AN OSCILLATION CRITERION FOR SOLUTIONS OF
(xy')' +qy¥ =0

Don Hinton

For the differential equation
(1) yn + fy2n—l =0

with £>0 and n=2, 3, ---, F. V. Atkinson [1] proved that all nontrivial solutions
[o0]
are oscillatory if and only if S tf(t)dt = . In the special case £(t) = tB, R. H.

Fowler [3] proved that (1) has an oscillatory solution if and only if 8> -(n +1). With
this £, the criterion of Atkinson is equivalent to the condition B > -2; thus (1) may
have both oscillatory and nonoscillatory solutions. A result of J. Kurzweil [5] ap-
plies to (1) when nonoscillatory solutions exist; it states that (1) has an oscillatory
solution if f(t)tn*! is nondecreasing. In this note we give an oscillation criterion
for a generalization of (1); it avoids the monotonicity hypothesis on the coefficients.

We consider the differential equation
(2) (xy")' +ay¥ =0,

where v > 1 is the ratio of odd, positive integers. It is assumed throughout that r
and q are positive on a ray [a, =), and that they have two continuous derivatives.
Thus a local existence and uniqueness theorem holds; moreover, all solutions of (2)
are extendable to [a, «) (see [4]). Hence, for each choice of initial values y(a) and
y'(a), we have a unique solution of (2) on [a, ).

0 s e}
THEOREM. If () K = | [n(xn')'| dt <o and (1) {7 dt = o, where
a a I'n
n(t) = [r(t) q(t)]"l/ ('V+3), then equation (2) has an oscillatory solution. Moveover, for
y > 1, every solution y of (2) satisfying the inequality

ly(2)] > n(a)laly + 1)K -1

is oscillatory.

t
Proof. Let hit) = S 1 dt, and let y be a solution of (2) such that
LT
ly@)| > n()[2(y + 1)KZ]}/@-1) it y > 1, and such that y(a) #0 if y = 1. Define
the function x implicitly on [0, «) by the equation y(t) = n(t)x(h(t)). A calculation
and the relation h'= 1 show that
rne

(3) 0= (ry")'+qy¥, 0 = (x"oh)+ (ry')'(xn>) (xoh)+ (xoh)?.

Let z(s) = (1/2) [x"(s)P + [x(s)]Y*1 /(v + 1) for s > 0; then z(s)> 0 for all s > 0.
We now prove that z is bounded on [0, ©). The proof proceeds as that of Theorem 1
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of [4]. If z is unbounded, then there exists an increasing sequence s;, s, -+ such
that z(s;) > 1, z(s;) » = as i — «, and

z(s;) = max {z(s): 0<s< si} (i=1,2, ).
For s = h(t) it follows from (3) that
(4) z'(s) = x'(s)x"(s) + x'(s)x(s)Y = - [rn3 (xn*)1(h " (s))x(s)x'(s).

Since |x'(s)] < [2z(s)] 1/2 |x(s)| < [(y + 1)z(s)]1/(7’+1), and z(s;) > 1, it follows
from (4) that for a <b and h(b) < s;,

5i

Z(Si) S Z(h(b)) + ‘S‘h(b) I [rn?’ (rn l)l](h"l(s))x'(s)x(s), ds

h-l(Si)

< z() + V2 + ). [ 5 In(xn )| dt} () 1T 2HD)
b

b

< zh) + V2 + 1)”(”“)[ S In(n )| dt:lz(si).

Choosing b so that

myn)”"’*”[f lmm'rldt] <1/2,

b

we obtain a contradiction to z(s;) — = as i — «. It follows from the boundedness of
z and integrability of 7 (rn')' that z(s) = L as s — o, for some number L > 0.

We now prove that L > 0. First consider y = 1; then equation (4) is of the form
z'(s) = A(s) z(s), where

A(s) = -[rn3 (en ") 1~ (s)) x(s)x'(s)/2(s) .
From the definition of z we see that |x(s)x'(s)| < 2z(s); thus

[~e]

S |A(s)| ds < 2 S [n(rn ") dt < .
0 a

[>e]
This implies that z(s) —+z(0)exp[ S A(s)dsilaﬁo, as s — o, Suppose now that
0
y>1and L=0. Let
L; = Lub. {|x(s)]: 0<s<»} and L, = Lu.b.{|x(s)]: 0<s <=},

From (4) and the condition L = 0 we deduce that

[> o]

z(s) = SS [rn3(n )1 1)x(v)x(v)dv < KL;L,.



AN OSCILLATION CRITERION 351

This inequality and the definition of z imply that L% /2 <KL Ly and
L')Z’+l /(y +1) <KL, L, ; hence we conclude that L?z’"l <2(y+ 1)K%. This inequality
yields the inequality

ly@)/n ()| = |%0)] < Ly < [26+ DKM T,

but we chose the solution y of (2) so that |y(a)| > n(a)[2(y + 1)K?]*/ @1 and the
contradiction shows that L > 0.

Finally, we prove that L > 0 implies that x and hence y are oscillatory.
Choose S so that z(s) > L/2 for s> S, and suppose x has no zeros on [S, ). If x'
has infinitely many zeros u; <up < -+- on [8, «), then the minimum of |x| on
[u;, u;] occurs at a zero of x', and it is therefore not less than [(y + DL/2] ot
Hence |x(s)| >[(»+ 1)L/2]H/+1) on [u;, «). The equation

u u

©w = x(e)ds=-{ {lrn>n) 0 Ls)x(s) + x(s)7} as

ui ul

shows that |x'(u)| — « as u — «, a contradiction. Thus x is eventually monotone,
and x(s) » M as s — ©. The above argument implies that M = 0. Hence

|x'(s)] — (2L)1/2 as s — «, which yields the contradiction that x is unbounded.
Therefore x is oscillatory.

We note that in the proof above the only use of the initial value of y(a) was in
proving L > 0. Hence every solution y of (2) for which the corresponding function
x yields a number L > 0 is oscillatory.

0
COROLLARY. Ifr=1, ¢ = (y+5)/(y+ 3), and S la7% q"| dt < o, then (2)
a

has an oscillatory solution.

Proof. Let p=q°*! and p =q . Then p(pr")' =-0q % q", and the hypothesis

of Lemma 5 on page 119 of [2] is satisfied. We have the equation
p(p)? = o2q 0+ (g2,
0
and if S p(r*)2dt = «, then by Lemma 5,
a

~oq'(t) = (pr") () — ¥* as t —
therefore y* > 0, since p > 0. This, however, implies that q is eventually negative.
Thus 500 p(u')2 dt < «, and since
a
an" = (y+4)(y+3)2q O @)Y - (v +3)1q g,
condition (i) above is satisfied. Again by Lemma 5,
(ppp)(t) = -o[q®)] % q'(t) > 6 ast — .

Thus by L’Hospital’s rule,
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1 = q®o-1) Lo -1)s as t — o

tq(t)° -1 t o

=0} 0]
from this we conclude that S q(t)o‘l dat = S n(t)~2dt = o, and condition (ii) above
a a

is satisfied.

0
For q(t) = t°, the condition S |a=% q"| dt < < is equivalent to the condition
a

B> -(y+3)/2=-(n+1), when ¥ = 2n - 1. Choosing q(t) = t-3[1 + (1/2)sin t!/#] and
o0
y = 11, we obtain an example where S la™% q"| dt <~ and q(t)t*"! = qt)t? is not

. a
nondecreasing.
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