AN OSCILLATION CRITERION FOR SOLUTIONS OF $(ry')' + qy^{\gamma} = 0$

Don Hinton

For the differential equation

(1)
$$y'' + fy^{2n-1} = 0$$

with f > 0 and $n = 2, 3, \dots$, F. V. Atkinson [1] proved that all nontrivial solutions are oscillatory if and only if $\int_{-\infty}^{\infty} t f(t) dt = \infty$. In the special case $f(t) = t^{\beta}$, R. H. Fowler [3] proved that (1) has an oscillatory solution if and only if $\beta \ge -(n+1)$. With this f, the criterion of Atkinson is equivalent to the condition $\beta \ge -2$; thus (1) may have both oscillatory and nonoscillatory solutions. A result of J. Kurzweil [5] applies to (1) when nonoscillatory solutions exist; it states that (1) has an oscillatory solution if $f(t)t^{n+1}$ is nondecreasing. In this note we give an oscillation criterion

for a generalization of (1); it avoids the monotonicity hypothesis on the coefficients.

We consider the differential equation

$$(2) (ry')' + qy^{\gamma} = 0,$$

where $\gamma \geq 1$ is the ratio of odd, positive integers. It is assumed throughout that r and q are positive on a ray $[a, \infty)$, and that they have two continuous derivatives. Thus a local existence and uniqueness theorem holds; moreover, all solutions of (2) are extendable to $[a, \infty)$ (see [4]). Hence, for each choice of initial values y(a) and y'(a), we have a unique solution of (2) on $[a, \infty)$.

THEOREM. If (i)
$$K = \int_a^{\infty} |\eta(r\eta')'| dt < \infty$$
 and (ii) $\int_a^{\infty} \frac{1}{r\eta^2} dt = \infty$, where

 $\eta(t) = [\mathbf{r}(t)\,\mathbf{q}(t)]^{-1/(\gamma+3)}$, then equation (2) has an oscillatory solution. Moreover, for $\gamma > 1$, every solution y of (2) satisfying the inequality

$$|y(a)| > \eta(a)[2(\gamma+1)K^2]^{1/(\gamma-1)}$$

is oscillatory.

Proof. Let $h(t) = \int_a^t \frac{1}{r\eta^2} dt$, and let y be a solution of (2) such that $|y(a)| > \eta(a) [2(\gamma+1)K^2]^{1/(\gamma-1)}$ if $\gamma > 1$, and such that $y(a) \neq 0$ if $\gamma = 1$. Define the function x implicitly on $[0, \infty)$ by the equation $y(t) = \eta(t) x(h(t))$. A calculation and the relation $h' = \frac{1}{r\eta^2}$ show that

(3)
$$0 = (ry')' + qy^{\gamma}, \quad 0 = (x'' \circ h) + (r\eta')'(r\eta^{3})(x \circ h) + (x \circ h)^{\gamma}.$$

Let $z(s) = (1/2)[x'(s)]^2 + [x(s)]^{\gamma+1}/(\gamma+1)$ for $s \ge 0$; then $z(s) \ge 0$ for all $s \ge 0$. We now prove that z is bounded on $[0, \infty)$. The proof proceeds as that of Theorem 1

Received January 13, 1969.

of [4]. If z is unbounded, then there exists an increasing sequence s_1 , s_2 , \cdots such that $z(s_i)>1$, $z(s_i)\to\infty$ as $i\to\infty$, and

$$z(s_i) = \max \{z(s): 0 \le s \le s_i\}$$
 (i = 1, 2, ...).

For s = h(t) it follows from (3) that

(4)
$$z'(s) = x'(s)x''(s) + x'(s)x(s)^{\gamma} = -[r\eta^{3}(r\eta')](h^{-1}(s))x(s)x'(s).$$

Since $|x'(s)| \le [2z(s)]^{1/2}$, $|x(s)| \le [(\gamma+1)z(s)]^{1/(\gamma+1)}$, and $z(s_i) > 1$, it follows from (4) that for a < b and $h(b) < s_i$,

$$\begin{split} z(s_i) &\leq z(h(b)) + \int_{h(b)}^{s_i} \big| \left[r \eta^3 \left(r \eta^{\, \prime} \right)^{, \prime} \right] (h^{-1}(s)) \, x^{, \prime}(s) \, x(s) \big| \, ds \\ \\ &\leq z(h(b)) + \sqrt{2} \left(\gamma + 1 \right)^{1/(\gamma+1)} \cdot \left[\int_b^{h^{-1}(s_i)} \big| \eta \left(r \eta^{\, \prime} \right)^{, \prime} \big| \, dt \, \right] \cdot z(s_i)^{(\gamma+3)/2(\gamma+1)} \\ \\ &\leq z(h(b)) + \sqrt{2} \left(\gamma + 1 \right)^{1/(\gamma+1)} \left[\int_b^{\infty} \big| \eta \left(r \eta^{\, \prime} \right)^{, \prime} \big| \, dt \, \right] z(s_i) \, . \end{split}$$

Choosing b so that

$$\sqrt{2}\left(\gamma+1\right)^{1/(\gamma+1)}\left[\begin{array}{cc} \int_{\mathrm{b}}^{\infty} \left|\eta\left(\mathrm{r}\eta'\right)'\right| \mathrm{dt} \end{array}\right] < 1/2,$$

we obtain a contradiction to $z(s_i) \to \infty$ as $i \to \infty$. It follows from the boundedness of z and integrability of $\eta(r\eta')'$ that $z(s) \to L$ as $s \to \infty$, for some number $L \ge 0$.

We now prove that L > 0. First consider $\gamma = 1$; then equation (4) is of the form z'(s) = A(s)z(s), where

$$A(s) = -[r\eta^{3}(r\eta')](h^{-1}(s))x(s)x'(s)/z(s).$$

From the definition of z we see that $|x(s)x'(s)| \le 2z(s)$; thus

$$\int_0^{\infty} \, \left| \, A(s) \right| \, ds \, \leq \, 2 \, \int_a^{\infty} \, \left| \, \eta \, (r \eta \, ')' \right| \, dt \, < \, \infty \, \, . \label{eq:second-equation}$$

This implies that $z(s) \to z(0) \exp \left[\int_0^\infty A(s) ds \right] \neq 0$, as $s \to \infty$. Suppose now that $\gamma > 1$ and L = 0. Let

$$L_1 = 1.u.b. \{ |x'(s)| : 0 \le s < \infty \}$$
 and $L_2 = 1.u.b. \{ |x(s)| : 0 \le s < \infty \}$.

From (4) and the condition L = 0 we deduce that

$$z(s) = \int_{s}^{\infty} [r\eta^{3}(r\eta')](h^{-1}(v))x'(v)x(v)dv \le KL_{1}L_{2}.$$

This inequality and the definition of z imply that $L_1^2/2 \le KL_1L_2$ and $L_2^{\gamma+1}/(\gamma+1) \le KL_1L_2$; hence we conclude that $L_2^{\gamma-1} \le 2(\gamma+1)K^2$. This inequality yields the inequality

$$|y(a)/\eta(a)| = |x(0)| \le L_2 \le [2(\gamma+1)K^2]^{1/(\gamma-1)},$$

but we chose the solution y of (2) so that $|y(a)| > \eta(a)[2(\gamma+1)K^2]^{1/(\gamma-1)}$, and the contradiction shows that L > 0.

Finally, we prove that L > 0 implies that x and hence y are oscillatory. Choose S so that $z(s) \ge L/2$ for $s \ge S$, and suppose x has no zeros on $[S, \infty)$. If x' has infinitely many zeros $u_1 < u_2 < \cdots$ on $[S, \infty)$, then the minimum of |x| on $[u_1, u_i]$ occurs at a zero of x', and it is therefore not less than $[(\gamma+1)L/2]^{1/(\gamma+1)}$. Hence $|x(s)| \ge [(\gamma+1)L/2]^{1/(\gamma+1)}$ on $[u_1, \infty)$. The equation

$$x'(u) = \int_{u_1}^{u} x''(s) ds = -\int_{u_1}^{u} \{ [r\eta^3 (r\eta')] (h^{-1}(s)) x(s) + x(s)^{\gamma} \} ds$$

shows that $|x'(u)| \to \infty$ as $u \to \infty$, a contradiction. Thus x is eventually monotone, and $x(s) \to M$ as $s \to \infty$. The above argument implies that M = 0. Hence $|x'(s)| \to (2L)^{1/2}$ as $s \to \infty$, which yields the contradiction that x is unbounded. Therefore x is oscillatory.

We note that in the proof above the only use of the initial value of y(a) was in proving L>0. Hence every solution y of (2) for which the corresponding function x yields a number L>0 is oscillatory.

COROLLARY. If r = 1, $\sigma = (\gamma + 5)/(\gamma + 3)$, and $\int_{a}^{\infty} |q^{-\sigma} q''| dt < \infty$, then (2) has an oscillatory solution.

Proof. Let $p=q^{\sigma+1}$ and $\mu=q^{-\sigma}$. Then $\mu(p\mu)'=-\sigma q^{-\sigma} q''$, and the hypothesis of Lemma 5 on page 119 of [2] is satisfied. We have the equation

$$p(\mu')^2 = \sigma^2 q^{-(\sigma+1)} (q')^2$$

and if $\int_{a}^{\infty} p(\mu')^2 dt = \infty$, then by Lemma 5,

$$-\sigma q'(t) = (p\mu')(t) \rightarrow \gamma^* \text{ as } t \rightarrow \infty;$$

therefore $\gamma^*>0$, since $\mu>0$. This, however, implies that q is eventually negative. Thus $\int_{2}^{\infty} p(\mu^*)^2 dt < \infty$, and since

$$\eta \eta'' = (\gamma + 4) (\gamma + 3)^{-2} q^{-(\sigma+1)} (q')^2 - (\gamma + 3)^{-1} q^{-\sigma} q'',$$

condition (i) above is satisfied. Again by Lemma 5,

$$(p\mu\mu')(t) = -\sigma[q(t)]^{-\sigma}q'(t) \rightarrow \delta \text{ as } t \rightarrow \infty.$$

Thus by L'Hospital's rule,

$$\frac{1}{t q(t)^{\sigma-1}} = \frac{q(t)^{-(\sigma-1)}}{t} \to \frac{(\sigma-1)\delta}{\sigma} \text{ as } t \to \infty;$$

from this we conclude that $\int_a^\infty q(t)^{\sigma-1} dt = \int_a^\infty \eta(t)^{-2} dt = \infty$, and condition (ii) above is satisfied.

For $q(t)=t^{\beta}$, the condition $\int_{a}^{\infty}\left|q^{-\sigma}\,q^{\,\prime\prime}\right|\,dt<\infty$ is equivalent to the condition $\beta>-(\gamma+3)/2=-(n+1),$ when $\gamma=2n-1.$ Choosing $q(t)=t^{-3}\left[1+(1/2)\sin t^{1/4}\right]$ and $\gamma=11,$ we obtain an example where $\int_{a}^{\infty}\left|q^{-\sigma}\,q^{\,\prime\prime}\right|\,dt<\infty$ and $q(t)\,t^{n+1}=q(t)\,t^{7}$ is not nondecreasing.

REFERENCES

- 1. F. V. Atkinson, On second-order non-linear oscillations. Pacific J. Math. 5 (1955), 643-647.
- 2. W. A. Coppel, Stability and asymptotic behavior of differential equations. D. C. Heath, Boston, 1965.
- 3. R. H. Fowler, Further studies of Emden's and similar differential equations. Quart. J. Math. 2 (1931), 259-288.
- 4. D. B. Hinton, Some stability conditions for a nonlinear differential equation. Trans. Amer. Math. Soc. 139 (1969), 349-358.
- 5. J. Kurzweil, A note on oscillatory solutions of the equation $y'' + f(x)y^{2n-1} = 0$. Časopis Pěst. Mat. 85 (1960), 357-358.

University of Georgia Athens, Georgia 30601