DISTRIBUTIVE LOCAL NOETHER LATTICES
Kenneth P. Bogart

1. INTRODUCTION

In a recent paper, R. P. Dilworth [2] introduced the concept of a Noether lattice
as an abstraction of the concept of the lattice of ideals of a Noetherian ring. A
Noether lattice is a modular multiplicative lattice that satisfies the ascending chain
condition and in which every element is a join of elements called principal elements.
The principal elements are characterized by a pair of identities that are satisfied
by the principal ideals of a ring. The usual ring-theoretic definitions of the terms
local, regular, dimension, and rank carry over directly to Noether lattices. In a re-
cent paper [1], the author showed that a distributive regular local Noether lattice of
dimension n is isomorphic to RL,, the sublattice of the lattice of ideals of
F[x,, ---, x| generated by the principal ideals (x;), -+, (x,) under multiplication
and join.

The purpose of this paper is to describe the structure of distributive local
Noether lattices. Loosely this description states that each distributive local Noether
lattice L is obtained from one of the lattices RL, by identification of some of the
principal elements of RL, with an equivalence relation that preserves join, multi-
plication, and cancellation in nonzero products, and by the extension of this equiva-
lence relation to all of RL,,. The equivalence classes of RL, modulo this relation
form a lattice isomorphic to L.

Section 2 of this paper contains a characterization of principal elements in a
modular multiplicative lattice, which, though known, has not yet appeared in the
literature.

We use the notation and terminology of [1]. In particular, E, F, H, K, and N de-
note principal elements. Definitions given in [1] will not be repeated here.

2. A CHARACTERIZATION OF PRINCIPAL ELEMENTS

Our first theorem shows that in the case of a modular lattice, the defining equa-
tions for principal elements can be simplified.

THEOREM 1. Let L. be a modular multiplicative lattice. An element E of L is
principal if and only if

(2.1) BAE =(B:E)E forall Be L
and
(2.2) (BE):E = BVO:E forall Be L.

Proof. By Corollaries 3.1 and 3.2 of [2], principal elements of L satisfy (2.1)
and (2.2).

We show first that an element E satisfying (2.1) and (2.2) is join-principal, in
other words, that
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(AVBE):E = A:EVB forall A BeL.

The proof of the following set of equations uses (2.1), (2.2), the modular law, the
join-distributivity of multiplication, and the fact that 0: Y < X:Y for all X, Y € L.

(AVBE):E = (AVBE):EVO0:E = {[(AVBE):E]E}:E

Il

[(AVBE)AE]:E = [(AAE)VBE]:E = [(A: E)JE V BE]|: E

= [(A:EVB)E]:E =A:EVBVO:E = A:EVB.

Now we show that if E satisfies (2.1) and (2.2), then E is meet-principal, in
other words, that

(AANB:E)E = AEAB forall A/ Be L.

The proof of the following set of equations uses the same facts as the proof of the
previous set, and in addition it uses the fact that (XA Y):Z =X:Z A Y:Z for all
X,Y,Z e L.

AEAB = AEAEAB = [(AEAB):E|E = [(AEAE A B):E|E

{[AE A (B:E)E]:E}E = {(AE):EA[(B:E)E|:E}E

Il

1l

[((AVO:E)YAB:EVO0:E)]E = [(AV0:E)AB:E|E

=[(AAB:E)VO:EJE = (AAB:E)EVO0=(AAB:EE.

3. THE BASIC STRUCTURE THEOREM

The distributive law imposes a very strong restriction on the structure of local
Noether lattices, as the next two lemmas show.

LEMMA 1. Lel L be a distrvibutive local Noether latlice, and let A € L.. Then
any two minimal vepresentalions of A as a join of principal elements differ only in
ovdev, that is, they use the same principal elements.

Proof. By Lemma 2.2 of [1], the principal elements of L are precisely the join-
irreducible elements. It is well known that in a distributive lattice, two minimal
representations of an element as a finite join of join-irreducible elements differ only
in order.

LEMMA 2. Let L be a distributive local Noether lattice, and let
M=E;V -V E, beaminimal vepresentation of the maximal element as a join of
principal elements. Then each nonzero propeyr pvincipal element of Li is a product
of powers of the elements E;.

Pyroof. Let E #1 be a nonzero principal element of I.. Then
E=EAM=EA(E;V--VE)=(EAE)V ---V(EAE]),

which implies that E = E A Ey for some k by Lemma 2.2 of [1]. Thus E < E;. Let
i(k) be the largest integer such that E < EL(K). Then
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E = (E: ELR)EIKR)

by condition (2.1). Lemma 2.2 of [1] implies that E = FE%((k) for some principal ele-
ment F < E: Ei(k). But F £ E,, since E £ E{” for every m greater than i(k).
Thus F =1 or F < Ej for some j # k. If F =1, there is nothing more to do. If

F #1, we apply the same process to F as we applied to E, and we obtain the equa-
tion

where i(j) is the largest integer such that F < EI(J) . Iteration of this process
yields the equation

E = KELDEL?) ... giln)

with KL E,, (m=1, 2, ---, n). It follows that K = I, and the lemma is proved.

From Lemma 2 we see that it is possible to define a map from RL, onto a dis-
tributive local Noether lattice whose maximal element has a minimum representa-
tion as a join of n principal elements. The next theorem shows that this allows us
to characterize distributive local Noether lattices in a concrete manner.

THEOREM 2. Le! L be a distributive local Noetheyr lattice., Then theve exist an
integer n, an equivalence velation 6 on RL,, and an equivalence velation o on the
set of principal elements of RL, such that the equivalence classes of RL, modulo
6 form a Noelhevr lattice isomovphic to L, and such that the following condilions are
satisfied.

(1) HyVvV:--VH, 8 KyV VK, if and only if for each i <r there exist a
principal element N in RL, and an mtegeaf j(i) < m such that H; 6 N < K: 5(1), and
for each j < m there exist a principal element N' in RL, and an inleger 1(]) <r
such that K; 6 N' < Hy(;).

(2) H o N implies HK o NK.
(3) HK =0 (modulo o) and HK o NK imply H ¢ N.
(4) X 6 1 implies X =1.

Conversely, if 0 is an equivalence velation on RLy, and 0 .is an equivalence
relation on the set of principal elements of RL,,, and if 0 and o satisfy conditions
(1) to (4), then the set of equivalence classes of RLy modulo 6 forms a Noether
lattice.

Proof. Suppose that L, is a distributive local Noether lattice. Let
= El . V-En

be a minimal representation of the maximal element of L. By Lemma 3.2, each ele-
ment of L has a representation as a join of products of powers of the eélements E;.
Two elements of RL, are equal only if they are joins of the same principal elements,
by Lemma 3.1. Since, by Lemma 3.2 and by residuation, two principal elements of
RL, are equal only if they are the same product of powers of the elements (x;), it is
possible to define a map ¢ from RL, into L by defining ¢[(x;)] = E; and then ex-
tending this map to all of RL, according to the rules

#(AB) = ¢(A)é(B), ¢(AV B) =¢(A)V ¢(B).
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Define an equivalence relation ¢ on RL, by the rule that A 6 B if and only if
#(A) = ¢(B). Let <A> denote the set of all elements of RL, equivalent to A

modulo 6. Define

(3.1) V(a) =\/{ar|aroay,

(3.2) (A) < (B) ifandonlyif A<V (B),
(3.3) (aY)v{B) ={avB),

(3.4) . (A)/\(B)=<(\/(A))/\(\/(B>)), and
(3.5) (A)(B) = (AB).

It is obvious that condition (3.2) defines a partial ordering on the set L' of equiva-

lence classes modulo 6. Since \/ (X) ¢ X for all X in RL,, and since X <Y

implies V( X) < \/<Y> for all X and Y in RL_, the relations (3.3) and (3.4)
give the meet and join relative to the partial ordering defined in (3.2) for each pair
of elements in L'. With the multiplication given in (3.5), L' is a complete multipli-
cative lattice satisfying the ascending chain condition.

Consider the map ¢': L' — L defined by ¢'( < A>) = ¢(A). By the definition of ¢'
and 0, the relation ¢'(<A>) = ¢'( < B>) implies ¢(A) = ¢(B), which means that
<A> = <B . Thus ¢' is one-to-one. If X is in L, then X = ¢(Y) for some Y in
RL_, which implies that X = ¢'( <Y>). Therefore ¢' is onto. Since

(ayv(BY={(aAvB) ana (A)(B) = (aB),

¢' preserves the partial order and multiplication of L.'. Now assume that

$({A)) < ¢'({B)).
Then
s ((AY v (B)) = ¢(({AN) v ¢ ({B)) = ¢'({ B)),

so that <A> \Y% <B> = <B> and <A> < <B> Thus ¢' and its inverse are order-
preserving, so that ¢' is a lattice isomorphism. Since ¢' preserves multiplication,
L and L' are isomorphic as multiplicative lattices and thus as Noether lattices.

Now let ¢ be the restriction of 6 to the set of principal elements of RL,,. Then
PL.emma 1 implies that condition (1) of the theorem is satisfied. Condition (2) of the
theorem follows immediately from the definition of 6. To verify condition (4), sup-
pose {0) # (HK) = (NK ). Since L' is a Noether lattice, it follows from condi-

tion (2.2) that
(r) v{o):{x) = {n)v{o): (k).

Because (H) £ {0): <K> and {N) £ {0): (K), a minimal representation of
(H) v {0): {X) has the form

(H) V{K,V VK, ),
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and a minimal representation of <~N > Vv (O> : <K> has the form
(N) v (K v VR,

with (K;) < 0):{K) and (k}) < {0):{K). Then since {H) £ {0): (K)
and (N) £ (0): (K), it follows by Lemma 1 that H ¢ N. Condition (4) follows
from the fact that L' is local.

Now suppose that 6 and ¢ are equivalence relations on RL, such that condi-
tions (1) to (4) are satisfied. We must verify that RL, /0 may be regarded as a
Noether lattice.

Denote the equivalence class of all elements congruent to A modulo 6 by (A ) .

Define a partial ordering on L = RL, /60 by using equations (3.1) and (3.2). That
(3.2) yields a partial ordering follows immediately from the propositions that

V(x) 6 X for all X in RL, andthat V (XY <\/(¥) whenever X <Y in
RL,,.

The first of these is clear; to verify the second note that if X' 6 X, then
X'VY 0 Y by condition (1) of the theorem. Then

360 V{(x)=Vix|xox}<V{xvy xox}< V().

It follows that (3.3) and (3.4) give the join and meet of any two elements of L
relative to the partial ordering defined in (3.2). Clearly, L. is complete and is a
multiplicative lattice with the multiplication given by (3.5). It is also clear that L
satisfies the ascending chain condition. We shall show that L is a Noether lattice by
showing that L is distributive and that every element of L is a join of principal
elements.

In order to show that L is distributive, we need the relation
(3.7) \/(AVB)=(\/(A))V(\/(B>)'.
Clearly (\/(A)) \4 (\/ <B> ) < \/(A\/ B>. Now, assume that

C=K;V-VK,6AVB,

Let A=E;V -V Eg and B=H; V ---V H, Then, by condition (1), for each K;
there exist integers j(i) and Nj (i) such that either

K; 0 Nj5) < Ej) or K; 0 Njy < Hygy).

Thus, by (3.6), the elements K; may be divided into two sets such that the join of the
first is less than or equal to \/ <A>, and the join of the second is less than or

equal to \/<B> Then C < (V<A> ) \% (\/ <B> ) , and therefore the relation
(3.7) holds. To see that this implies the distributivity of L, we observe that

(c)nayvis))={c)r{avs)
(V¢ey) Al (Viay) v(Vimy) ]

]
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LIV ) AV @) VLIV A (Vi) ]
= ({c) v{anvc) A{B));

the second and fourth equality signs are justified by (3.4), and the third by the dis-
tributivity of RL,,.

Using (3.2) and (3.5) and the definition of residuation, we obtain the equations
g (B = VGO () (B) < ()} - V() [ < V()
-V x<(Vad)ist - (V<ad ) (m).

We shall use (3.8) to show that <E> is a principal element in L for each principal
element E in RL,. To show that <E> is principal, it is necessary to prove first
that

(3.9) (AYA(E) = ({A): (EN(E).

Note that if H 6 K in RL,, then (H) = {K) and

(V¢ay):m) = (a):Ca) = <a)i(x) =((V(a)) k).

Multiplying the left side of this expression by (H) and the right side by <K> and
applying equation (2.1) in RL,,, we obtain the equation

(3.10) ((\/(A))/\H>=<(\/(A>) AK) .

Note that since \/ <E> 6 E, we have the relation \/ <E> =EVK;V- VK.
with K, 6 H, < E; by condition (1) of the theorem. Using this and equation (3.8), and
applymg (3. 10) and the fact that < AV B) ( A> < B> in the third line below, we
obtain the equations

(A A(E) = ((\/(A)) AEVEK V- VK,))
(LIV@ay) ae VLIV Y) kg Jv v (V(ad) ax 1)
([(V¢ay) ae V[V ) A v vV (a)) am, )
“(VaY) rEve v vEY)
(V) amy =LV ay) ir ) = (arm)(m).

This proves equation (3.9).

The second step in the proof that <E> is a principal element is to prove the
relation

(3.11) ((BY (E)): (E) = {(B)Y v{0):(E).
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i (BY (E) =<0), then {B) < {0): (E), and (3.11) holds. Assume
(B) <E> # 0. It is always true that

((B) (E)): (E) > (0): (&) V(B);

therefore we suppose that K is a principal element in RL, such that

(k)Y (E)Y < (B) (E), with (K) (E) #0. Then KE V BE 6 BE, so that (by
condition (1) of the theorem) there exists H' such that H' § KE and H' < BE. But
by equation (2.1), H' = H' AE = HE with H=H': E. Therefore KE 6 HE implies
K 6 H < B, by condition (3). Therefore <K> < <B> Thus

Vx| (%) (B) <(B) (&) and (k) (B} + (0)} < (B).

Hence equation (3.11) holds. Thus, by Theorem 1, E is a principal element, so that
each element of L is a join of principal elements. Therefore L is a distributive

Noether lattice. L is local, for if (A) Vv {B) = {I), then AV B =1 by condition
(4), sothat A=1 or B =1. This proves the theorem.

4. EXAMPLES OF DISTRIBUTIVE LOCAL NOETHER LATTICES
We can use Theorem 2 to construct interesting examples of Noether lattices.
For example, the lattice L obtained by identifying (x;)% and (x3)? in RL, is drawn

schematically in Figure 1. The dots indicate that the pattern above them is to be
continued.

E? = EF?

Figure 1.

The lattice obtained from RL;, by identifying
(XI}Z and (XZ)Z as described in Theorem 2.
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To verify that L is the lattice shown in the figure, let < (x1)> = E and
< (x 2)) = H. Note first that each principal element of L has a factorization of the
form Ei or EiH. Thus every element X of L has the form X = El \V EJH, where i
denotes the smallest integer such that E! is contained in X, and where j denotes the
smallest integer such that EJH<X. If j> i, then X=E'. If j <i, then

L o EN(EVH) ifi-j=1,
E'VEH = EJN(E'" VH) = )
E'H ifi-j>1.
Therefore each element of L has the form E!, EJH, or EX(E V H), and Figure 1 is
the correct diagram for L.

Another interesting example that may be obtained from RL, is
L' = RL, /[(Xl) V (Xz)]z .

Although the quotient lattice L/D is defined differently in [2] from the way L/6 is
defined in this paper, it is easy to see that L' is the lattice obtained from RL; by
identifying (x;)?, (x;)(x;), and (x,)? with O as described in Theorem 3.1. The
diagram for L' may thus be obtained from the diagram for L by taking E2 V EH as
the zero element in Figure 1. L' arises naturally as a quotient sublattice of any
distributive local Noether lattice that is not a chain. This is a crucial point in the
proof of the following theorem.

THEOREM 3. If Ly is the lattice of ideals of a local ving R, then Ly is dis-
tributive if and only if Ly is a chain. '

Proof. I the maximal ideal of R is principal, Ly is a chain. Suppose the maxi-
mal ideal of R has a minimal representation of the form E; V --- V Ey, where each
E; is a principal ideal. Let

A = (E, VE)*VE; V-V Eg,

and let X' denote XV A. Then one can show easily that E} V E,, E;, E;, and 0'
are distinct elements of L /A. For example, if E] = E}, then

I=(E;VA):E| = (E;VA):E

Since Lp is local, (E, V -V Eg):E; = 1. This is impossible, since it implies that
E|<E;V -V Eg.

Now suppose that X' #1I is an element of Ly /A. Then

Xl

||

X' (E‘1 VE'Z) = (X' E'l)V (X"Z/\ E_'z)

(X':E})E] V (X': E)):E,.

But if X': E{ =1, then (X':E;)E;=0. Thus I', E] V Ej3, E], E3, and 0' are the
only elements of Ly /A. The lattice Ly /A is the lattice of ideals of the ring R/A.
Since E} and E;, are join-irreducible, they must be principal ideals. Let Ej = (x)
and Ej = (y). Since (x) # (y), it follows that (x+y) #0. Also (x+y) # (x), for if
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X +y =rx, then y is in (x), which is impossible. If (x+y) = (%, y), then (%, y) is
principal and Corollary 2.2 of [1] implies that (x, y) = (x) or (x, y) = (y). Again this
is impossible, so that Ly /A cannot be the lattice of all ideals of any ring. Thus the
maximal ideal of R is principal and L is a chain.

Theorem 3 is a special case of a theorem that will appear in a paper of E. W.
Johnson and J. P. Lediaev [3]. The proof given here is different from theirs.
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