cof),

for every (L, f) € Fhat(L2K1(p)). Then c, =id.
The proof of (4.5) will be based on the following lemmas.
LEMMA (4.6). Let 6 be defined as in Section 1. Then the diagram

Fhe (L)) 2> [LE(p); 6/PL

b -

Far (L)) —2> [LZ(p); a/PL]

commutes.

LEMMA (4.7). Let c: CP(n) = CP(n) be the diffeomorphism defined by the
conjugation of complex coovdinates. Then

c* = id: [CP(m); G/PL] — [CP@); G/PL] .

The proof of (4.6) is a routine matter, and we leave it to the reader. The proof
of (4.7) is easy and follows directly from the computation of the group [CP(n); G/PL]
(see Sullivan [6]).

_Remark (4.8). From the theory of simply-connected surgery, it is known that
the map

0: 94¢(CP(n)) — [CP(n); G/PL],

defined in Section 2, is an injection. Thus, by (4.7), every homotopy complex pro-
jective space HCP(n) admits a piecewise-linear homeomorphism y such that
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vy = -id: HAHCP(n)) — H(HCP(n)) .

Since p* [CP(n); G/PL] — [L2X*l(p); G/PL] is a surjection, we have that for each
element a of [L2kt1l(p); G/PL] there exists a simple homotopy triangulation (L, f)
with 6(L, f) = a, and L satisfies Theorem (4.3).

LEMMA (4.9). Let (L, f) be a simple homotopy triangulation of LZk“(p) with
e, (L, £) = (L, ). Let
X: Lypa(Z,)” — F4t (L1 (p))

be the injection defined by the action of the group L4k+4(Zp)~ on (L, f), as in Sec-
tion 1. Then the diagram

~ X
Ly a(Zp)” —=> Fa (L1 (p))

l(—id)* lc*

Lgrer 4(Z)” ~X s gat (L3 (p)

is commutative.

Proof of (4.9). Let a be an element of Lgx+4(Zy). Represent x(a) by a simple
homotopy triangulation (@, W, ¢ | 9, W), as in Section 1. More precisely, we have the
cobordism (W, ¢, F), where

¢: (W; 0, W, a_W) — L (p)x(1;0, 1)
is a map of degree one, and F is a stable framing of the bundle Tw (—B ¢* v such
that the following conditions are satisfied:
i) W, ¢|a_ W)= (L, f) in Fse(L25 1(p));
(ii) ¢ |2, W is a simple homotopy equivalence;
(iii) 6(W, ¢, F) = a.

By definition, (3, W, co¢ l 94+ W) is a simple homotopy triangulation that represents
the element c,(a). Note that

(1) @. W, co¢|a. W) = (L, cof) = (L, f);

(ii) (3. W, co¢|a_ W) is connected with (3, W, co¢|d, W) by the cobordism
(W, co¢, F).

Because c, = -id: 7;(L%%"1(p)) — 7,(L%*"1(p)), we have the relations
6(W, cog, F) = (c,), 0(W, ¢, F) = (-id), (a) .

This shows that c,ox(a) = x o(-id), (a), and the proof of Lemma (4.9) is complete.

LEMMA (4.10). Let -id denote the automorphism of Zy, that sends every ele-
ment t of Zi, to t-1. Then the induced map

(-id)y: L a(Zp)” — Liggra(Zp)”

is the identity.
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The proof of (4.10) requires a different technique, and we shall omit it. For full
details, we refer the reader to a forthcoming paper by Petrie (see [4]).

Proof of (4.3) and (4.5). Let £ be an element of $%#(L2Xt1(p)). By (4.8),
there exists a simple homotopy triangulation 7 in $4#(L2kt1(p)) with the property
that

c,(n)=7n and 6(n) = 6(£).

Thus we can think of £ as x(a), where a is some element of L4k+4(Z )~ and x is
defined as in (4.9). Now Lemmas (4.9) and (4.10) imply that c(§) = &. ThlS com-
pletes the proof of (4.5).

Next suppose we have a prescribed homotopy lens space L. Let f: L — L2kt) (p)
be a simple homotopy equivalence. Since (L, f) = (L, cof), there exists a piecewise-
linear homeomorphism 7y: L = L such that foy =cof. Clearly, we have that

Y% = -id: WI(L) — m (L) .

This completes the proof of (4.3).

5. FREE Z,-ACTIONS ON g*kt3

We are now in a position to prove Theorem II.

PROPOSITION (5.1). There exists a one-to-one corvespondence between
Fht- (L2511 (p)) and the set of piecewise-linearly distinct homotopy lens spaces.

Proof of (5.1). Every simple homotopy triangulation of LZXt1(p) yields a

homotopy lens space. Suppose (L, f) and (L, f') yield the same lens space L. By
(4.1) and (4.2), the simple homotopy equivalence fof'"!: L, — L is either homotopic
to the identity or to y in (4.3). In either case, fof'~! can be deformed to a piece-
wise-linear homeomorphism, and thus (L, f) = (L, f'). This completes the proof of
(5.1).

Proof of Theorem II. Let A(S4k+3 Z ) denote the set of equivalence classes of
free Zp-actions on S 4k+3 whose orbit spaces have the same simple homotopy type

as L2k+1(p) First observe that there exists a natural map
&: 94t (L2 (p)) - A(S**3; z))

defined as follows. Let f: M — L2X*1(p) be a simple homotopy triangulation in
L2k+1(p). Pull back under f the Zp-bundle S4k+3 — L2kt1(p) to get a free Zi-
action on the universal covering space M~ (2 S%kt3) of M. Clearly,

®(M, f) = (Zp, M) is well-defined, since (Zp, M) depends only on the equivalence
class of (M, f) in F4#(L2kt1(p)).

Next let T: Zy, X §4+3 — g4kt3 pe 3 free Zy-action on S4k+3 and let q be
an integer between 0 and p - 1. Define another actlon Ty: Zp ¥ S4k+3 — S4kt3 py
the relation

To(t', x) = T, x),

where t is the generator of Zp and x € S**3. The Zp-action (Tq, stk s
called the qth power of (T, S2kt3). Clearly, (Ty, S**3) and (T, §**3) have the

same orbit space.
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Define &: P4t (L3 (p)) x Zp — A(s*k+3 , Zp) by the formula
&(£ X q) = the qth power of &(£),

where £ € $4(LY™3(p)) and q € Z,. It is easy to see that & is onto, and by (4.3),
that ®(£, q) = ®(£, p - q). It remains to show that ®(&, q) = ®(¢', q') only if £ = &
and either g =q' or q =p - q'. By (5.1), we can easily rule out the case £ # £'.
Suppose-q #q' or q #p - q'. Then one can find a simple homotopy equivalence of
L2k+1(p) into itself that is not homotopic to the identity or the map c. This contra-
dicts (4.2). The proof of Theorem II is complete.
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