PRIMES IN ARITHMETIC PROGRESSIONS
H. L. Montgomery

The purpose of this paper is to investigate the asymptotic size of the quantity
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In recent years, a number of mathematicians have used the large sieve to obtain
upper bounds for (1) when Q is slightly smaller than x. M. B. Barban [1] seems to
have been the first, and he was closely followed by H. Davenport and H. Halberstam
[6], who showed that (1) is < Qx(log x)® (Vinogradov’s notation) for Q < x. Later,
P. X. Gallagher [8] introduced some simplifications and made more precise esti-
mates to show that (1) is K Qx log x, and R. J. Wilson used the large sieve in an
algebraic number field to obtain similar results in algebraic number fields [12]. In
this paper we show, without using the lavge sieve, that these bounds may be replaced
by an asymptotic equality with an explicit error term.

THEOREM. Let A be fixed (A> 0). For Q <x,
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and for Q > x,
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+ O(Qx (log x) ™).

The first error term in (2) may no doubt be reduced, but it appears that the
error is genuinely >> Qx log log x/Q. Halberstam has pointed out that in an obscure
journal Barban [2] asserted (3) in the case x = Q. However, he seems not to have
indicated what lines the proof was to take, and it may now be impossible ever to de-
termine what he had in mind.

We note that our method suggests that perhaps
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for some fixed B > 0. Indeed, it may even be possible to prove (4) under the as-
sumption of the generalized Riemann hypothesis. The need for this hypothesis is
suggested by the fact that (4) implies that neither the {-function nor any L-function
can have a zero p with 9p > 3/4. Professor Halberstam has remarked that the
relation
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(5) L pa:l Y(x; p, a) ) < x“ log x

already follows easily from the large sieve. This is surprising, since (4) does not
have the appearance of being much stronger than (5). One should note that Y(x; q, a)
counts primes from a set of only x/q elements, and that a probabilist would tell us

l-}-g

that at least “usually” we should therefore expect an error of (x/q) . We see that
(4) and (5) are statements of this type. Halberstam conjectured a deeper statement
of this sort; a strong form of his conjecture is that for each fixed A > 0,
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(6) 4<Q d m: x |¥(xq,2) - ¢(q) < (log x)A
- (a,9)=1

provided Q < x(log x)-B (B = B(A)). Bomb1er1 s theorem [3] (see also [5], [9])
asserts that (6) is true provided Q < x!/2(log x) -B (B = B(A)), but that much would
be true even if the error terms were usually x!/2 (log x)2 in size. A much weaker
form of Halberstam’s conjecture states that

2
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even this would have implications in the twin-prime problem. At the moment (4) and
(5), insofar as they are true or seem plausible, form our only evidence in favor of
(6) and (7).

As we have said, the proof of our theorem does not use the large sieve. It does
however appeal to a deep result of A. F. Lavrik [10] on twin primes on avervage,
based on the work of N. G. Cudakov [4] (see also [7]), which in turn was based on the
work of I. M. Vinogradov. We give a formulation of Lavrik’s result in Lemma 1.

The author is most grateful to Professors Davenport and Halberstam for their
remarks and suggestions.

In what follows, we let

(8) ® =2 (1"<p_1)z)

p>2
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The following proposition is basic to our proof.

LEMMA 1 (Lavrik). Let &, y,(x, k), and E(x, k) be defined as in (8), (9), and
(10). Then, for each fixed B > 0,
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(11) k=1 (E(x’ k)) (log X)B

We shall also require the following two results from elementary number theory.
Since our proof is standard, we shall omit some of the more tedious details.

LEMMA 2. Let S be defined as in (8). For y > 2,

27 II p-1_2 II (1——1———)+0(10gy)

|

(12) m<y plm p-2 © plr (p - 1)2
(p,2r)=1 p>2
and
> m O BE=l_¥q (1—;)+0(y10gy)'
p-2 & (p - 1)2 ’
(13) m<y p|m p|r P

(p,2r)=1 p>2

the errov terms are uniform in the positive integer r.

Our proof follows in spirit the proof of the well-known result

(14) 2 ¢m) == x? +0(x log x),
n<x m

but some care must be given to ensure the uniformity of the error term. It is
curious that while the error term in (14) may be replaced [11, p. 114] by

O(x (log x)2/3 (1og log x)4/3), deeper arguments show that the error-term in (12)
cannot be made smaller.

We now prove (12). Let

p?m) II (p-2)"'  if (m, 2r) =1,

fr(m) = plm
0 if (m, 2r)> 1.

Then the left-hand side in (12) is
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p>2
Now (13) follows from (12) by partial summation.

LEMMA 3. For x1/2<Q < x,

2

>0 i} oe-1i_x s> 1 2x

(15) q<Q kSX/q (X qk)qukp"z 26 qSQ ¢(Q)+O(QX10g Q)’
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and for Q > x,

(16) ? 27 (x-qgk) II'I g . ; = g(é)g((g)) x% log x + A, x% + 0 (x3/210g x).
a<LQ k<x/q p|gk
2| qk p>2

On the left-hand side of (15) and (16), the condition 2 I gk may be expressed as
2 | k or 2 | q; therefore the expression is

o 2e(ag)r2r(2.3) -4x(23),
where

F(U, y) = 22 27 (y-uw) II P——t—;
u<U v<y/u pluvp—
- p>2

Now, for U <y,

FU,y) = L I 22 B (-w I 221
u<U plu P v<y/u Plv

we appeal to Lemma 2 and simplify, to find that this is equal to
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where
#u) if r is odd,
¢*(u) = {
2¢(u) if r is even.

We can now weaken the condition U <y to U < 2y, because the difference may be
absorbed into the error-term. Taking this result with (13) and the observation that
¢*(u) = ¢(2u), we have (15). More careful estimates of F(U, y) can be made along

the lines of the elementary treatment of En<x d(n), and all error-terms are small,
except in estimating

2 > _1_
y .
u<y/U P*(u)

One cannot hope to estimate this with an error less than yU log log y/U. Hence the
error in (15) cannot be as small as O(Qx) if Q = o(x).

If U>y, then F(U, y) does not depend on U, and in fact

F(U, y)—ZE HL; 20 (y - uv) o p-1

u<y1/ plup_ v<ylu plv p-2
p>2 (p,2u)=1
-2 H—p:; 2 (y -uw) II __p—;’
u_<_yl/2 Plu p VSY”Z PIV p-
p>2 (p,2v)=1
and by an appeal to Lemma 2 we find that this is
9v2 3/2
% 27 4)*1(“)-23'6 27 11 —I_)—T—I——é- 2 ull —I_)—T+O(y3/210gy).
uSyl/z USY1/2 p|u p uSyl/z p|u p
p>2 p>2

By results similar to Lemma 2, this is equal to

v logy II (1+ 1))+A3y +O(y3/210gy)
p>2

This, with (17), gives (16).

We now prove our theorem. First we note that
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If in the double summation we drop the condition (n;n,, q) =1, we increase the sum
by an amount that is < xq-! log x. Thus the left-hand side of (2) or (3) is

Q X (Am)l+2 2 2 Al Ay - x5 2 —%—)
n<x q<Q n<np<x q<Q %q
(18) n1=n;(q)

x2 log Q
+ 0 (m) + O (x(log Q)Z)

Now

> 2 - _ —x
(19) 2 (A(n)) xlogx-x+ 0( (log DA ) ,

by the prime-number theorem. Also,

2 2 23 Almp)Aly) =2 2 2 wulx k).
qSQ nj<ny<x qSQ ka/q
n) =ny(q)

If r is odd, then Y,(x, r) < (log x)2 therefore odd values of gk above contribute no
more than < x (log x)3 By (10), this is equal to

20) 26 2 2 (x-gqk) II —2-+0( 2 dem) |Ex, m)| ) + O (log x)3).
q< Q gk<x p|qk 2m<x

Zlqk p>2

Here, by Cauchy’s inequality, the first error-term is
1/2
<(Z 2(m)) ( 2 (Etx, m)?)
ngx 2m <x
The first factor is < x!1/2 (log x)3/2, and the second is K x3/2(1og X)~ -B/2 , by
Lemma 1. We take B = 2A + 3, so that this error is < x2(log x)~#. To prove (2),
we have only to combine (18), (19) (20), and (15). As for (3), we take (18), (19), and
(20) with (16) and the fact that

1 t@E®) log M
EM¢(m)_ 2(6) logM+A4+O< M )
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