ZEROS OF PARTIAL SUMS OF POWER SERIES. 1II
J. D. Buckholtz

1. INTRODUCTION

Problem 7.7 in W. K. Hayman’s Research Problems in Function Theory [3]is the

following: Let f(z) = E:)o ap zX denote an analytic function whose power series has
radius of convergence 1. Set

n
Sn(Z) = Sn(Z; f) = E akzk (n = 1’ 2) 3: '"),
k=0

and let p_(f) denote the largest of the moduli of the zeros of S, (with the convention
that p,(f) = if a_ =0). Let

p(f) = lim inf p_(f)

n — o0
and

P = sup p(f).
f

The problem is to determine the value of P. In [2] J. Clunie and P. ErdSs showed
that Y2 < P < 2. The present author [1] obtained the estimates 1.7 < P < 121/4,
Later, J. L. Frank [1] improved these bounds to 1.7818 < P < 1.82.

In the present paper, I determine the exact value of P. The determination de-
pends on certain algebraic relations between the coefficients of a power series and
the zeros of its partial sums. These relations are most conveniently expressed in

terms of the polynomials B,(z; zg, ***, Z,-1) defined by
n-1
-k
(1'1) BO(Z) =1, Bn(z; Zg, ', Zn—l) =z - EO ZE Bk(z; Zg, **7, Zk-—l)'
k=

(Here By(z; zg, -+, 2zx_1) is to be interpreted as 1 when k =0.)
Set
H, = max |B,(0; zg, -, z,.1)| n=0,1,2, ),

where the maximum is taken over all sequences {zk}g'l whose terms lie on the
unit circle. On the basis of the algebraic relations mentioned above, we obtain the
following result.

THEOREM 1. P = sup HY"= lim ul/™

n n *
1<n<e n — oo
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Theorem 1 yields numerical lower bounds for P. To obtain numerical upper

bounds, we need a slightly more complicated result. For m =1, 2, --- and
0<u<l,let
0
(1.2) T_(u) = max 27 u®|B(0; wg, -+, w__;, 0, =, 0)],
k=m

where the maximum is taken over all sequences {w-}é’“"1 whose terms lie on the
unit circle. Let u,, denote the positive root of the équation T, (u) =1, and let
Ky =1/u,.

THEOREM 2. P = inf K, = lim K.

1<m< oo m —s o

On the basis of Theorems 1 and 2, P can (at least in theory) be calculated as ac-
curately as desired. One can easily verify that K; = 2. The upper bound P < 121/4
in [1] was obtained by proving that K, < 12174, Since then, the estimates

1.838 < K, < 1.839 and 1.81 < K3 < 1.82

have been obtained by machine computation.

2. ALGEBRAIC PRELIMINARIES

For k=0,1, 2, -, let & K denote the operator that transforms the analytic

function (z) = E;:O a,,z™ into
[e o]
k
FEi(@z) = 2 a_ 2™,
m=0

If we rewrite (1.1) in the form
m
z™ = kEO zlr(n‘kBk(z; Zg, **ty Zp_q)

and substitute this into the power series for f, we obtain

[>e] m
20 a, 20 zf{n'kBk(z; Zg, **ty Zyoy)
m=0 k=0

1(z)

(>0} o0
m-k
2 2 A Zy )Bk(z; Zg, "ty Zyo1)

(2.1) =
k=0 \m=k
o0
= E ykf(zk)Bk(z; Zg, ", Zk-l)?
k=0

whenever the interchange in the order of summation can be justified. In particular,
(2.1) holds if f is a polynomial.
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We now establish some of the basic properties of the polynomials
B,(z; Zo, ***, Zn-1)-
LEMMA 1. For each positive integer n,

(2.2) Bn(Az; Azg, =, Az, _1) = A'By(z; 29, **, 2_]),

(2.3) Bn(zo; 2o, ***, Zn-1) = 0,

(24)  95Bu(@; 20, **, Za-1) = Buok(z; 2k, 7, 2n1) (0 <k <),

(2.5) Bn+1(2; 29, ***, 2,) = 2By(2; 2y, ***, 2,) - 20B,(20; 2], """, 2,),
(2.6) Bn+1(0; zg, ***, 2,) = -29By(zo; 21, ***, Zn) -

Proof. Properties (2.2) and (2.3) follow from (1.1) and mathematical induction.
It is enough to establish (2.4) for the case k = 1, and this case follows in the same
way. Property (2.5) is then a consequence of (2.4), and (2.6) follows from (2.5).

LEMMA 2. The following identities hold:
n

(2.7)  Bu(z; 2o, =, 2no1) = 20 Booiwics Zi, =, Zno1) Bilzs W, wie_1),
k=0

n

(2.8) Bn(Z; Zg, "7, Zn-l) = E Bn—k(o; Zx, "7, Zn—l)zk’
k=0
n

(2.9) z"B,(1/z; 2y, -+, 21) = 22 By (0; 2z, ***, 21)z
k=0

k

Proof. We deduce from (2.1) and (2.4) that

n

Kk
27 95 By(wy; 2o, “*+, Zn-1)Bi(z; wo, ***, wir-1)
k=0

Bn(z; Z9, -, Zn—l)

n
E Bn—k(wk; Zk’ °cey, Zn—l)Bk(Z; Wo, tety, Wk-l)'
k=0

To obtain (2.8) from (2.7), take wy. =0 (0 < k <n). An obvious manipulation of (2.8)
yields (2.9).

Identity (2.9) deserves a remark. The right member is the nth partial sum of
the power series

(2.10) 27 B(0; 7y, -+, 7)) 25,

k=0

and by (2.3), the left member has a zero at z = l/zn . If z, = 0, then the coefficient
of z" is 0, and (by convention) « is a zero of the nth partial sum. Therefore (2.9)
allows us to construct a power series by specifying one zero of each partial sum.
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Conversely, every power series with constant term 1 can be written in the form

(2.10), where, for each n > 0, z, is the reciprocal of a zero of the nth partial sum.
A proof of this is contained in the following lemma.

LEMMA 3. Let E -0 akz denote a formal power sevies with ag = 1. For
each positive integer n, choose a complex number z, such that

n
E an =0.

Then

(2.11) a =B (0;z,,2,,,,2z) @=123 ).

Proof. The proof is by induction on n; for n =

1, we have the relation
z; +a) =0. Therefore

ay = -z2p = BI(O; Zl)'

Let m be such that (2.11) holds for n=1, 2, ---, m. Then
m+1 m
+1 k m+1l-k
0= Eo AZmil E B(05 2y, 5 210241 Famils

by the induction hypothesis. Therefore, provided z,,+; #0,

m

rn+1 -k
Amt+l = "Zm+l E By(0; 2y, =, 210211 = “Z1 B(Zmi15 Zms s 21)s

by (2.9). Using (2.6), we obtain the equation

(2.12) amt1 = Bm+1(05 2y, 00, 21).

If Zy+1 = 0, the definition of z,+] guarantees that ap,+1 = 0. The validity of (2.12)
in this case follows from (2.3), and this completes the proof.
LEMMA 4. If 0 <nj; <n, then

njy

Bn(Z; Zn, ", Zl) = E Bk(o; Zk, *"°, Zl)Bn—k(z; Zn, """, an-l-ly 0! ", 0)‘
k=0

Proof. It follows from (2.7) that
n

Bo(z; Zp, **, Z1) = 20 By _wWi; Znk, =, 21) Bi(z; wo, v, wio1).
k=0

Let

z, (0<k<n-ny)),
Wy =

0 (n-n; <k<n).
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From (2.3) we obtain the identity

n

Bn(z; Zpy "ty Zl) = Z) Bn-k(o; Zn-k, °°*, Zl)Bk(z; Zp, **°, Zn1+l; 0; ", 0)'
k=n-n
1

The replacement of k by n - k in the summation yields the lemma.

3. LOWER BOUNDS
LEMMA 5. If 0<n; <n, then H, > Hy Hpon, -

Proof. Choose points z;, ---, z,, on the unit circle so that

b

Hnl = IBnl(O; znl, oo z1)|
and
Hn__nl = |Bn_n1(0; Z,, ", an+1)| .
Then
H, > Ir;l,azcl |B(0; Az, -, AZp 415 Znys z;)]| .

From Lemma 4 and equation (2.2) we obtain the identity

B, (0; xz, -, Aznl_,_l , znl , *tty Zp)
ny
n-k
= 27 Bil(0; zy, *+, 2)A" T By (05 2y, Zn +1, 0, *7, 0).
k=0

Let Q(x) denote the polynomial obtained by dividing the two sides of this equation by

n-nl

A . Then
Hy > i QW] > [QO)] = [B, (052, , *, 21)Byn (05 2, ", 2 1))
= H, H, ., .
LEMMA 6. lim H./® = sup H/®,
n— o 1<n<w

Proof. Let m>1 be fixed. For n>m, let n=gqm +d (0<d <m). Lemma 5
implies the inequalities

q -9 _ 4
Hn Z quHd Z H Hl - Hm
Therefore
Hl}l/n > H(rnn-d)/mn — Hll:r{mH;rii/rnn.

Letting n — «, we obtain the relation
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Lim inf HY/® > HI/™,

n—
Therefore

lim inf H/® >  sup HL/™,

n— oo 1<{m< o

and the lemma follows.

Using (1.1) and induction, we obtain the inequality H, < 2"~ L n> 0); this guar-
antees that sup H”n <L 2.

THEOREM 3. P > H/™ (m=1, 2, 3, ).

Proof. Let {wy}T and {rq}0 be sequences whose terms lie on the unit circle.
For each positive integer n, write n=qm+j (1 <j < m), and let z, =xqw;. The
function

o0

(3.1) f(z) = 20 By(0; zy, **, zq)z"
k=0

has the property that p (f)>1 (n=1, 2, 3, --). If we choose {wi}T" so that
Hy = |Brn(05 Wms "% Wl)l s

the method used in the proof of Lemma 5 allows us to choose the sequence {Aq}0o
in such a way that

(3.2) |Bing(0; Zmg, =5 21| > Hiy  (@=1,2, ).

Let R denote the radius of convergence of the series (3 1). From (3.2) and the
remark preceding Theorem 3, it follows that H 1/m <R~ g 2. Consequently, the

function f (z) = f(Rz) has radius of convergence 1 and satisfies the condition

p(E) >R >HY™ @m=12 3 -).

Therefore P > p(f;) > Hl/m

Let
H= sup H," = lim H,
1< n<» n— oo

It follows at once from Theorem 3 that P > H. To compiete the proof of Theorem 1,
we need the following result.

THEOREM 4. P < H.

o0
Proof. Let £(z) = Ek:o a_kzk have radius of convergence 1, and suppose that
ag =1 (if necessary, divide by the first nonvanishing term of the series; this divi-
sion does not affect p(f)). For each positive integer n, let 1/z, denote a zero of
Sn(z; f) of modulus p (f). From Lemma 3 it follows that
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f(z) = 22 B, (05 2y, ***, zl)zk,

k=0

and Lemma 4 implies that

n

a, = 2 a, B, (052, -, Zn 1 0, >+, 0) (n>n;).

k=0

Fix n;, and let
-1
Xy, = Suwp  [zg] = ( inf pn(f)) :
nj <n< ny <n<®

For all n > n;, we have the inequalities

nl I'll

1/n

n

anl < 2 o] 25 H, Ly = (o

n -k -1
xnl) Z) Ia'kl an Hn-an
k=0 k=0

n
1
< (Hl/nxn Yz la, | (x, Hll(/k)_k.
U 2o 1

n

Taking nth roots and letting n — *«, we obtain the relations
1 = lim sup |a, |1/ < lim sup H./™ = x__ H
P |adn = an p Hy ny
n— oo n-—oo

Therefore

H > = inf  pu(f).

1
*n)  p;<n<e

Letting n; — *«, we obtain the inequality H > p(f). Therefore H > P, which com-
pletes the proof.

We note that the supremum P is actually assumed; one can modify the construc-
tion of Theorem 3 in such a way as to produce an analytic function f with radius of
convergence 1 and with the property that p,(f) > H (n=1, 2, 3, -+ ).

4, UPPER BOUNDS

In order to justify the definitions of u,, and K,,, we must show that the series
(1.2) does in fact converge for 0 < u < 1, and that T (u) assumes the value 1.
LEMMA 7. If 0 <u<u+h<1, then
Tnla+h) > T (1+22)  (m=1,2,3 ).

Proof. H k > m, then
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(@ n)* > u +rd > 0 (1 +mTh)

Choose points {w; 121 o0 the unit circle such that

o0
T, (u) = 22 uf | B1.(0; wg, -+, Wiao1, 0, =+, 0)] .
k=m
Then
[>]
Tm(u+h) > 27 (u+h)k | By(0; wg, =, W1, 0, **°, 0)|
k=m
[~}
_>_ (1 +_Illll_l}-) Z) ukIBk(O; Wo, "7y Wim-1, 09 "ty O)I
k=m

= (1+mTh)Tm(u).

LEMMA 8. If m is a positive integer and 0 <u < 1, then

@) W < T < GBI (L) -

Proof. The first part of the inequality follows from the definitions of H,, and
Ty, . To obtain the second part, we observe that

o]

T,(w) < u™H,, + 22 uk(max|Bk(0; Wo, W1, 0, %, 0)]),
k=m+1l

. . -1 .
where each of the maxima is taken over sequences {wj}gn whose terms lie on the
unit circle. Now
1

m -
s
B, (0; wg, =+, W 0, =+, 0) = - .Z) wi T B;(0; wo, v, wi_y),

m-12
j=0
so that
m-~1 m-1
max | Bi(0; wo, ***, W1, 0, =+, 0)] < 24 H; < Z
j=0 j=0
m-1
m
. P-1
j=0

Therefore, since H A < P™, we obtain the inequality

0

Tm(u)sumpm_*_:—p-g_—nl—l Eluk=(uP)m(1+(P—1)u(1-U)),
k=m+
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which completes the proof. As a special case, we note that

1

(4.2) Tm(l/P) <1 +(_P——1)Z .

It follows from Lemma 7 that the function T, is strictly increasing. We now
establish its continuity. Suppose 0 <u<u+h <1, Then

0
T, ,(u+h) = max 27 UK+ [(u+h)k - uk]) IBk(O; W, W1, 0, 0, 0)|
k=m
(o]
< T +max 27 ((w+h)* - o) [B(0; wg, =+, w1, 0, =+, 0)
k=m
(=] (e o]
k-1_P™ hp™ k-1
<T@+ 27 hk@+h) S = = T+ 2 k+h)*,
k=m k=m

which allows us to conclude that T, is continuous. If m > 1, then

m-1

Hp 2 Hy pHp = 2Hp, 2 > 2Hp = 2.
Therefore it follows from (4.1) that T, (u) > 1 if u is sufficiently close to 1. Con-

sequently, if m > 1, the function T,, assumes the value 1 exactly once, which justi-
fies our definition of u . For m =1, it is easy to verify that

Tl(u) =

1-u-
so that u, = 1/2.

o0
Let f(z)=1+ Ek:]. Akzk be analytic in |z| <1, let m be a nonnegative integer,
o0
and let {z, }, be a sequence of points in |z| <1 such that z; =0 for k > m. In

this case, there is no difficulty in justifying the expansion (2.1), and we have the
identity

[=o}
f(z) = 22 Spkf(zk)Bk(z; Zgs "7 zk-l)
k=0
m-1 0
= 2 .Ska(zk)Bk(z; Zgy, "t Zk-1)+ 27 A, B, (z; z,4, **, z . .1,0, "7, 0).
k=0 k=m
If in addition ¥Xf(z;) =0 (0 <k < m), then
oo
(4-3) f(O) =1-= Z) AkBk(O; 20, """y Zm-1> 0, -, 0).

k=m

Suppose that f has the further property that |Ak| <1 for k > m. We can then
use equation (4.3) to obtain a positive lower bound on the largest of the numbers
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Izol ]zm 1|. This bound is contained in Theorem 5. Theorems 5 and 6 are
direct extensions of Theorems 1 and 2 of [1]. Their proofs are quite similar to
those in [1], and therefore we omit them.

THEOREM 5. If f satisfies all the hypotheses above, then max |zi| >u,,
0<k<m

THEOREM 6. P < K, (m=1,2,3, -+).

It remains to prove Theorem 2, Theorem 2 is an immediate consequence of the
following result.

THEOREM 7. For every positive integey m,

3
P<Kpm <P+

Proof. From (4.2), Lemma 7, and Theorem 6, we obtain the inequality

L > T/P) > Tolun) (1+ 2 @7 o)) = 1425 - m.

1+ ——
(P-1)7%— u, u, P

Therefore

(P-1)72>mK,/P-1
and

K_ < P+(P-1)%P/m.

Using the lower bound 1.78 < P, we obtain the inequality

3
K, < P-I-—r;l',

which, in view of Theorem 6, completes the proof.
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