ZEROS OF PARTIAL SUMS OF POWER SERIES. II

J. D. Buckholtz

1. INTRODUCTION

Problem 7.7 in W. K. Hayman's Research Problems in Function Theory [3] is the following: Let $f(z) = \sum_{0}^{\infty} a_k z^k$ denote an analytic function whose power series has radius of convergence 1. Set

$$S_n(z) = S_n(z; f) = \sum_{k=0}^{n} a_k z^k$$
 (n = 1, 2, 3, ...),

and let $\rho_n(f)$ denote the largest of the moduli of the zeros of S_n (with the convention that $\rho_n(f) = \infty$ if $a_n = 0$). Let

$$\rho(f) = \lim_{n \to \infty} \inf \rho_n(f)$$

and

$$P = \sup_{f} \rho(f)$$
.

The problem is to determine the value of P. In [2], J. Clunie and P. Erdös showed that $\sqrt{2} < P < 2$. The present author [1] obtained the estimates $1.7 < P \le 12^{1/4}$. Later, J. L. Frank [1] improved these bounds to 1.7818 < P < 1.82.

In the present paper, I determine the exact value of P. The determination depends on certain algebraic relations between the coefficients of a power series and the zeros of its partial sums. These relations are most conveniently expressed in terms of the polynomials $B_n(z; z_0, \cdots, z_{n-1})$ defined by

(1.1)
$$B_0(z) = 1$$
, $B_n(z; z_0, \dots, z_{n-1}) = z^n - \sum_{k=0}^{n-1} z_k^{n-k} B_k(z; z_0, \dots, z_{k-1})$.

(Here $B_k(z; z_0, \dots, z_{k-1})$ is to be interpreted as 1 when k = 0.)

Set

$$H_n = \max |B_n(0; z_0, \dots, z_{n-1})|$$
 (n = 0, 1, 2, \dots),

where the maximum is taken over all sequences $\{z_k\}_0^{n-1}$ whose terms lie on the unit circle. On the basis of the algebraic relations mentioned above, we obtain the following result.

THEOREM 1.
$$P = \sup_{1 \le n < \infty} H_n^{1/n} = \lim_{n \to \infty} H_n^{1/n}$$
.

Received March 4, 1969.

This research was supported in part by NSF Grant GP-8225 and Basic Science Development Grant.

Theorem 1 yields numerical lower bounds for P. To obtain numerical upper bounds, we need a slightly more complicated result. For $m=1, 2, \cdots$ and $0 \le u < 1$, let

(1.2)
$$T_{m}(u) = \max \sum_{k=m}^{\infty} u^{k} |B_{k}(0; w_{0}, \dots, w_{m-1}, 0, \dots, 0)|,$$

where the maximum is taken over all sequences $\{w_j\}_0^{m-1}$ whose terms lie on the unit circle. Let u_m denote the positive root of the equation $T_m(u) = 1$, and let $K_m = 1/u_m$.

THEOREM 2.
$$P = \inf_{1 < m < \infty} K_m = \lim_{m \to \infty} K_m$$
.

On the basis of Theorems 1 and 2, P can (at least in theory) be calculated as accurately as desired. One can easily verify that K_1 = 2. The upper bound $P \le 12^{1/4}$ in [1] was obtained by proving that $K_2 \le 12^{1/4}$. Since then, the estimates

$$1.838 < K_2 < 1.839$$
 and $1.81 < K_3 < 1.82$

have been obtained by machine computation.

2. ALGEBRAIC PRELIMINARIES

For $k = 0, 1, 2, \dots$, let \mathcal{G}^k denote the operator that transforms the analytic function $f(z) = \sum_{m=0}^{\infty} a_m z^m$ into

$$\mathscr{S}^{k}f(z) = \sum_{m=0}^{\infty} a_{m+k}z^{m}.$$

If we rewrite (1.1) in the form

$$z^{m} = \sum_{k=0}^{m} z_{k}^{m-k} B_{k}(z; z_{0}, \dots, z_{k-1})$$

and substitute this into the power series for f, we obtain

(2.1)
$$f(z) = \sum_{m=0}^{\infty} a_{m} \sum_{k=0}^{m} z_{k}^{m-k} B_{k}(z; z_{0}, \dots, z_{k-1})$$

$$= \sum_{k=0}^{\infty} \left(\sum_{m=k}^{\infty} a_{m} z_{k}^{m-k} \right) B_{k}(z; z_{0}, \dots, z_{k-1})$$

$$= \sum_{k=0}^{\infty} \mathscr{G}^{k} f(z_{k}) B_{k}(z; z_{0}, \dots, z_{k-1}),$$

whenever the interchange in the order of summation can be justified. In particular, (2.1) holds if f is a polynomial.

We now establish some of the basic properties of the polynomials $B_n(z; z_0, \dots, z_{n-1})$.

LEMMA 1. For each positive integer n,

(2.2)
$$B_n(\lambda z; \lambda z_0, \dots, \lambda z_{n-1}) = \lambda^n B_n(z; z_0, \dots, z_{n-1}),$$

(2.3)
$$B_n(z_0; z_0, \dots, z_{n-1}) = 0$$
,

(2.4)
$$\mathscr{G}^{k}B_{n}(z; z_{0}, \dots, z_{n-1}) = B_{n-k}(z; z_{k}, \dots, z_{n-1})$$
 $(0 \le k \le n),$

(2.5)
$$B_{n+1}(z; z_0, \dots, z_n) = zB_n(z; z_1, \dots, z_n) - z_0 B_n(z_0; z_1, \dots, z_n),$$

(2.6)
$$B_{n+1}(0; z_0, \dots, z_n) = -z_0 B_n(z_0; z_1, \dots, z_n).$$

Proof. Properties (2.2) and (2.3) follow from (1.1) and mathematical induction. It is enough to establish (2.4) for the case k = 1, and this case follows in the same way. Property (2.5) is then a consequence of (2.4), and (2.6) follows from (2.5).

LEMMA 2. The following identities hold:

(2.7)
$$B_{n}(z; z_{0}, \dots, z_{n-1}) = \sum_{k=0}^{n} B_{n-k}(w_{k}; z_{k}, \dots, z_{n-1}) B_{k}(z; w_{0}, \dots, w_{k-1}),$$

(2.8)
$$B_n(z; z_0, \dots, z_{n-1}) = \sum_{k=0}^n B_{n-k}(0; z_k, \dots, z_{n-1}) z^k,$$

(2.9)
$$z^n B_n(1/z; z_n, \dots, z_1) = \sum_{k=0}^n B_k(0; z_k, \dots, z_1) z^k$$
.

Proof. We deduce from (2.1) and (2.4) that

$$\begin{split} \mathbf{B}_{\mathbf{n}}(\mathbf{z}; \, \mathbf{z}_{0} \,, \, \cdots, \, \mathbf{z}_{n-1}) &= \sum_{k=0}^{n} \, \mathcal{G}^{k} \, \mathbf{B}_{\mathbf{n}}(\mathbf{w}_{k} \,; \, \mathbf{z}_{0} \,, \, \cdots, \, \mathbf{z}_{n-1}) \, \mathbf{B}_{k}(\mathbf{z}; \, \mathbf{w}_{0} \,, \, \cdots, \, \mathbf{w}_{k-1}) \\ &= \sum_{k=0}^{n} \, \mathbf{B}_{\mathbf{n}-k}(\mathbf{w}_{k} \,; \, \mathbf{z}_{k} \,, \, \cdots, \, \mathbf{z}_{n-1}) \, \mathbf{B}_{k}(\mathbf{z}; \, \mathbf{w}_{0} \,, \, \cdots, \, \mathbf{w}_{k-1}) \,. \end{split}$$

To obtain (2.8) from (2.7), take $w_k = 0$ ($0 \le k \le n$). An obvious manipulation of (2.8) yields (2.9).

Identity (2.9) deserves a remark. The right member is the nth partial sum of the power series

(2.10)
$$\sum_{k=0}^{\infty} B_{k}(0; z_{k}, \dots, z_{1}) z^{k},$$

and by (2.3), the left member has a zero at $z = 1/z_n$. If $z_n = 0$, then the coefficient of z^n is 0, and (by convention) ∞ is a zero of the nth partial sum. Therefore (2.9) allows us to construct a power series by specifying one zero of each partial sum.

Conversely, every power series with constant term 1 can be written in the form (2.10), where, for each n > 0, z_n is the reciprocal of a zero of the nth partial sum. A proof of this is contained in the following lemma.

LEMMA 3. Let $\sum_{k=0}^{\infty} a_k z^k$ denote a formal power series with a_0 = 1. For each positive integer n, choose a complex number z_n such that

$$\sum_{k=0}^{n} a_k z_n^{n-k} = 0.$$

Then

(2.11)
$$a_n = B_n(0; z_n, z_{n-1}, \dots, z_1) \quad (n = 1, 2, 3, \dots).$$

Proof. The proof is by induction on n; for n = 1, we have the relation $z_1 + a_1 = 0$. Therefore

$$a_1 = -z_1 = B_1(0; z_1).$$

Let m be such that (2.11) holds for $n = 1, 2, \dots, m$. Then

$$0 = \sum_{k=0}^{m+1} a_k z_{m+1}^{m+1-k} = \sum_{k=0}^{m} B_k(0; z_k, \dots, z_1) z_{m+1}^{m+1-k} + a_{m+1},$$

by the induction hypothesis. Therefore, provided $z_{m+1}\neq 0\,,$

$$a_{m+1} = -z_{m+1}^{m+1} \sum_{k=0}^{m} B_k(0; z_k, \dots, z_1) z_{m+1}^{-k} = -z_{m+1} B_m(z_{m+1}; z_m, \dots, z_1),$$

by (2.9). Using (2.6), we obtain the equation

(2.12)
$$a_{m+1} = B_{m+1}(0; z_{m+1}, \dots, z_1).$$

If $z_{m+1} = 0$, the definition of z_{m+1} guarantees that $a_{m+1} = 0$. The validity of (2.12) in this case follows from (2.3), and this completes the proof.

LEMMA 4. If $0 \le n_1 \le n$, then

$$B_{n}(z; z_{n}, \dots, z_{1}) = \sum_{k=0}^{n_{1}} B_{k}(0; z_{k}, \dots, z_{1}) B_{n-k}(z; z_{n}, \dots, z_{n_{1}+1}, 0, \dots, 0).$$

Proof. It follows from (2.7) that

$$B_n(z; z_n, \dots, z_1) = \sum_{k=0}^n B_{n-k}(w_k; z_{n-k}, \dots, z_1) B_k(z; w_0, \dots, w_{k-1}).$$

Let

$$w_{k} = \begin{cases} z_{n-k} & (0 \le k < n - n_{1}), \\ 0 & (n - n_{1} \le k \le n). \end{cases}$$

From (2.3) we obtain the identity

$$B_{n}(z; z_{n}, \dots, z_{1}) = \sum_{k=n-n_{1}}^{n} B_{n-k}(0; z_{n-k}, \dots, z_{1}) B_{k}(z; z_{n}, \dots, z_{n_{1}+1}, 0, \dots, 0).$$

The replacement of k by n - k in the summation yields the lemma.

3. LOWER BOUNDS

LEMMA 5. If $0 \le n_1 \le n$, then $H_n \ge H_{n_1} H_{n-n_1}$.

Proof. Choose points z_1 , \cdots , z_n on the unit circle so that

$$H_{n_1} = |B_{n_1}(0; z_{n_1}, \dots, z_1)|$$

and

$$H_{n-n_1} = |B_{n-n_1}(0; z_n, \dots, z_{n_1+1})|$$

Then

$$H_{n} \geq \max_{|\lambda|=1} |B_{n}(0; \lambda z_{n}, \dots, \lambda z_{n_{1}+1}, z_{n_{1}}, \dots, z_{1})|.$$

From Lemma 4 and equation (2.2) we obtain the identity

$$\begin{split} \mathbf{B}_{\mathbf{n}}(0;\,\lambda\mathbf{z}_{\mathbf{n}}\,,\,\,\cdots,\,\,\lambda\mathbf{z}_{\mathbf{n}_{1}+1}\,,\,\,\mathbf{z}_{\mathbf{n}_{1}}\,,\,\,\cdots,\,\,\mathbf{z}_{1}) \\ &= \sum_{\mathbf{k}=0}^{n_{1}}\,\mathbf{B}_{\mathbf{k}}(0;\,\mathbf{z}_{\mathbf{k}}\,,\,\,\cdots,\,\,\mathbf{z}_{1})\lambda^{\mathbf{n}-\mathbf{k}}\,\mathbf{B}_{\mathbf{n}-\mathbf{k}}(0;\,\mathbf{z}_{\mathbf{n}}\,,\,\,\cdots,\,\,\mathbf{z}_{\mathbf{n}_{1}+1}\,,\,\,0,\,\,\cdots,\,\,0) \;. \end{split}$$

Let $Q(\lambda)$ denote the polynomial obtained by dividing the two sides of this equation by λ^{n-n_1} . Then

$$\begin{split} H_{n} & \geq \max_{\left|\lambda\right|=1} \; \left|Q(\lambda)\right| \; \geq \; \left|Q(0)\right| \; = \; \left|B_{n_{1}}(0; \, z_{n_{1}} \,, \, \cdots, \, z_{1}) \, B_{n-n_{1}}(0; \, z_{n} \,, \, \cdots, \, z_{n_{1}+1})\right| \\ & = \; H_{n_{1}} \, H_{n-n_{1}} \,. \end{split}$$

LEMMA 6.
$$\lim_{n\to\infty} H_n^{1/n} = \sup_{1< n<\infty} H_n^{1/n}$$
.

Proof. Let $m \ge 1$ be fixed. For $n \ge m$, let n = qm + d ($0 \le d < m$). Lemma 5 implies the inequalities

$$H_n \ge H_{qm}H_d \ge H_m^qH_1^d = H_m^q$$
.

Therefore

$$H_n^{1/n} \ge H_m^{(n-d)/mn} = H_m^{1/m} H_m^{-d/mn}$$
.

Letting $n \to \infty$, we obtain the relation

$$\lim_{n\to\infty}\inf H_n^{1/n}\geq H_m^{1/m}.$$

Therefore

$$\lim_{n\to\infty}\inf H_n^{1/n}\geq \sup_{1\leq m<\infty}H_m^{1/m},$$

and the lemma follows.

Using (1.1) and induction, we obtain the inequality $H_n \le 2^{n-1}$ (n > 0); this guarantees that sup $H_n^{1/n} \le 2$.

THEOREM 3.
$$P \ge H_m^{1/m}$$
 (m = 1, 2, 3, ...).

Proof. Let $\{w_k\}_1^m$ and $\{\lambda_q\}_0^\infty$ be sequences whose terms lie on the unit circle. For each positive integer n, write n=qm+j $(1\leq j\leq m)$, and let $z_n=\lambda_qw_j$. The function

(3.1)
$$f(z) = \sum_{k=0}^{\infty} B_k(0; z_k, \dots, z_1) z^k$$

has the property that $\rho_n(f) \geq 1$ (n = 1, 2, 3, ...). If we choose $\{w_k\}_1^m$ so that

$$\mathbf{H}_{\mathbf{m}} = \left| \mathbf{B}_{\mathbf{m}}(0; \mathbf{w}_{\mathbf{m}}, \cdots, \mathbf{w}_{\mathbf{l}}) \right|,$$

the method used in the proof of Lemma 5 allows us to choose the sequence $\{\lambda_q\}_0^\infty$ in such a way that

(3.2)
$$|B_{mq}(0; z_{mq}, \dots, z_1)| \ge H_m^q$$
 $(q = 1, 2, \dots).$

Let R denote the radius of convergence of the series (3.1). From (3.2) and the remark preceding Theorem 3, it follows that $H_{\rm m}^{1/m} \leq R^{-1} \leq 2$. Consequently, the function $f_1(z) = f(Rz)$ has radius of convergence 1 and satisfies the condition

$$\rho_{n}(f_{1}) \geq R^{-1} \geq H_{m}^{1/m} \quad (n = 1, 2, 3, \cdots).$$

Therefore $P \ge \rho(f_1) \ge H_m^{1/m}$.

Let

$$H = \sup_{1 \le n < \infty} H_n^{1/n} = \lim_{n \to \infty} H_n^{1/n}.$$

It follows at once from Theorem 3 that $P \ge H$. To complete the proof of Theorem 1, we need the following result.

THEOREM 4. P < H.

Proof. Let $f(z) = \sum_{k=0}^{\infty} a_k z^k$ have radius of convergence 1, and suppose that $a_0 = 1$ (if necessary, divide by the first nonvanishing term of the series; this division does not affect $\rho(f)$). For each positive integer n, let $1/z_n$ denote a zero of $S_n(z;f)$ of modulus $\rho_n(f)$. From Lemma 3 it follows that

$$f(z) = \sum_{k=0}^{\infty} B_k(0; z_k, \dots, z_1) z^k,$$

and Lemma 4 implies that

$$a_n = \sum_{k=0}^{n_1} a_k B_{n-k}(0; z_n, \dots, z_{n_1+1}, 0, \dots, 0)$$
 $(n > n_1).$

Fix n_1 , and let

$$x_{n_1} = \sup_{n_1 < n < \infty} |z_n| = \left(\inf_{n_1 < n < \infty} \rho_n(f)\right)^{-1}.$$

For all $n > n_1$, we have the inequalities

$$\begin{split} |a_n| &\leq \sum_{k=0}^{n_1} |a_k| \, x_{n_1}^{n-k} H_{n-k} = (H_n^{1/n} x_{n_1})^n \sum_{k=0}^{n_1} |a_k| \, x_{n_1}^{-k} H_{n-k} H_n^{-1} \\ &\leq (H_n^{1/n} x_{n_1})^n \sum_{k=0}^{n_1} |a_k| \, (x_{n_1} H_k^{1/k})^{-k} \, . \end{split}$$

Taking nth roots and letting $n \to \infty$, we obtain the relations

$$1 = \lim_{n \to \infty} \sup_{n \to \infty} |a_n|^{1/n} \le x_{n_1} \lim_{n \to \infty} H_n^{1/n} = x_{n_1} H.$$

Therefore

$$H \ge \frac{1}{x_{n_1}} = \inf_{n_1 < n < \infty} \rho_n(f).$$

Letting $n_1 \to \infty$, we obtain the inequality $H \ge \rho(f)$. Therefore $H \ge P$, which completes the proof.

We note that the supremum P is actually assumed; one can modify the construction of Theorem 3 in such a way as to produce an analytic function f with radius of convergence 1 and with the property that $\rho_n(f) \ge H$ (n = 1, 2, 3, ...).

4. UPPER BOUNDS

In order to justify the definitions of u_m and K_m , we must show that the series (1.2) does in fact converge for $0 \le u < 1$, and that $T_n(u)$ assumes the value 1.

LEMMA 7. If $0 < u \le u + h < 1$, then

$$T_{m}(u+h) \geq T_{m}(u) \left(1 + \frac{mh}{u}\right)$$
 (m = 1, 2, 3, ...).

Proof. If $k \ge m$, then

$$(u+h)^k \ge u^k + ku^{k-1}h \ge u^k \left(1 + \frac{mh}{u}\right)$$
.

Choose points $\{w_j\}_0^{m-1}$ on the unit circle such that

$$T_{m}(u) = \sum_{k=m}^{\infty} u^{k} |B_{k}(0; w_{0}, \dots, w_{m-1}, 0, \dots, 0)|.$$

Then

$$\begin{split} T_{\mathrm{m}}(u+h) &\geq \sum_{k=m}^{\infty} (u+h)^{k} \left| B_{k}(0; w_{0}, \, \cdots, \, w_{\mathrm{m-1}}, \, 0, \, \cdots, \, 0) \right| \\ &\geq \left(1 + \frac{mh}{u} \right) \sum_{k=m}^{\infty} u^{k} \left| B_{k}(0; w_{0}, \, \cdots, \, w_{\mathrm{m-1}}, \, 0, \, \cdots, \, 0) \right| \\ &= \left(1 + \frac{mh}{u} \right) T_{\mathrm{m}}(u) \, . \end{split}$$

LEMMA 8. If m is a positive integer and $0 \le u < 1$, then

(4.1)
$$u^{m} H_{m} \leq T_{m}(u) \leq (uP)^{m} \left(1 + \frac{u}{(P-1)(1-u)}\right).$$

Proof. The first part of the inequality follows from the definitions of $\rm H_m$ and $\rm T_m$. To obtain the second part, we observe that

$$T_m(u) \le u^m H_m + \sum_{k=m+1}^{\infty} u^k (\max |B_k(0; w_0, \dots, w_{m-1}, 0, \dots, 0)|),$$

where each of the maxima is taken over sequences $\{w_j\}_0^{m-1}$ whose terms lie on the unit circle. Now

$$B_k(0; w_0, \dots, w_{m-1}, 0, \dots, 0) = -\sum_{j=0}^{m-1} w_j^{k-j} B_j(0; w_0, \dots, w_{j-1}),$$

so that

$$\begin{split} \max \left| B_k(0; \, w_0 \,, \, \cdots, \, w_{m-1} \,, \, 0, \, \cdots, \, 0) \right| \, &\leq \, \sum_{j=0}^{m-1} \, H_j \, \leq \, \sum_{j=0}^{m-1} \, H^j \\ &= \, \sum_{j=0}^{m-1} \, P^j \, < \frac{P^m}{P-1} \,. \end{split}$$

Therefore, since $H_m \leq P^m$, we obtain the inequality

$$T_{m}(u) \leq u^{m} P^{m} + \frac{P^{m}}{P-1} \sum_{k=m+1}^{\infty} u^{k} = (uP)^{m} \left(1 + \frac{u}{(P-1)(1-u)}\right),$$

which completes the proof. As a special case, we note that

(4.2)
$$T_{m}(1/P) \leq 1 + \frac{1}{(P-1)^{2}}.$$

It follows from Lemma 7 that the function T_m is strictly increasing. We now establish its continuity. Suppose $0 \le u \le u+h < 1.$ Then

$$\begin{split} T_{m}(u+h) &= \max \sum_{k=m}^{\infty} \left(u^{k} + \left[(u+h)^{k} - u^{k} \right] \right) \left| B_{k}(0; w_{0}, \cdots, w_{m-1}, 0, \cdots, 0) \right| \\ &\leq T_{m}(u) + \max \sum_{k=m}^{\infty} \left((u+h)^{k} - u^{k} \right) \left| B_{k}(0; w_{0}, \cdots, w_{m-1}, 0, \cdots, 0) \right| \\ &\leq T_{m}(u) + \sum_{k=m}^{\infty} hk \left(u+h \right)^{k-1} \frac{P^{m}}{P-1} = T_{m}(u) + \frac{hP^{m}}{P-1} \sum_{k=m}^{\infty} k(u+h)^{k-1}, \end{split}$$

which allows us to conclude that T_m is continuous. If m > 1, then

$$H_{m} \ge H_{m-2}H_{2} = 2H_{m-2} \ge 2H_{1}^{m-1} = 2$$
.

Therefore it follows from (4.1) that $T_m(u) > 1$ if u is sufficiently close to 1. Consequently, if m > 1, the function T_m assumes the value 1 exactly once, which justifies our definition of u_m . For m = 1, it is easy to verify that

$$T_1(u) = \frac{u}{1-u}.$$

so that $u_1 = 1/2$.

Let $f(z) = 1 + \sum_{k=1}^{\infty} A_k z^k$ be analytic in |z| < 1, let m be a nonnegative integer, and let $\{z_k\}_0^{\infty}$ be a sequence of points in |z| < 1 such that $z_k = 0$ for $k \ge m$. In this case, there is no difficulty in justifying the expansion (2.1), and we have the identity

$$\begin{split} \mathbf{f}(\mathbf{z}) &= \sum_{k=0}^{\infty} \mathcal{G}^k \mathbf{f}(\mathbf{z}_k) \mathbf{B}_k(\mathbf{z}; \, \mathbf{z}_0, \, \cdots, \, \mathbf{z}_{k-1}) \\ &= \sum_{k=0}^{m-1} \mathcal{G}^k \mathbf{f}(\mathbf{z}_k) \mathbf{B}_k(\mathbf{z}; \, \mathbf{z}_0, \, \cdots, \, \mathbf{z}_{k-1}) + \sum_{k=m}^{\infty} \mathbf{A}_k \mathbf{B}_k(\mathbf{z}; \, \mathbf{z}_0, \, \cdots, \, \mathbf{z}_{m-1}, \, 0, \, \cdots, \, 0). \end{split}$$

If in addition $\mathcal{G}^{k}f(z_{k}) = 0$ (0 \leq k < m), then

(4.3)
$$f(0) = 1 = \sum_{k=m}^{\infty} A_k B_k(0; z_0, \dots, z_{m-1}, 0, \dots, 0).$$

Suppose that f has the further property that $|A_k| \le 1$ for $k \ge m$. We can then use equation (4.3) to obtain a positive lower bound on the largest of the numbers

 $|z_0|$, ..., $|z_{m-1}|$. This bound is contained in Theorem 5. Theorems 5 and 6 are direct extensions of Theorems 1 and 2 of [1]. Their proofs are quite similar to those in [1], and therefore we omit them.

THEOREM 5. If f satisfies all the hypotheses above, then $\max_{0 \le k \le m} |z_k| \ge u_m$.

THEOREM 6. $P \leq K_m$ (m = 1, 2, 3, ...).

It remains to prove Theorem 2. Theorem 2 is an immediate consequence of the following result.

THEOREM 7. For every positive integer m,

$$P \le K_m < P + \frac{3}{m}.$$

Proof. From (4.2), Lemma 7, and Theorem 6, we obtain the inequality

$$1 + \frac{1}{(P-1)^2} \ge T_m(1/P) \ge T_m(u_m) \left(1 + \frac{m}{u_m} (P^{-1} - u_m)\right) = 1 + \frac{m}{u_m P} - m.$$

Therefore

$$(P-1)^{-2} \ge m(K_m/P-1),$$

and

$$K_{\rm m} < P + (P - 1)^{-2} P/m$$
.

Using the lower bound 1.78 < P, we obtain the inequality

$$K_{\rm m} < P + \frac{3}{m}$$
,

which, in view of Theorem 6, completes the proof.

REFERENCES

- 1. J. D. Buckholtz, Zeros of partial sums of power series. Michigan Math. J. 15 (1968), 481-484.
- 2. J. Clunie and P. Erdös, On the partial sums of power series. Proc. Roy. Irish Acad. Sect. A 65 (1967), 113-123.
- 3. W. K. Hayman, Research problems in function theory. Athlone Press [University of London], London, 1967.

University of Kentucky Lexington, Kentucky 40506