ON MAPS WITH NORMAL STRUCTURE
Thomas J. Kyrouz

INTRODUCTION

In this note, we show that smooth imbeddings that are homotopic through smooth
imbeddings have fiber-homotopy-equivalent normal sphere bundles, provided the
codimension is at least 3.

The method is to consider maps having (generalized) tubular neighborhoods.
Each such neighborhood gives rise to a corresponding normal fibering, which in the
smooth case is fiber-homotopy equivalent to the normal sphere bundle. The invari-
ance under homotopy is deduced from a uniqueness theorem for such neighborhoods.
The situation for codimension 2 is discussed in the last section.

1. NORMAL STRUCTURES

Definition 1. Suppose K is a finite complex, M" is a manifold, and f: K — M is
a map. A T-neighborhood for f is a compact manifold N™ C M™ such that
f(K) C int N and f: K — N is a homotopy equivalence. Two T-neighborhoods N and
N' for f are said to be equivalent if there is a homotopy equivalence of pairs
h: (N, 9N) — (N', aN') such that f and hf are homotopic as maps from K to N'. An
equivalence class # of T-neighborhoods for f is called a normal structure if each
open neighborhood of f(K) contains a member of #. The formal ¢odimension of N
is the least integer k such that 7 (N, aN) #0 (N € ).

THEOREM 1. A map f: K — M admits at most one normal structure of formal
codimension gveater than or equal to 3.

Proof. Let 4 and #' be normal structures for £, of formal codimension at
least 3. Let N € 4, and choose N' € 4" sothat N'Cint N and N- int N'=W isa
manifold. We now show that W is an h-cobordism. Since the formal codimension is
at least 3, we have isomorphisms 7;9N' — 7} N' and 7;9N — 7} N. The theorem of
Van Kampen applied to N = N' U W shows that 7} 9N' — 7; W is an isomorphism,
and it follows easily that 7N — 7; W is an 1somorphlsm Passing to universal
covering spaces, we see that we can obtain (W, 3N') from (N N') by excising the
part over int N'. Since N'— N is a homotopy equivalence, H*(N N") = 0, and there-
fore aN' — W and aN' —»W are homotopy equivalences. Poincaré duahty gives
H, (W, 9N) = 0, and it follows that 3N — W is a homotopy equivalence. Now let
T: W — dN' be a deformation retraction. Taking r and 1y together, we obtain
h: N — N', which is an equivalence of T-neighborhoods.

Remark. W may fail to be an h-cobordism in codimension 2; take
f: S1 - 81 X D2 =N to be a trefoil knot homotopic to the zero section, and N' to be
a smooth tubular neighborhood of f. Notice that N and N' are equivalent as T-
neighborhoods for f.
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2. NORMAL FIBERINGS

Definition 2. Let f: K — M be a map with T-neighborhood N. Let £ be the
Hurewicz fibering over N associated with the inclusion dN — N. Define the normal
Sfibering v(f, N) to be the induced fibering f*£. If # is a normal structure for f,
denote by v(f, «#) the fiber-homotopy equivalence class of v(f, N) (N € «#). When
the formal codimension is at least 3, abbreviate this to v(f).

We now give a definition of isotopy that seems appropriate in our category of
maps with normal structure.

Definition 3. Let f and g be maps from K to M™ with normal structures A4
and #'. We say that f and g are locally homotopic provided there exist a map
G: KXI— M and a compact submanifold Q® C M such that

Go=1f, G;=g, QDGEXI), Qe Qe

The maps f and g are weakly locally homolopic if there exists a sequence
fo, f1, - f of maps with normal structure such that fo =1, fp g, and f; is lo-
cally homotoplc to f;41,for 0 <i<p-1.

THEOREM 2. If (f, #) and (g, A') are weakly locally homotopic, then
v({f, &) = v(g, A#'), that is, representatives are fiber-homotopy equivalent.

Proof. We may assume that (f, #) and (g, .#') are locally homotopic. Let G
and Q satisfy Definition 3. If we replace 9Q — Q by a fibering ¢, then the restric-
tions of G* ¢ to KX 0 and K x1 are v(f, Q) and v(g, Q), and these belong to
v(f, #) and v(g, A4").

3. CONSEQUENCES OF UNIQUENESS

The following theorem establishes the relationship between two ideas of isotopy.

THEOREM 3. Lel F: KX1— M be a continuous family of maps, with each Fi
having a normal structure of formal codimension at least 3. Then ¥y and F| are
weakly locally homotopic.

Proof. Recall that the normal structure #(t) for each F, is unique (Theorem
1). For each t, select N(t) € #(t), and select an open interval U(t) around t such
that F(K X U) C N(t). Pick a subcover U(t;), - U(t ) of [0, 1] such that t; <t
and U(t;) N Utj41) # @; pick r; € U(t;) N U(t1+1) Then F(K X [r;, r;js1]) C N(t ).
Now N(t) is a T-neighborhood for both F_ r; and F, rigp? , has formal codimension at

least 3, and is therefore in both #(t;) and #(t;;1), by Theorem 1. It follows that

FI,i and Fri+l are locally homotopic; moreover, Fy is locally homotopic to F ,

and F,; is locally homotopic to Frp, and so Fy and F; are weakly locally ho—
motopic. W
The following theorems are immediate consequences of Theorems 2 and 3.

THEOREM 4. Let f;: K — M be a continuous family of maps, each f, having a
novmal structuve of formal codimension k > 3. Then v(fy) = v(f,).

THEOREM 5. Let £ and g be smooth imbeddings V*-X — M™, with V closed
and k > 3, that are homotopic through smooth imbeddings. Then the normal sphere
bundles are fibev-homotopy equivalent,
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4. CODIMENSION 2

The difficulty in codimension 2 appears to be the possible failure of Theorem 1
for k = 2. However, a weaker version of Theorem 1 is sometimes sufficient. We
give an example.

THEOREM 6. Let f and g be smooth imbeddings V*% — M™, with ovient -
able novmal bundles that are homotopic thvough smooth imbeddings. Then the

normal spheve bundles Eg and E; for f and g ave fiber-homotopy equivalent.

LEMMA. Let dN' — N' be orientable (as a fibeving). Then there is a rvetraction
r: W — 9N' inducing homology isomorphisms,

Proof. Let p: W — N' be the restriction of a deformation retraction N — N'.
Consider the diagram

oN' X aN'.

The obstructions to deforming p into aN' relative to aN' lie in H*(W, aN'; T, F),
where F is the homotopy fiber of 9N' — N'. Now the orientability of oN' — N' im-
plies that the coefficients are untwisted, and by excision of int N' we obtain the
relation H*(W, 9N'; 7, F) = 0. Now deform p into a retraction r: W — aN'. Since
iy: HyoN' — H, W is an isomorphism, r, is also an isomorphism.

Proof of Theovem 6. We may reduce the problem to that of Theorem 1, by using
an argument similar to the proof of Theorem 3. The lemma then gives a fiberwise
map ¢: Eg — E;] inducing homology isomorphisms. Let Fg and F; be the fibers
(of the homotopy type of S1). Let a: Fy — F; be induced by ¢. Consider the dia-
gram

H,(S A Fyp) (Ser)s H2(S A\ Fp)

l l
Hz(To) (,5* HZ(TI) ’

where To and T; are the Thom complexes. Because the bundles are orientable, the
vertical maps are isomorphisms. By a familiar exact-sequence argument, 43* is an

isomorphism. It follows that deg a = +1, and therefore ¢ is a fiber-homotopy equi-
valence.

Remark. If V is replaced by a complex K

then the above proof does not work,
for Fyp and F|; may be infinite-dimensional [lj

In the nonorientable case, we have at present only the following weak version of
Theorem 6.

THEOREM 7. Le!t Eqg and E1 be the normal sphere bundles of smooth imbed-
dings

£: V22 > M®  and g VP? - MO

that aye homotopic through smooth imbeddings. Then H,(Eq ; Zp) = Hy(Ey ; Z,).
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Proof. Apply the method of Theorem 3 to reduce the problem to the situation in
Theorem 1. Now Poincaré duahty for W shows that H (W, aN; Z;) = 0. We then
have isomorphisms H_ (N5 Z,) — H(W; Z;) < H, (aN Z>).
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