PRODUCTS OF SELF-ADJOINT OPERATORS
Heydar Radjavi and James P. Williams

Introduction. The purpose of this paper is to present some partial results con-
cerning the problem of characterizing the bounded linear operators T on a Hilbert
space H that admit a factorization as a product of two self-adjoint operators. We
conjecture that an invertible operator T has this property if and only if T is simi-
lar to its adjoint. The main results are (a) a proof of the conjecture under the re-
striction that dim H < «, and (b) a characterization of the operators that are uni-
tarily equivalent to their adjoints. We also establish other sufficient conditions
under which the conjecture is true.

1. We begin by considering the finite-dimensional case. Theorem 1 gives a
reasonably good characterization of the product of two self-adjoint operators.

THEOREM 1. If H is a finite-dimensional Hilbert space, then the following are
equivalent conditions for an operator T on H.

(1) T is a product of two self-adjoint operators.
(2) T is a product of two self-adjoint operators, one of which is invertible.

(3) There exists an invertible self-adjoint operator A such that TA is self-
adjoint.

(4) There exists an invertible self-adjoint opevator A such that A-1TA = T*,
(5) There exists a basis of H with respect to which the matvix of T is veal.
(6) T is similar to T*.

Proof. Carlson [1] proved the equivalence of the first five conditions. For the
sake of completeness, we include here a substantial simplification of his arguments.

The implications (2) = (4) = (3) = (2) = (1) are clear, and therefore it suf-
fices to prove (1) = (2) and the chain (5) = (6) = (2) = (6) = (5).

(5) = (6). Suppose that T has real matrix (a.1 ) relative to the basis {e;}.
Choose an orthonormal basis {f; }, and define an 1nvert1b1e operator S so that
Sf; = e;. Then S-!TS has matrix (a;;) relative to the orthonormal basis {f;}.
Smce any matrlx is similar to its transpose it follows that S-1TS is similar to
(s-1T8)t = (5-1TS)*. This implies that T is similar to T*.

(6) > (2). Assume that TS = ST* for some invertible operator S. Taking ad-
joints, one sees easily that

T(eif s + e-10 §¥) = (eif § + e-10 g*)T*
for each real 6. Now the operator

AB = e1es+e-i0 S* = (SS*-1+e-219)ei9 S*
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is invertible if we choose 0 so that -e~219 does not belong to the spectrum of
Ss*-! . (This choice is possible because o(SS*~!) is a finite set.) Hence, for suit-
able 6,

T = (TAg)Ap',

so that T satisfies condition (2).

The implication (2) => (6) is trivial: If T = AB, where A and B are self-adjoint
and (say) A is invertible, then TA = AT*, so that T is similar to T*.

(6) = (5). It suffices to show that if the matrix A is similar to its adjoint, then
A is also similar to a real matrix. Now, since any matrix is similar to its trans-
pose, the hypothesis insures that A is similar to its complex conjugate A. This
means that the Jordan canonical form of A has the form

diag {Al » 7T Ap: Kl s 7T Kp: Ry, =, Rq} ’
where the matrices R; are real and each A; has the form

A
1

1 A

Hence it suffices to show that a matrix of the form diag {A, A} is similar to a
real matrix. Such a matrix is actually unitarily equivalent to a real matrix. In fact,
if A and B are n X n matrices, and if I is the n X n identity, then the matrix

-1

1 i R
Zh T (A B) 2t 73
g 1 B a/\ i, L
ﬁl \/—QI ﬁl -\/—EI

is real.

It remains to prove that (1) = (2). Suppose then that T = AB, where A and B
are self-adjoint. The identity S-1(AB)S = (S-1 AS*-1)(S* BS) shows that the set of
products AB of self-adjoint operators is invariant under similarity. Hence, replac-
ing T by a similarity of T if necessary, we may assume that T is the direct sum of
a nilpotent N and an invertible R.

Now TA = AT* implies T" A = AT*" for every natural number n. If A is
partitioned suitably, this last equation may be expressed as

0 R/ \NC* A, C* A, 0 R*"

It follows that R®C* = C* N*™ for each n, and this implies C = 0.
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B; D

Let ( ) be the corresponding partition of B. Then the equation T = AB
D* B,

gives the relation R = A, B,. Since R is invertible, the self-adjoint operators A;

and B, are also invertible. Hence A;1RA, = R*.

Finally, N is nilpotent and is therefore similar to its adjoint, so that there exists
an invertible A3 with AglNA3 = N*, The operator S = diag {A;, AZ} then imple-
ments the similarity between T and T*. This completes the proof of Theorem 1.

It is reasonable to ask whether the existence of an orthornormal basis in (5) is
equivalent to T being unitarily equivalent to its adjoint in (6). However, if

0 0 1 i
-1 1 1
0 1 1 1
T1= and T2= -1 0 1 ,
-1 -1 2 0
-1 -1 1
i -1 0 3

then T is unitarily equivalent to its adjoint but does not have a real matrix in any
basis; even though T, has a real matrix, the similarity between T, and its adjoint
cannot be implemented by a unitary operator.

2. In the remainder of this paper, we shall study the conditions in Theorem 1 in
the case where H is an infinite-dimensional Hilbert space. In the present section,
we provide some motivation for what follows.

We begin by listing some known properties of products of self-adjoint operators.
PROPOSITION. If A and B be self-adjoint, then

(i) the spectrum of AB is symmetric with vespect to the real axis, and the
residual spectrum of AB contains no nonzevo veal number;

(ii) AB is invertible if and only if both A and B are invertible;

(iii) in case A and B ave projections, AB is unitarily equivalent to its adjoint
and has nonnegative spectvum;

(iv) AB and BA need not be similar.

Proof. Tt is well known that if X and Y are operators, then the nonzero points
of 0(XY) and o(YX) are identical. Moreover, it is easy to see that if the product
AB of two self-adjoint operators is invertible, then both A and B are invertible.
Thus

o (AB) = o(BA) = o((AB)*) = 0(AB)",

where the bar denotes complex conjugation. This proves (ii) and the symmetry
assertion in (i).

It is clear that if A is real and nonzero, then AB - A = (BA - A)* is invertible if
and only if it is bounded below, because

B null(AB - A) = null(BA - ).

This completes the proof of (i).
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Dixmier [4] proved that a product of two projections is unitarily equivalent to its
adjoint. The nonnegativity of the spectrum in (iii) is obtained from the well-known
relation

o(AB) = 0(A1/2A1/2B) = 0c(A1/2BA/2) + {0}.

Finally, to prove (iv) we observe that the null spaces of two similar operators
have the same dimension. Hence it suffices to exhibit self-adjoint operators A and
B such that AB is one-to-one, but BA is not. This is easy to do. For example, let
A be a positive operator with dense range, let P be a projection whose range is dis-
joint from the range of A, say Px = (x, y)y, where y does not lie in the range of A,
and put B = P+,

Remark. In view of the preceding example, it is reasonable to ask whether AB
and BA are similar if their null spaces have the same dimension. We do not know
the answer.

Consider now the conditions of Theorem 1. The implications
(6) <= (4) = (3) = (2)=> (1)

are of course purely formal, and hence they remain valid in the infinite-dimensional
case. On the other hand, we have just shown that (1) and (2) are not equivalent, and
it is easy to see that (5) and (6) are also not equivalent. (For example, the unilateral
shift defined on an orthonormal basis {e,}7 by Ue, = e,;; has real matrix, but it
is not similar to its adjoint, because U* has a null space and U does not.) Thus the
only possible nontrivial relation is (6) <> (4). This may be equivalently stated as
follows.

Conjecture. An invertible operator T is a product of two self-adjoint operators
if and only if T is similar to T*.

For the sake of brevity, we denote by € the set of all invertible products of
self-adjoint operators A and B, and by ¥ the set of invertible operators that are
similar to their adjoints. We have the inclusion relation €g C €, and the conjecture
asserts that its reverse is also valid.

We shall use the invariance of the classes ¢y and ¥ under similarity transfor-
mations T — S-1TS. We also notice that & is strictly larger than the class of
operators that are similar to self-adjoints. (The bilateral shift is a counterexample).

There is no relation between the operators in € and the symmetrizable (5], [8]
or quasi-Hermitian [3] operators. Thus the adjoint of the operator APL constructed
in the proof of (v) of our proposition is quasi-Hermitian but does not belong to #.

In the other direction, € contains nilpotents, but there exist no nontrivial quasi-
nilpotent, quasi-Hermitian operators [3].

3. In the proof of Theorem 1, we observed that the equation TS = ST* implies
T[%(eif 8)] = [9(ei?f 5)] T*

for all 6. Hence, if we can choose 6 so that the operator in brackets is invertible,
then T € €. This choice is possible, for example, if the imaginary part of S is
compact. In fact, this assumption implies that ss*-1 is the sum of the identity and a
compact operator whose spectrum cannot contain -e -210 for all o.
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If S is unitary, an appropriate choice of 6§ may not be possible, but our tech-
nique yields the following result [12]. (Here W(S) = {(Sx, x): ||x|| =1} is the
numerical range of S, and the bar denotes closure.)

THEOREM 2. The following are equivalent conditions on an operator T:.
(1) T is similar to a self-adjoint operator.

(2) T = PA, wheve P is positive and invertible and A is self-adjoint.
(3) S"1TS =T* and 0 € W(S)™.

Theorem 2 gives a sufficient condition for an operator T € € to belong to €,
namely, that the similarity between T and T* can be implemented by an operator S
that is strongly invertible in the sense of condition (3). If S is unitary, then this
condition amounts to the assumption that the spectrum of S is contained in an arc of
the unit circle of length less than 7. The next result deals with the situation in
which this restriction on the spectrum is not satisfied.

THEOREM 3. T is unitarily equivalent to its adjoint if and only if T is the
product of a symmetry and a self-adjoint opevator.

Proof. If T =JA, where J=J*=7J -1 js a symmetry and A is self-adjoint, then
JTJ = AJ = T*, so that T is unitarily equivalent to its adjoint.

Conversely, suppose TU = UT*, where U is unitary. Then T commutes with
U2. Let U2 = S el? dE, be the spectral representation of U%. If V = Seif’/ 2dE,,

then V is a unitary operator, V2 = y? , and V commutes with every operator that
commutes with U2 . It follows that V commutes with U and T, and therefore
J=V-1U is a symmetry and TJ = JT*. Hence T = J(TJ) is the product of a sym-
metry and a self-adjoint operator.

COROLLARY 1. Each novmal operator in ‘% belongs to %, .

Proof. Two normal operators that are similar are also unitarily equivalent, by
the Putnam-Fuglede Theorem [6].

COROLLARY 2. If T € € and T is similay to a normal opevator, then T € € .
Proof. @g is invariant under similarity transformations.

COROLLARY 3. Assume S~1TS =T*. If S is congruent to a novmal operator
(S = RNR*, N normal), then T € €, .

Proof. We have the relation ToN = NT}, where To = R-! TR is similar to T.
Hence it suffices to show that Ty € 3. Now, if N = UP is the polar decomposition
of N, then commutativity of U and P implies that

(p-1/27,pl/2)y = uP-1/21, PL/2)*
Since U is unitary, it follows from Theorem 3 that P-1/2T, Pl/2 belongs to ¥ .

This implies that Ty € €.

COROLLARY 4. Assume TS = ST*, wheve S is invertible. Then the following
conditions on S are equivalent:

. .. 2 2
(i) ST = T*S, (ii) s“T = T8“, (iii) S*ST = TS*S.

Moreover, if any of these additional conditions is satisfied, then T € €.
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Proof. ¥ TS = ST*, the equivalence of (i), (ii), (iii) is trivial.

Suppose now that the additional conditions hold, and let S = VP be the polar de-
composition of S. Since TS = ST*, the operator S*S-! commutes with T. It follows
that P2 = §*S = (S*S-1)S2 also commutes with T, and hence that PT = TP. There-
fore PT* = T* P, and it follows from the equation TS = ST* that TV = VT¥*. Hence,
by Theorem 3, T is the product of a symmetry and a self-adjoint operator.

Theorem 3 contains other facts of interest. For example, the following result of
C. Davis [2] is an immediate consequence.

THEOREM 4. A unitary opevator U is similar to ils inverse if and only if U is
the product of two symmelries.

Applying Theorem 3 to the operator iA, where A is self-adjoint, we get a result
about self-commutators, that is, operators of the form T* T - TT*:

COROLLARY 5. A self-adjoint opevator A is similar to its negative if and only
if A=1i(JB - BJ), where J is a symmetry and B is self-adjoint.

Concerning Corollary 3 of Theorem 3, we do not know which invertible operators
S are congruent to a normal operator. However, it is easy to see that the following
are equivalent:

(i) S = R*NR (N normal, R invertible),
(ii) S = PNP (P positive and invertible, N normal),
(iii) S = PUP (P positive and invertible, U unitary).

Moreover, each of these conditions implies that ss*-1 is similar to a unitary opera-
tor. (This allows us to exhibit 2 X 2 matrices S that are not congruent to a normal
operator.)

The class of operators that are unitarily equivalent to their adjoints is not as
ngl—behaved as one might expect. For example, the Bishop operator defined on
L4(0, 1) by

(Bf) (x) = x-f(x + a)

(where o is irrational and the addition is modulo 1) is a prime candidate for an
example of an operator with no nontrivial invariant subspaces. Yet iB is unitarily
equivalent to its adjoint. (The relevant symmetry is (Jf)(x) = f(o - x).)

We conclude this section with another sufficient condition for an operator in €
to belong to & .

THEOREM 5. If T has no veal spectvum and if T € €, then T € €.

Proof. Let 0; and o2 be the parts of ¢(A) lying in the upper and lower half-
planes, respectively. Since T is similar to T*, ¢, is the complex conjugate of ¢ .
By the decomposition theorem of Riesz [9, p. 421], the Hilbert space H is the direct
sum of two linearly independent subspaces H; and H, where H; is invariant under
T and the spectrum of the restriction of T to H; is o; (i =1, 2).

Writing every vector x in H as x; + X, with x; € H;, we consider the new norm
|x] = ||x1|| + |x2]| on H and observe that the identity transformation from (H, | - |)
onto (H, | - ||) is one-to-one and bounded. Hence its inverse is bounded, by the
closed-graph theorem, so that there exists an m > 0 such that

m([|x,]| + [x2[) < [[x1+x]
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for every x. It follows that the operator R defined by the linear extension of

X for x € Hy,
Rx =
x, for x € H{

is invertible, and R-!TR is a similarity of T leaving H; and Hi invariant. Hence
we can assume, without loss of generality, that T = diag {T;, T2}, with o(T;) = 0;.

S;1 Sz
By hypothesis, TS = ST*, for some invertible S. If S =( ) then
S3 S84
T;S; =8;TF and T,S4=S4T%. Since o(T;) N o(TT) is empty (i = 1, 2), it follows
from a result of Rosenblum [10] that S; = S, = 0. Hence S, and Sj are invertible,
and T, = S3 T} sgl . Hence

T, 0 0o s 0 T85!
0 S3T}8S3 S3 0 S5 T 0

in other words, T € €o.

4. The next result gives some information about the class ®( of invertible
products of two self-adjoint operations.

THEOREM 6. The following conditions on T ave equivalent.
(1) Te &.

(2) There exist a symmetry J and a positive invertible P such that
(®sp)-lT(PIP) = T*.
(3) There exist a symmetry J and a positive invertible P such that
Je-lreyg = (p-lTP).
(4) There exist an invertible R and a normal N such that
(R*NR)"!T(R*NR) = T*.

(5) Some similarity of T is unitarily equivalent to its adjoint.

Proof. The implications (4) <= (2) < (3) = (5) are clear. Theorem 3 and the
invariance of ¥ under similarity yield the result (5) = (1).

The implication (4) = (1) is Corollary 3 of Theorem 3.

It remains to show that (1) = (2). For this, write T = AB, where A and B are
self-adjoint and A is invertible, and let A = JP be the polar decomposition of A.
Here P is positive, J is a symmetry, and J and P commute. Then

so that condition (2) holds for T.
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The preceding theorem permits a reformulation of the conjecture: If T is simi-
lar to its adjoint, then some similarity of T is unitarily equivalent to its adjoint.

5. There is a connection between the operators in € and self-commutators. A
self-adjoint operator is a self-commutator if and only if it has the form i(AB - BA),
where A and B are self-adjoint.

It is clear that if T = AB is a product of two self-adjoint operators, then the
imaginary part of T is a self-commutator. Consequently, if the conjecture is true,
then the same must be true for each T € ¥. The next result is therefore of interest.

THEOREM 7. If T is similar to T*, then ST is a self-commutator.

Proof. Without loss of generality, we may suppose that H is separable. In this
case, self-commutators may be characterized [7] as the self-adjoint operators that
are not of the form K + M, where K is compact and M > 6 > 0.

If the operator T satisfies the condition JT > 6 > 0, then the numerical range
of T lies in the half-plane {3z > 6}. Since the closure of the numerical range
contains the spectrum, it follows that ¢(T) cannot be symmetric with respect to the
real axis. Hence, if S-1 TS = T* for some invertible S, then neither of the condi-
tions T > 6 and JT < -6 can hold for 6> 0.

Now one can define the numerical range Wo('f‘) of an element T of the quotient
algebra #(H)/A, o being the ideal of compact operators [11]. Here W,(T) is
convex and contains O(i‘), and therefore the above argument, carried out in the alge-
bra #(H)/o¢, yields the conclusion that ST cannot be of the form K + M, where K
is compact and M > 6 > 0. This completes the proof.

We conclude with three observations that are relevant to the problem of giving
an intrinsic characterization of the product of two self-adjoint operators.

THEOREM 8 (T. Crimmins). T is a product of two projections if and only if
TT* T = T2.

Proof. The necessity is trivial. To prove the sufficiency, let P be the projec-
tion onto the closure of the range of T, and let Q be the projection onto the ortho-
gonal complement of the null space of T. Then T = PQ.

THEOREM 9. In ovder that T = PA, wheve P is a projection and A is self-
adjoint, it is necessary and sufficient that T*2T = T* T2,

Proof. Let P be defined as in the proof of Theorem 8, and note that
A = PTP+ TP+ Pt T

is self-adjoint.
THEOREM 10 (J. Stampfli). T* T T* = TT* T if and only if T is self-adjoint.
Proof. (T*T)3 = (T*TT*)(TT*T) = (TT*T)(T*TT*) = (TT*)3.
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